summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp
downloadFOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip
First CommitHEADmaster
Diffstat (limited to 'thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp')
-rw-r--r--thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp533
1 files changed, 533 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp b/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp
new file mode 100644
index 0000000..b7f741e
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp
@@ -0,0 +1,533 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_DNN_BLOB_INL_HPP__
+#define __OPENCV_DNN_DNN_BLOB_INL_HPP__
+#include "blob.hpp"
+
+namespace cv
+{
+namespace dnn
+{
+
+inline BlobShape::BlobShape()
+{
+ sz.allocate(4);
+ for (size_t i = 0; i < sz.size(); i++)
+ sz[i] = 1;
+}
+
+inline BlobShape BlobShape::all(int ndims, int fill)
+{
+ CV_Assert(ndims >= 0);
+ BlobShape res;
+ res.sz.allocate(ndims);
+ for (int i = 0; i < ndims; i++)
+ res.sz[i] = fill;
+ return res;
+}
+
+inline BlobShape::BlobShape(int ndims, const int *sizes) : sz( (size_t)std::max(ndims, 0) )
+{
+ CV_Assert(ndims >= 0);
+ if (!sizes)
+ return;
+ for (int i = 0; i < ndims; i++)
+ sz[i] = sizes[i];
+}
+
+inline BlobShape::BlobShape(int s0) : sz(1)
+{
+ sz[0] = s0;
+}
+
+inline BlobShape::BlobShape(int s0, int s1) : sz(2)
+{
+ sz[0] = s0;
+ sz[1] = s1;
+}
+
+inline BlobShape::BlobShape(int s0, int s1, int s2) : sz(3)
+{
+ sz[0] = s0;
+ sz[1] = s1;
+ sz[2] = s2;
+}
+
+inline BlobShape::BlobShape(int num, int cn, int rows, int cols) : sz(4)
+{
+ sz[0] = num;
+ sz[1] = cn;
+ sz[2] = rows;
+ sz[3] = cols;
+}
+
+inline BlobShape::BlobShape(const std::vector<int> &sizes) : sz( sizes.size() )
+{
+ for (int i = 0; i < (int)sizes.size(); i++)
+ sz[i] = sizes[i];
+}
+
+template<int n>
+inline BlobShape::BlobShape(const Vec<int, n> &shape) : sz(n)
+{
+ for (int i = 0; i < n; i++)
+ sz[i] = shape[i];
+}
+
+inline int BlobShape::dims() const
+{
+ return (int)sz.size();
+}
+
+inline int BlobShape::xsize(int axis) const
+{
+ if (axis < -dims() || axis >= dims())
+ return 1;
+
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int BlobShape::size(int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int &BlobShape::size(int axis)
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int BlobShape::operator[] (int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int &BlobShape::operator[] (int axis)
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int BlobShape::canonicalAxis(int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return (axis < 0) ? axis + dims() : axis;
+}
+
+inline ptrdiff_t BlobShape::total() const
+{
+ if (dims() == 0)
+ return 0;
+
+ ptrdiff_t res = 1;
+ for (int i = 0; i < dims(); i++)
+ res *= sz[i];
+ return res;
+}
+
+inline ptrdiff_t BlobShape::total(int startAxis, int endAxis) const
+{
+ if (isEmpty())
+ return 0;
+
+ if (endAxis == INT_MAX)
+ endAxis = dims();
+ else if (endAxis < 0)
+ endAxis += dims();
+ startAxis = (startAxis < 0) ? startAxis + dims() : startAxis;
+ CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims());
+
+ ptrdiff_t res = 1;
+ for (int i = startAxis; i < endAxis; i++)
+ res *= sz[i];
+ return res;
+}
+
+inline BlobShape BlobShape::slice(int startAxis, int endAxis) const
+{
+ if (isEmpty())
+ return BlobShape::empty();
+
+ if (endAxis == INT_MAX)
