diff options
author | shamikam | 2017-01-16 02:56:17 +0530 |
---|---|---|
committer | shamikam | 2017-01-16 02:56:17 +0530 |
commit | a6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch) | |
tree | e806e966b06a53388fb300d89534354b222c2cad /thirdparty1/linux/include/opencv2/hdf/hdf5.hpp | |
download | FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2 FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip |
Diffstat (limited to 'thirdparty1/linux/include/opencv2/hdf/hdf5.hpp')
-rw-r--r-- | thirdparty1/linux/include/opencv2/hdf/hdf5.hpp | 707 |
1 files changed, 707 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/hdf/hdf5.hpp b/thirdparty1/linux/include/opencv2/hdf/hdf5.hpp new file mode 100644 index 0000000..2c6deaa --- /dev/null +++ b/thirdparty1/linux/include/opencv2/hdf/hdf5.hpp @@ -0,0 +1,707 @@ +/********************************************************************* + * Software License Agreement (BSD License) + * + * Copyright (c) 2015 + * Balint Cristian <cristian dot balint at gmail dot com> + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution. + * * Neither the name of the copyright holders nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN + * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + *********************************************************************/ + +#ifndef __OPENCV_HDF5_HPP__ +#define __OPENCV_HDF5_HPP__ + +#include <vector> + + +namespace cv +{ +namespace hdf +{ +using namespace std; + +//! @addtogroup hdf5 +//! @{ + + +/** @brief Hierarchical Data Format version 5 interface. + +Notice that module is compiled only when hdf5 is correctly installed. + + */ +class CV_EXPORTS_W HDF5 +{ +public: + + CV_WRAP enum + { + H5_UNLIMITED = -1, H5_NONE = -1, H5_GETDIMS = 100, H5_GETMAXDIMS = 101, H5_GETCHUNKDIMS = 102, + }; + + virtual ~HDF5() {} + + /** @brief Close and release hdf5 object. + */ + CV_WRAP virtual void close( ) = 0; + + /** @brief Create a group. + @param grlabel specify the hdf5 group label. + + Create a hdf5 group. + + @note Groups are useful for better organise multiple datasets. It is possible to create subgroups within any group. + Existence of a particular group can be checked using hlexists(). In case of subgroups label would be e.g: 'Group1/SubGroup1' + where SubGroup1 is within the root group Group1. + + - In this example Group1 will have one subgrup labeled SubGroup1: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // create Group1 if does not exists + if ( ! h5io->hlexists( "Group1" ) ) + h5io->grcreate( "Group1" ); + else + printf("Group1 already created, skipping\n" ); + // create SubGroup1 if does not exists + if ( ! h5io->hlexists( "Group1/SubGroup1" ) ) + h5io->grcreate( "Group1/SubGroup1" ); + else + printf("SubGroup1 already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note When a dataset is created with dscreate() or kpcreate() it can be created right within a group by specifying + full path within the label, in our example would be: 'Group1/SubGroup1/MyDataSet'. It is not thread safe. + */ + CV_WRAP virtual void grcreate( String grlabel ) = 0; + + /** @brief Check if label exists or not. + @param label specify the hdf5 dataset label. + + Returns **true** if dataset exists, and **false** if does not. + + @note Checks if dataset, group or other object type (hdf5 link) exists under the label name. It is thread safe. + */ + CV_WRAP virtual bool hlexists( String label ) const = 0; + + /* @overload */ + CV_WRAP virtual void dscreate( const int rows, const int cols, const int type, + String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dscreate( const int rows, const int cols, const int type, + String dslabel, const int compresslevel ) const = 0; + /* @overload */ + CV_WRAP virtual void dscreate( const int rows, const int cols, const int type, + String dslabel, const int compresslevel, const vector<int>& dims_chunks ) const = 0; + /** @brief Create and allocate storage for two dimensional single or multi channel dataset. + @param rows declare amount of rows + @param cols declare amount of cols + @param type type to be used + @param dslabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten. + @param compresslevel specify the compression level 0-9 to be used, H5_NONE is default and means no compression. + @param dims_chunks each array member specify chunking sizes to be used for block i/o, + by default NULL means none at all. + + @note If the dataset already exists an exception will be thrown. + + - Existence of the dataset can be checked using hlexists(), see in this example: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // create space for 100x50 CV_64FC2 matrix + if ( ! h5io->hlexists( "hilbert" ) ) + h5io->dscreate( 100, 50, CV_64FC2, "hilbert" ); + else + printf("DS already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note Activating compression requires internal chunking. Chunking can significantly improve access + speed booth at read or write time