diff options
author | shamikam | 2017-01-16 02:56:17 +0530 |
---|---|---|
committer | shamikam | 2017-01-16 02:56:17 +0530 |
commit | a6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch) | |
tree | e806e966b06a53388fb300d89534354b222c2cad /thirdparty1/linux/include/opencv2/face/facerec.hpp | |
download | FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2 FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip |
Diffstat (limited to 'thirdparty1/linux/include/opencv2/face/facerec.hpp')
-rw-r--r-- | thirdparty1/linux/include/opencv2/face/facerec.hpp | 166 |
1 files changed, 166 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/face/facerec.hpp b/thirdparty1/linux/include/opencv2/face/facerec.hpp new file mode 100644 index 0000000..40f62f1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/face/facerec.hpp @@ -0,0 +1,166 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +// Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>. +// Third party copyrights are property of their respective owners. + +#ifndef __OPENCV_FACEREC_HPP__ +#define __OPENCV_FACEREC_HPP__ + +#include "opencv2/face.hpp" +#include "opencv2/core.hpp" + +namespace cv { namespace face { + +//! @addtogroup face +//! @{ + +// base for two classes +class CV_EXPORTS_W BasicFaceRecognizer : public FaceRecognizer +{ +public: + /** @see setNumComponents */ + CV_WRAP virtual int getNumComponents() const = 0; + /** @copybrief getNumComponents @see getNumComponents */ + CV_WRAP virtual void setNumComponents(int val) = 0; + /** @see setThreshold */ + CV_WRAP virtual double getThreshold() const = 0; + /** @copybrief getThreshold @see getThreshold */ + CV_WRAP virtual void setThreshold(double val) = 0; + CV_WRAP virtual std::vector<cv::Mat> getProjections() const = 0; + CV_WRAP virtual cv::Mat getLabels() const = 0; + CV_WRAP virtual cv::Mat getEigenValues() const = 0; + CV_WRAP virtual cv::Mat getEigenVectors() const = 0; + CV_WRAP virtual cv::Mat getMean() const = 0; +}; + +/** +@param num_components The number of components (read: Eigenfaces) kept for this Principal +Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be +kept for good reconstruction capabilities. It is based on your input data, so experiment with the +number. Keeping 80 components should almost always be sufficient. +@param threshold The threshold applied in the prediction. + +### Notes: + +- Training and prediction must be done on grayscale images, use cvtColor to convert between the + color spaces. +- **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL + SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your + input data has the correct shape, else a meaningful exception is thrown. Use resize to resize + the images. +- This model does not support updating. + +### Model internal data: + +- num_components see createEigenFaceRecognizer. +- threshold see createEigenFaceRecognizer. +- eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending). +- eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their + eigenvalue). +- mean The sample mean calculated from the training data. +- projections The projections of the training data. +- labels The threshold applied in the prediction. If the distance to the nearest neighbor is + larger than the threshold, this method returns -1. + */ +CV_EXPORTS_W Ptr<BasicFaceRecognizer> createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX); + +/** +@param num_components The number of components (read: Fisherfaces) kept for this Linear +Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that +means the number of your classes c (read: subjects, persons you want to recognize). If you leave +this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the +correct number (c-1) automatically. +@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor +is larger than the threshold, this method returns -1. + +### Notes: + +- Training and prediction must be done on grayscale images, use cvtColor to convert between the + color spaces. +- **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL + SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your + input data has the correct shape, else a meaningful exception is thrown. Use resize to resize + the images. +- This model does not support updating. + +### Model internal data: + +- num_components see createFisherFaceRecognizer. +- threshold see createFisherFaceRecognizer. +- eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending). +- eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their + eigenvalue). +- mean The sample mean calculated from the training data. +- projections The projections of the training data. +- labels The labels corresponding to the projections. + */ +CV_EXPORTS_W Ptr<BasicFaceRecognizer> createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX); + +class CV_EXPORTS_W LBPHFaceRecognizer : public FaceRecognizer +{ +public: + /** @see setGridX */ + CV_WRAP virtual int getGridX() const = 0; + /** @copybrief getGridX @see getGridX */ + CV_WRAP virtual void setGridX(int val) = 0; + /** @see setGridY */ + CV_WRAP virtual int getGridY() const = 0; + /** @copybrief getGridY @see getGridY */ + CV_WRAP virtual void setGridY(int val) = 0; + /** @see setRadius */ + CV_WRAP virtual int getRadius() const = 0; + /** @copybrief getRadius @see getRadius */ + CV_WRAP virtual void setRadius(int val) = 0; + /** @see setNeighbors */ + CV_WRAP virtual int getNeighbors() const = 0; + /** @copybrief getNeighbors @see getNeighbors */ + CV_WRAP virtual void setNeighbors(int val) = 0; + /** @see setThreshold */ + CV_WRAP virtual double getThreshold() const = 0; + /** @copybrief getThreshold @see getThreshold */ + CV_WRAP virtual void setThreshold(double val) = 0; + CV_WRAP virtual std::vector<cv::Mat> getHistograms() const = 0; + CV_WRAP virtual cv::Mat getLabels() const = 0; +}; + +/** +@param radius The radius used for building the Circular Local Binary Pattern. The greater the +radius, the +@param neighbors The number of sample points to build a Circular Local Binary Pattern from. An +appropriate value is to use `8` sample points. Keep in mind: the more sample points you include, +the higher the computational cost. +@param grid_x The number of cells in the horizontal direction, 8 is a common value used in +publications. The more cells, the finer the grid, the higher the dimensionality of the resulting +feature vector. +@param grid_y The number of cells in the vertical direction, 8 is a common value used in +publications. The more cells, the finer the grid, the higher the dimensionality of the resulting +feature vector. +@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor +is larger than the threshold, this method returns -1. + +### Notes: + +- The Circular Local Binary Patterns (used in training and prediction) expect the data given as + grayscale images, use cvtColor to convert between the color spaces. +- This model supports updating. + +### Model internal data: + +- radius see createLBPHFaceRecognizer. +- neighbors see createLBPHFaceRecognizer. +- grid_x see createLBPHFaceRecognizer. +- grid_y see createLBPHFaceRecognizer. +- threshold see createLBPHFaceRecognizer. +- histograms Local Binary Patterns Histograms calculated from the given training data (empty if + none was given). +- labels Labels corresponding to the calculated Local Binary Patterns Histograms. + */ +CV_EXPORTS_W Ptr<LBPHFaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold = DBL_MAX); + +//! @} + +}} //namespace cv::face + +#endif //__OPENCV_FACEREC_HPP__ |