+ endAxis = dims();
+ else if (endAxis < 0)
+ endAxis += dims();
+ startAxis = (startAxis < 0) ? startAxis + dims() : startAxis;
+ CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims());
+
+ BlobShape res(endAxis - startAxis, (const int*)NULL);
+ for (int i = startAxis; i < endAxis; i++)
+ res[i - startAxis] = sz[i];
+ return res;
+}
+
+inline const int *BlobShape::ptr() const
+{
+ return sz;
+}
+
+inline int *BlobShape::ptr()
+{
+ return sz;
+}
+
+inline bool BlobShape::equal(const BlobShape &other) const
+{
+ if (this->dims() != other.dims())
+ return false;
+
+ for (int i = 0; i < other.dims(); i++)
+ {
+ if (sz[i] != other.sz[i])
+ return false;
+ }
+
+ return true;
+}
+
+inline bool BlobShape::operator==(const BlobShape &r) const
+{
+ return this->equal(r);
+}
+
+inline BlobShape BlobShape::like(const Mat &m)
+{
+ return BlobShape(m.dims, (const int*)m.size);
+}
+
+inline BlobShape BlobShape::like(const UMat &m)
+{
+ return BlobShape(m.dims, (const int*)m.size);
+}
+
+inline BlobShape BlobShape::empty()
+{
+ return BlobShape(0, (const int*)NULL);
+}
+
+inline bool BlobShape::isEmpty() const
+{
+ return dims() == 0;
+}
+
+inline BlobShape BlobShape::operator+(const BlobShape &r) const
+{
+ BlobShape newShape(this->dims() + r.dims(), (int*)NULL);
+ for (int i = 0; i < this->dims(); i++)
+ newShape[i] = (*this)[i];
+ for (int i = 0; i < r.dims(); i++)
+ newShape[this->dims() + i] = r[i];
+ return newShape;
+}
+
+CV_EXPORTS std::ostream &operator<< (std::ostream &stream, const BlobShape &shape);
+
+/////////////////////////////////////////////////////////////////////
+
+#ifndef CV_DNN_UMAT
+# define CV_DNN_SWITCH_MU(cpu_expr, gpu_expr) (cpu_expr)
+#else
+# define CV_DNN_SWITCH_MU(cpu_expr, gpu_expr) ((state == HEAD_AT_UMAT) ? (gpu_expr) : (cpu_expr))
+#endif
+
+
+inline int Blob::dims() const
+{
+ return CV_DNN_SWITCH_MU(m.dims, um.dims);
+}
+
+inline const int * Blob::sizes() const
+{
+ return CV_DNN_SWITCH_MU((const int*)m.size, (const int*)um.size);
+}
+
+inline int Blob::type() const
+{
+ return CV_DNN_SWITCH_MU(m.type(), um.type());
+}
+
+template<int n>
+inline size_t Blob::offset(const Vec<int, n> &pos) const
+{
+ const MatStep &step = CV_DNN_SWITCH_MU(m.step, um.step);
+ size_t ofs = 0;
+ int i;
+ for (i = 0; i < std::min(n, dims()); i++)
+ {
+ CV_DbgAssert(pos[i] >= 0 && pos[i] < size(i));
+ ofs += step[i] * pos[i];
+ }
+ for (; i < dims(); i++)
+ CV_DbgAssert(pos[i] == 0);
+ CV_DbgAssert(ofs % elemSize() == 0);
+ return ofs / elemSize();
+}
+
+inline int Blob::canonicalAxis(int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return (axis < 0) ? axis + dims() : axis;
+}
+
+inline int Blob::xsize(int axis) const
+{
+ if (axis < -dims() || axis >= dims())
+ return 1;
+
+ return sizes()[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int Blob::size(int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sizes()[(axis < 0) ? axis + dims() : axis];
+}
+
+inline size_t Blob::total(int startAxis, int endAxis) const
+{
+ if (startAxis < 0)
+ startAxis += dims();
+
+ if (endAxis == INT_MAX)
+ endAxis = dims();
+ else if (endAxis < 0)
+ endAxis += dims();
+
+ CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims());
+
+ size_t cnt = 1; //fix: assume that slice isn't empty
+ for (int i = startAxis; i < endAxis; i++)
+ cnt *= (size_t)sizes()[i];
+
+ return cnt;
+}
+