especially for windowed access logic that shifts offset inside dataset. + If no custom chunking is specified default one will be invoked by the size of **whole** dataset + as single big chunk of data. + + - See example of level 9 compression using internal default chunking: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // create level 9 compressed space for CV_64FC2 matrix + if ( ! h5io->hlexists( "hilbert", 9 ) ) + h5io->dscreate( 100, 50, CV_64FC2, "hilbert", 9 ); + else + printf("DS already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note A value of H5_UNLIMITED for **rows** or **cols** or booth means **unlimited** data on the specified dimension, + thus is possible to expand anytime such dataset on row, col or booth directions. Presence of H5_UNLIMITED on any + dimension **require** to define custom chunking. No default chunking will be defined in unlimited scenario since + default size on that dimension will be zero, and will grow once dataset is written. Writing into dataset that have + H5_UNLIMITED on some of its dimension requires dsinsert() that allow growth on unlimited dimension instead of dswrite() + that allows to write only in predefined data space. + + - Example below shows no compression but unlimited dimension on cols using 100x100 internal chunking: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // create level 9 compressed space for CV_64FC2 matrix + int chunks[2] = { 100, 100 }; + h5io->dscreate( 100, cv::hdf::HDF5::H5_UNLIMITED, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks ); + // release + h5io->close(); + @endcode + + @note It is **not** thread safe, it must be called only once at dataset creation otherwise exception will occur. + Multiple datasets inside single hdf5 file is allowed. + */ + CV_WRAP virtual void dscreate( const int rows, const int cols, const int type, + String dslabel, const int compresslevel, const int* dims_chunks ) const = 0; + + /* @overload */ + CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type, + String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type, + String dslabel, const int compresslevel ) const = 0; + /* @overload */ + CV_WRAP virtual void dscreate( const vector<int>& sizes, const int type, + String dslabel, const int compresslevel = HDF5::H5_NONE, + const vector<int>& dims_chunks = vector<int>() ) const = 0; + /** @brief Create and allocate storage for n-dimensional dataset, single or mutichannel type. + @param n_dims declare number of dimensions + @param sizes array containing sizes for each dimensions + @param type type to be used + @param dslabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten. + @param compresslevel specify the compression level 0-9 to be used, H5_NONE is default and means no compression. + @param dims_chunks each array member specify chunking sizes to be used for block i/o, + by default NULL means none at all. + @note If the dataset already exists an exception will be thrown. Existence of the dataset can be checked + using hlexists(). + + - See example below that creates a 6 dimensional storage space: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // create space for 6 dimensional CV_64FC2 matrix + if ( ! h5io->hlexists( "nddata" ) ) + int n_dims = 5; + int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 }; + h5io->dscreate( n_dims, sizes, CV_64FC2, "nddata" ); + else + printf("DS already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note Activating compression requires internal chunking. Chunking can significantly improve access + speed booth at read or write time especially for windowed access logic that shifts offset inside dataset. + If no custom chunking is specified default one will be invoked by the size of **whole** dataset + as single big chunk of data. + + - See example of level 0 compression (shallow) using chunking against first + dimension, thus storage will consists by 100 chunks of data: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // create space for 6 dimensional CV_64FC2 matrix + if ( ! h5io->hlexists( "nddata" ) ) + int n_dims = 5; + int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 }; + int chunks[n_dims] = { 1, 100, 20, 10, 5, 5 }; + h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", 0, chunks ); + else + printf("DS already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note A value of H5_UNLIMITED inside the **sizes** array means **unlimited** data on that dimension, thus is + possible to expand anytime such dataset on those unlimited directions. Presence of H5_UNLIMITED on any dimension + **require** to define custom chunking. No default chunking will be defined in unlimited scenario since default size + on that dimension will be zero, and will grow once dataset is written. Writing into dataset that have H5_UNLIMITED on + some of its dimension requires dsinsert() instead of dswrite() that allow growth on unlimited dimension instead of + dswrite() that allows to write only in predefined