summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/tracking/feature.hpp
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /thirdparty/linux/include/opencv2/tracking/feature.hpp
downloadFOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip
First CommitHEADmaster
Diffstat (limited to 'thirdparty/linux/include/opencv2/tracking/feature.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/tracking/feature.hpp415
1 files changed, 415 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/tracking/feature.hpp b/thirdparty/linux/include/opencv2/tracking/feature.hpp
new file mode 100644
index 0000000..b354d62
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/tracking/feature.hpp
@@ -0,0 +1,415 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+ //
+ // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+ //
+ // By downloading, copying, installing or using the software you agree to this license.
+ // If you do not agree to this license, do not download, install,
+ // copy or use the software.
+ //
+ //
+ // License Agreement
+ // For Open Source Computer Vision Library
+ //
+ // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+ // Third party copyrights are property of their respective owners.
+ //
+ // Redistribution and use in source and binary forms, with or without modification,
+ // are permitted provided that the following conditions are met:
+ //
+ // * Redistribution's of source code must retain the above copyright notice,
+ // this list of conditions and the following disclaimer.
+ //
+ // * Redistribution's in binary form must reproduce the above copyright notice,
+ // this list of conditions and the following disclaimer in the documentation
+ // and/or other materials provided with the distribution.
+ //
+ // * The name of the copyright holders may not be used to endorse or promote products
+ // derived from this software without specific prior written permission.
+ //
+ // This software is provided by the copyright holders and contributors "as is" and
+ // any express or implied warranties, including, but not limited to, the implied
+ // warranties of merchantability and fitness for a particular purpose are disclaimed.
+ // In no event shall the Intel Corporation or contributors be liable for any direct,
+ // indirect, incidental, special, exemplary, or consequential damages
+ // (including, but not limited to, procurement of substitute goods or services;
+ // loss of use, data, or profits; or business interruption) however caused
+ // and on any theory of liability, whether in contract, strict liability,
+ // or tort (including negligence or otherwise) arising in any way out of
+ // the use of this software, even if advised of the possibility of such damage.
+ //
+ //M*/
+
+#ifndef __OPENCV_FEATURE_HPP__
+#define __OPENCV_FEATURE_HPP__
+
+#include "opencv2/core.hpp"
+#include "opencv2/imgproc.hpp"
+#include <iostream>
+#include <string>
+#include <time.h>
+
+/*
+ * TODO This implementation is based on apps/traincascade/
+ * TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.)
+ */
+
+namespace cv
+{
+
+//! @addtogroup tracking
+//! @{
+
+#define FEATURES "features"
+
+#define CC_FEATURES FEATURES
+#define CC_FEATURE_PARAMS "featureParams"
+#define CC_MAX_CAT_COUNT "maxCatCount"
+#define CC_FEATURE_SIZE "featSize"
+#define CC_NUM_FEATURES "numFeat"
+#define CC_ISINTEGRAL "isIntegral"
+#define CC_RECTS "rects"
+#define CC_TILTED "tilted"
+#define CC_RECT "rect"
+
+#define LBPF_NAME "lbpFeatureParams"
+#define HOGF_NAME "HOGFeatureParams"
+#define HFP_NAME "haarFeatureParams"
+
+#define CV_HAAR_FEATURE_MAX 3
+#define N_BINS 9
+#define N_CELLS 4
+
+#define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step ) \
+ /* (x, y) */ \
+ (p0) = (rect).x + (step) * (rect).y; \
+ /* (x + w, y) */ \
+ (p1) = (rect).x + (rect).width + (step) * (rect).y; \
+ /* (x + w, y) */ \
+ (p2) = (rect).x + (step) * ((rect).y + (rect).height); \
+ /* (x + w, y + h) */ \
+ (p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height);
+
+#define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step ) \
+ /* (x, y) */ \
+ (p0) = (rect).x + (step) * (rect).y; \
+ /* (x - h, y + h) */ \