+inline size_t Blob::offset(int n, int cn, int row, int col) const
+{
+ return offset(Vec4i(n, cn, row, col));
+}
+
+inline float *Blob::ptrf(int n, int cn, int row, int col)
+{
+ return matRef(false).ptr<float>() + offset(n, cn, row, col);
+}
+
+inline uchar *Blob::ptr(int n, int cn, int row, int col)
+{
+ Mat &mat = matRef(false);
+ return mat.ptr() + mat.elemSize() * offset(n, cn, row, col);
+}
+
+template<typename Dtype>
+inline Dtype* Blob::ptr(int n, int cn, int row, int col)
+{
+ CV_Assert(type() == cv::DataDepth<Dtype>::value);
+ return (Dtype*) ptr(n, cn, row, col);
+}
+
+inline BlobShape Blob::shape() const
+{
+ return BlobShape(dims(), sizes());
+}
+
+inline bool Blob::equalShape(const Blob &other) const
+{
+ if (this->dims() != other.dims())
+ return false;
+
+ for (int i = 0; i < dims(); i++)
+ {
+ if (this->sizes()[i] != other.sizes()[i])
+ return false;
+ }
+ return true;
+}
+
+inline Mat& Blob::matRef(bool writeOnly)
+{
+#ifdef CV_DNN_UMAT
+ updateMat(!writeOnly);
+ state = HEAD_AT_MAT;
+#else
+ (void)writeOnly;
+#endif
+ return m;
+}
+
+inline const Mat& Blob::matRefConst() const
+{
+ CV_DNN_UMAT_ONLY( updateMat() );
+ return m;
+}
+
+inline UMat &Blob::umatRef(bool writeOnly)
+{
+#ifndef CV_DNN_UMAT
+ CV_Error(Error::GpuNotSupported, "");
+ (void)writeOnly;
+ return *(new UMat());
+#else
+ updateUMat(!writeOnly);
+ state = HEAD_AT_UMAT;
+ return um;
+#endif
+}
+
+inline const UMat &Blob::umatRefConst() const
+{
+#ifndef CV_DNN_UMAT
+ CV_Error(Error::GpuNotSupported, "");
+ return *(new UMat());
+#else
+ updateUMat();
+ return um;
+#endif
+}
+
+template<>
+inline Mat &Blob::getRef<Mat>(bool writeOnly)
+{
+ return matRef(writeOnly);
+}
+
+template<>
+inline UMat &Blob::getRef<UMat>(bool writeOnly)
+{
+ return umatRef(writeOnly);
+}
+
+template<>
+inline const Mat &Blob::getRefConst<Mat>() const
+{
+ return matRefConst();
+}
+
+template<>
+inline const UMat &Blob::getRefConst<UMat>() const
+{
+ return umatRefConst();
+}
+
+inline Mat Blob::getPlane(int n, int cn)
+{
+ CV_Assert(dims() > 2);
+ return Mat(dims() - 2, sizes() + 2, type(), ptr(n, cn));
+}
+
+inline Mat Blob::getPlanes(int n)
+{
+ CV_Assert(dims() > 3);
+ return Mat(dims() - 1, sizes() + 1, type(), ptr(n));
+}
+
+inline int Blob::cols() const
+{
+ return xsize(3);
+}
+
+inline int Blob::rows() const
+{
+ return xsize(2);
+}
+
+inline int Blob::channels() const
+{
+ return xsize(1);
+}
+
+inline int Blob::num() const
+{
+ return xsize(0);
+}
+
+inline Size Blob::size2() const
+{
+ return Size(cols(), rows());
+}
+
+inline Blob &Blob::shareFrom(const Blob &blob)
+{
+ this->m = blob.m;
+#ifdef CV_DNN_UMAT
+ this->um = blob.um;
+ this->state = blob.state;
+#endif
+ return *this;
+}
+
+inline Blob &Blob::reshape(const BlobShape &newShape)
+{
+ if (!m.empty()) m = m.reshape(1, newShape.dims(), newShape.ptr());
+#ifdef CV_DNN_UMAT
+ if (!um.empty()) um = um.reshape(1, newShape.dims(), newShape.ptr());
+#endif
+ return *this;
+}
+
+inline Blob Blob::reshaped(const BlobShape &newShape) const
+{
+ Blob res(*this); //also, res.shareFrom(*this) could be used
+ res.reshape(newShape);
+ return res;
+}
+
+inline int Blob::elemSize() const
+{
+ return CV_ELEM_SIZE(type());
+}
+
+inline int Blob::getState() const
+{
+#ifdef CV_DNN_UMAT
+ return this->state;
+#else
+ return m.empty() ? UNINITIALIZED : HEAD_AT_MAT;
+#endif
+}
+
+}
+}
+
+#endif