data space. + + - Example below shows a 3 dimensional dataset using no compression with all unlimited sizes and one unit chunking: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + int n_dims = 3; + int chunks[n_dims] = { 1, 1, 1 }; + int dsdims[n_dims] = { cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED }; + h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", cv::hdf::HDF5::H5_NONE, chunks ); + // release + h5io->close(); + @endcode + */ + CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type, + String dslabel, const int compresslevel, const int* dims_chunks ) const = 0; + + /** @brief Fetch dataset sizes + @param dslabel specify the hdf5 dataset label to be measured. + @param dims_flag will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS. + + Returns vector object containing sizes of dataset on each dimensions. + + @note Resulting vector size will match the amount of dataset dimensions. By default H5_GETDIMS will return + actual dataset dimensions. Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match + actual dataset dimension but can hold H5_UNLIMITED value if dataset was prepared in **unlimited** mode on + some of its dimension. It can be useful to check existing dataset dimensions before overwrite it as whole or subset. + Trying to write with oversized source data into dataset target will thrown exception. The H5_GETCHUNKDIMS will + return the dimension of chunk if dataset was created with chunking options otherwise returned vector size + will be zero. + */ + CV_WRAP virtual vector<int> dsgetsize( String dslabel, int dims_flag = HDF5::H5_GETDIMS ) const = 0; + + /** @brief Fetch dataset type + @param dslabel specify the hdf5 dataset label to be checked. + + Returns the stored matrix type. This is an identifier compatible with the CvMat type system, + like e.g. CV_16SC5 (16-bit signed 5-channel array), and so on. + + @note Result can be parsed with CV_MAT_CN() to obtain amount of channels and CV_MAT_DEPTH() to obtain native cvdata type. + It is thread safe. + */ + CV_WRAP virtual int dsgettype( String dslabel ) const = 0; + + /* @overload */ + CV_WRAP virtual void dswrite( InputArray Array, String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dswrite( InputArray Array, String dslabel, + const int* dims_offset ) const = 0; + /* @overload */ + CV_WRAP virtual void dswrite( InputArray Array, String dslabel, + const vector<int>& dims_offset, + const vector<int>& dims_counts = vector<int>() ) const = 0; + /** @brief Write or overwrite a Mat object into specified dataset of hdf5 file. + @param Array specify Mat data array to be written. + @param dslabel specify the target hdf5 dataset label. + @param dims_offset each array member specify the offset location + over dataset's each dimensions from where InputArray will be (over)written into dataset. + @param dims_counts each array member specify the amount of data over dataset's + each dimensions from InputArray that will be written into dataset. + + Writes Mat object into targeted dataset. + + @note If dataset is not created and does not exist it will be created **automatically**. Only Mat is supported and + it must to be **continuous**. It is thread safe but it is recommended that writes to happen over separate non overlapping + regions. Multiple datasets can be written inside single hdf5 file. + + - Example below writes a 100x100 CV_64FC2 matrix into a dataset. No dataset precreation required. If routine + is called multiple times dataset will be just overwritten: + @code{.cpp} + // dual channel hilbert matrix + cv::Mat H(100, 100, CV_64FC2); + for(int i = 0; i < H.rows; i++) + for(int j = 0; j < H.cols; j++) + { + H.at<cv::Vec2d>(i,j)[0] = 1./(i+j+1); + H.at<cv::Vec2d>(i,j)[1] = -1./(i+j+1); + count++; + } + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // write / overwrite dataset + h5io->dswrite( H, "hilbert" ); + // release + h5io->close(); + @endcode + + - Example below writes a smaller 50x100 matrix into 100x100 compressed space optimised by two 50x100 chunks. + Matrix is written twice into first half (0->50) and second half (50->100) of data space using offset. + @code{.cpp} + // dual channel hilbert matrix + cv::Mat H(50, 100, CV_64FC2); + for(int i = 0; i < H.rows; i++) + for(int j = 0; j < H.cols; j++) + { + H.at<cv::Vec2d>(i,j)[0] = 1./(i+j+1); + H.at<cv::Vec2d>(i,j)[1] = -1./(i+j+1); + count++; + } + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // optimise dataset by two chunks + int chunks[2] = { 50, 100 }; + // create 100x100 CV_64FC2 compressed space + h5io->dscreate( 100, 100, CV_64FC2, "hilbert", 9, chunks ); + // write into first half + int offset1[2] = { 0, 0 }; + h5io->dswrite( H, "hilbert", offset1 ); + // write into second half + int offset2[2] = { 50, 0 }; + h5io->dswrite( H, "hilbert", offset2 ); + // release + h5io->close(); + @endcode + */ + CV_WRAP virtual void dswrite( InputArray Array, String dslabel, + const int* dims_offset, const int* dims_counts ) const = 0; + + /* @overload */ + CV_WRAP virtual void dsinsert( InputArray Array, String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dsinsert( InputArray Array, + String dslabel, const int* dims_offset ) const = 0; + /* @overload */ + CV_WRAP virtual void dsinsert( InputArray Array, + String dslabel, const vector<int>& dims_offset, + const vector<int>& dims_counts = vector<int>() ) const = 0; + /** @brief Insert or overwrite a Mat object into specified dataset and autoexpand dataset size if **unlimited** property allows. + @param Array specify Mat data array to be written. + @param dslabel specify the target hdf5 dataset label. + @param dims_offset each array member specify the offset location + over dataset's each dimensions from where InputArray will be (over)written into dataset. + @param dims_counts each array member specify the amount of data over dataset's + each dimensions from InputArray that will be written into dataset. + + Writes Mat object into targeted dataset and **autoexpand** dataset dimension if allowed. + + @note Unlike dswrite(), datasets are **not** created **automatically**. Only Mat is supported and it must to be **continuous**. + If dsinsert() happen over outer regions of dataset dimensions and on that dimension of dataset is in **unlimited** mode then + dataset is expanded, otherwise exception is thrown. To create datasets with **unlimited** property on specific or more + dimensions see dscreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same dataset + but multiple datasets can be merged inside single hdf5 file. + + - Example below creates **unlimited** rows x 100 cols and expand rows 5 times with dsinsert() using single 100x100 CV_64FC2 + over the dataset. Final size will have 5x100 rows and 100 cols, reflecting H matrix five times over row's span. Chunks size is + 100x100 just optimized against the H matrix size having compression disabled. If routine is called multiple times dataset will be + just overwritten: + @code{.cpp} + // dual channel hilbert matrix + cv::Mat H(50, 100, CV_64FC2); + for(int i = 0; i < H.rows; i++) + for(int j = 0; j < H.cols; j++) + { + H.at<cv::Vec2d>(i,j)[0] = 1./(i+j+1); + H.at<cv::Vec2d>(i,j)[1] = -1./(i+j+1); + count++; + } + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // optimise dataset by chunks + int chunks[2] = { 100, 100 }; + // create Unlimited x 100 CV_64FC2 space + h5io->dscreate( cv::hdf::HDF5::H5_UNLIMITED, 100, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks ); + // write into first half + int offset[2] = { 0, 0 }; + for ( int t = 0; t < 5; t++ ) + { + offset[0] += 100 * t; + h5io->dsinsert( H, "hilbert", offset ); + } + // release + h5io->close(); + @endcode + */ + CV_WRAP virtual void dsinsert( InputArray Array, String dslabel, + const int* dims_offset, const int* dims_counts ) const = 0; + + + /* @overload */ + CV_WRAP virtual void dsread( OutputArray Array, String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dsread( OutputArray Array, + String dslabel, const int* dims_offset ) const = 0; + /* @overload */ + CV_WRAP virtual void dsread( OutputArray Array, String dslabel, + const vector<int>& dims_offset, + const vector<int>& dims_counts = vector<int>() ) const = 0; + /** @brief Read specific dataset from hdf5 file into Mat object. + @param Array Mat container where data reads will be returned. + @param dslabel specify the source hdf5 dataset label. + @param dims_offset each array member specify the offset location over + each dimensions from where dataset starts to read into OutputArray. + @param dims_counts each array member specify the amount over dataset's each + dimensions of dataset to read into OutputArray. + + Reads out Mat object reflecting the stored dataset. + + @note If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence. + It is thread safe. + + - Example below reads a dataset: + @code{.cpp} + // open hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // blank Mat container + cv::Mat H; + // read hibert dataset + h5io->read( H, "hilbert" ); + // release + h5io->close(); + @endcode + + - Example below perform read of 3x5 submatrix from second row and third element. + @code{.cpp} + // open hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // blank Mat container + cv::Mat H; + int offset[2] = { 1, 2 }; + int counts[2] = { 3, 5 }; + // read hibert dataset + h5io->read( H, "hilbert", offset, counts ); + // release + h5io->close(); + @endcode + */ + CV_WRAP virtual void dsread( OutputArray Array, String dslabel, + const int* dims_offset, const int* dims_counts ) const = 0; + + /** @brief Fetch keypoint dataset size + @param kplabel specify the hdf5 dataset label to be measured. + @param dims_flag will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS. + + Returns size of keypoints dataset. + + @note Resulting size will match the amount of keypoints. By default H5_GETDIMS will return actual dataset dimension. + Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match actual dataset dimension but can hold + H5_UNLIMITED value if dataset was prepared in **unlimited** mode. It can be useful to check existing dataset dimension + before overwrite it as whole or subset. Trying to write with oversized source data into dataset target will thrown + exception. The H5_GETCHUNKDIMS will return the dimension of chunk if dataset was created with chunking options otherwise + returned vector size will be zero. + */ + CV_WRAP virtual int kpgetsize( String kplabel, int dims_flag = HDF5::H5_GETDIMS ) const = 0; + + /** @brief Create and allocate special storage for cv::KeyPoint dataset. + @param size declare fixed number of KeyPoints + @param kplabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten. + @param compresslevel specify the compression level 0-9 to be used, H5_NONE is default and means no compression. + @param chunks each array member specify chunking sizes to be used for block i/o, + H5_NONE is default and means no compression. + @note If the dataset already exists an exception will be thrown. Existence of the dataset can be checked + using hlexists(). + + - See example below that creates space for 100 keypoints in the dataset: + @code{.cpp} + // open hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + if ( ! h5io->hlexists( "keypoints" ) ) + h5io->kpcreate( 100, "keypoints" ); + else + printf("DS already created, skipping\n" ); + @endcode + + @note A value of H5_UNLIMITED for **size** means **unlimited** keypoints, thus is possible to expand anytime such + dataset by adding or inserting. Presence of H5_UNLIMITED **require** to define custom chunking. No default chunking + will be defined in unlimited scenario since default size on that dimension will be zero, and will grow once dataset + is written. Writing into dataset that have H5_UNLIMITED on some of its dimension requires kpinsert() that allow + growth on unlimited dimension instead of kpwrite() that allows to write only in predefined data space. + + - See example below that creates unlimited space for keypoints chunking size of 100 but no compression: + @code{.cpp} + // open hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + if ( ! h5io->hlexists( "keypoints" ) ) + h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", cv::hdf::HDF5::H5_NONE, 100 ); + else + printf("DS already created, skipping\n" ); + @endcode + */ + virtual void kpcreate( const int size, String kplabel, + const int compresslevel = H5_NONE, const int chunks = H5_NONE ) const = 0; + + /** @brief Write or overwrite list of KeyPoint into specified dataset of hdf5 file. + @param keypoints specify keypoints data list to be written. + @param kplabel specify the target hdf5 dataset label. + @param offset specify the offset location on dataset from where keypoints will be (over)written into dataset. + @param counts specify the amount of keypoints that will be written into dataset. + + Writes vector<KeyPoint> object into targeted dataset. + + @note If dataset is not created and does not exist it will be created **automatically**. It is thread safe but + it is recommended that writes to happen over separate non overlapping regions. Multiple datasets can be written + inside single hdf5 file. + + - Example below writes a 100 keypoints into a dataset. No dataset precreation required. If routine is called multiple + times dataset will be just overwritten: + @code{.cpp} + // generate 100 dummy keypoints + std::vector<cv::KeyPoint> keypoints; + for(int i = 0; i < 100; i++) + keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) ); + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // write / overwrite dataset + h5io->kpwrite( keypoints, "keypoints" ); + // release + h5io->close(); + @endcode + + - Example below uses smaller set of 50 keypoints and writes into compressed space of 100 keypoints optimised by 10 chunks. + Same keypoint set is written three times, first into first half (0->50) and at second half (50->75) then into remaining slots + (75->99) of data space using offset and count parameters to settle the window for write access.If routine is called multiple times + dataset will be just overwritten: + @code{.cpp} + // generate 50 dummy keypoints + std::vector<cv::KeyPoint> keypoints; + for(int i = 0; i < 50; i++) + keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) ); + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // create maximum compressed space of size 100 with chunk size 10 + h5io->kpcreate( 100, "keypoints", 9, 10 ); + // write into first half + h5io->kpwrite( keypoints, "keypoints", 0 ); + // write first 25 keypoints into second half + h5io->kpwrite( keypoints, "keypoints", 50, 25 ); + // write first 25 keypoints into remained space of second half + h5io->kpwrite( keypoints, "keypoints", 75, 25 ); + // release + h5io->close(); + @endcode + */ + virtual void kpwrite( const vector<KeyPoint> keypoints, String kplabel, + const int offset = H5_NONE, const int counts = H5_NONE ) const = 0; + + /** @brief Insert or overwrite list of KeyPoint into specified dataset and autoexpand dataset size if **unlimited** property allows. + @param keypoints specify keypoints data list to be written. + @param kplabel specify the target hdf5 dataset label. + @param offset specify the offset location on dataset from where keypoints will be (over)written into dataset. + @param counts specify the amount of keypoints that will be written into dataset. + + Writes vector<KeyPoint> object into targeted dataset and **autoexpand** dataset dimension if allowed. + + @note Unlike kpwrite(), datasets are **not** created **automatically**. If dsinsert() happen over outer region of dataset + and dataset has been created in **unlimited** mode then dataset is expanded, otherwise exception is thrown. To create datasets + with **unlimited** property see kpcreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same + dataset but multiple datasets can be merged inside single hdf5 file. + + - Example below creates **unlimited** space for keypoints storage, and inserts a list of 10 keypoints ten times into that space. + Final dataset will have 100 keypoints. Chunks size is 10 just optimized against list of keypoints. If routine is called multiple + times dataset will be just overwritten: + @code{.cpp} + // generate 10 dummy keypoints + std::vector<cv::KeyPoint> keypoints; + for(int i = 0; i < 10; i++) + keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) ); + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // create unlimited size space with chunk size of 10 + h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", -1, 10 ); + // insert 10 times same 10 keypoints + for(int i = 0; i < 10; i++) + h5io->kpinsert( keypoints, "keypoints", i * 10 ); + // release + h5io->close(); + @endcode + */ + virtual void kpinsert( const vector<KeyPoint> keypoints, String kplabel, + const int offset = H5_NONE, const int counts = H5_NONE ) const = 0; + + /** @brief Read specific keypoint dataset from hdf5 file into vector<KeyPoint> object. + @param keypoints vector<KeyPoint> container where data reads will be returned. + @param kplabel specify the source hdf5 dataset label. + @param offset specify the offset location over dataset from where read starts. + @param counts specify the amount of keypoints from dataset to read. + + Reads out vector<KeyPoint> object reflecting the stored dataset. + + @note If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence. + It is thread safe. + + - Example below reads a dataset containing keypoints starting with second entry: + @code{.cpp} + // open hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // blank KeyPoint container + std::vector<cv::KeyPoint> keypoints; + // read keypoints starting second one + h5io->kpread( keypoints, "keypoints", 1 ); + // release + h5io->close(); + @endcode + + - Example below perform read of 3 keypoints from second entry. + @code{.cpp} + // open hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // blank KeyPoint container + std::vector<cv::KeyPoint> keypoints; + // read three keypoints starting second one + h5io->kpread( keypoints, "keypoints", 1, 3 ); + // release + h5io->close(); + @endcode + */ + virtual void kpread( vector<KeyPoint>& keypoints, String kplabel, + const int offset = H5_NONE, const int counts = H5_NONE ) const = 0; + +}; + + /** @brief Open or create hdf5 file + @param HDF5Filename specify the HDF5 filename. + + Returns pointer to the hdf5 object class + + @note If hdf5 file does not exist it will be created. Any operations except dscreate() functions on object + will be thread safe. Multiple datasets can be created inside single hdf5 file, and can be accessed + from same hdf5 object from multiple instances as long read or write operations are done over + non-overlapping regions of dataset. Single hdf5 file also can be opened by multiple instances, + reads and writes can be instantiated at the same time as long non-overlapping regions are involved. Object + is released using close(). + + - Example below open and then release the file. + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" ); + // ... + // release + h5io->close(); + @endcode + + ![Visualization of 10x10 CV_64FC2 (Hilbert matrix) using HDFView tool](pics/hdfview_demo.gif) + + - Text dump (3x3 Hilbert matrix) of hdf5 dataset using **h5dump** tool: + @code{.txt} + $ h5dump test.h5 + HDF5 "test.h5" { + GROUP "/" { + DATASET "hilbert" { + DATATYPE H5T_ARRAY { [2] H5T_IEEE_F64LE } + DATASPACE SIMPLE { ( 3, 3 ) / ( 3, 3 ) } + DATA { + (0,0): [ 1, -1 ], [ 0.5, -0.5 ], [ 0.333333, -0.333333 ], + (1,0): [ 0.5, -0.5 ], [ 0.333333, -0.333333 ], [ 0.25, -0.25 ], + (2,0): [ 0.333333, -0.333333 ], [ 0.25, -0.25 ], [ 0.2, -0.2 ] + } + } + } + } + @endcode + */ + CV_EXPORTS_W Ptr<HDF5> open( String HDF5Filename ); + +//! @} + +} // end namespace hdf +} // end namespace cv +#endif // _OPENCV_HDF5_HPP_ |