+ (p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\
+ /* (x + w, y + w) */ \
+ (p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width); \
+ /* (x + w - h, y + w + h) */ \
+ (p3) = (rect).x + (rect).width - (rect).height \
+ + (step) * ((rect).y + (rect).width + (rect).height);
+
+float calcNormFactor( const Mat& sum, const Mat& sqSum );
+
+template<class Feature>
+void _writeFeatures( const std::vector<Feature> features, FileStorage &fs, const Mat& featureMap )
+{
+ fs << FEATURES << "[";
+ const Mat_<int>& featureMap_ = (const Mat_<int>&) featureMap;
+ for ( int fi = 0; fi < featureMap.cols; fi++ )
+ if( featureMap_( 0, fi ) >= 0 )
+ {
+ fs << "{";
+ features[fi].write( fs );
+ fs << "}";
+ }
+ fs << "]";
+}
+
+class CvParams
+{
+ public:
+ CvParams();
+ virtual ~CvParams()
+ {
+ }
+ // from|to file
+ virtual void write( FileStorage &fs ) const = 0;
+ virtual bool read( const FileNode &node ) = 0;
+ // from|to screen
+ virtual void printDefaults() const;
+ virtual void printAttrs() const;
+ virtual bool scanAttr( const std::string prmName, const std::string val );
+ std::string name;
+};
+
+class CvFeatureParams : public CvParams
+{
+ public:
+ enum
+ {
+ HAAR = 0,
+ LBP = 1,
+ HOG = 2
+ };
+ CvFeatureParams();
+ virtual void init( const CvFeatureParams& fp );
+ virtual void write( FileStorage &fs ) const;
+ virtual bool read( const FileNode &node );
+ static Ptr<CvFeatureParams> create( int featureType );
+ int maxCatCount; // 0 in case of numerical features
+ int featSize; // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features
+ int numFeatures;
+};
+
+class CvFeatureEvaluator
+{
+ public:
+ virtual ~CvFeatureEvaluator()
+ {
+ }
+ virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
+ virtual void setImage( const Mat& img, uchar clsLabel, int idx );
+ virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const = 0;
+ virtual float operator()( int featureIdx, int sampleIdx ) = 0;
+ static Ptr<CvFeatureEvaluator> create( int type );
+
+ int getNumFeatures() const
+ {
+ return numFeatures;
+ }
+ int getMaxCatCount() const
+ {
+ return featureParams->maxCatCount;
+ }
+ int getFeatureSize() const
+ {
+ return featureParams->featSize;
+ }
+ const Mat& getCls() const
+ {
+ return cls;
+ }
+ float getCls( int si ) const
+ {
+ return cls.at<float>( si, 0 );
+ }
+ protected:
+ virtual void generateFeatures() = 0;
+
+ int npos, nneg;
+ int numFeatures;
+ Size winSize;
+ CvFeatureParams *featureParams;
+ Mat cls;
+};
+
+class CvHaarFeatureParams : public CvFeatureParams
+{
+ public:
+
+ CvHaarFeatureParams();
+
+ virtual void init( const CvFeatureParams& fp );
+ virtual void write( FileStorage &fs ) const;
+ virtual bool read( const FileNode &node );
+
+ virtual void printDefaults() const;
+ virtual void printAttrs() const;
+ virtual bool scanAttr( const std::string prm, const std::string val );
+
+ bool isIntegral;
+};
+
+class CvHaarEvaluator : public CvFeatureEvaluator
+{
+ public:
+
+ class FeatureHaar
+ {
+
+ public:
+
+ FeatureHaar( Size patchSize );
+ bool eval( const Mat& image, Rect ROI, float* result ) const;
+ int getNumAreas();
+ const std::vector<float>& getWeights() const;
+ const std::vector<Rect>& getAreas() const;
+ void write( FileStorage ) const
+ {
+ }
+ ;
+ float getInitMean() const;
+ float getInitSigma() const;
+
+ private:
+ int m_type;
+ int m_numAreas;
+ std::vector<float> m_weights;
+ float m_initMean;
+ float m_initSigma;
+ void generateRandomFeature( Size imageSize );
+ float getSum( const Mat& image, Rect imgROI ) const;
+ std::vector<Rect> m_areas; // areas within the patch over which to compute the feature
+ cv::Size m_initSize; // size of the patch used during training
+ cv::Size m_curSize; // size of the patches currently under investigation
+ float m_scaleFactorHeight; // scaling factor in vertical direction
+ float m_scaleFactorWidth; // scaling factor in horizontal direction
+ std::vector<Rect> m_scaleAreas; // areas after scaling
+ std::vector<float> m_scaleWeights; // weights after scaling
+
+ };
+
+ virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
+ virtual void setImage( const Mat& img, uchar clsLabel = 0, int idx = 1 );
+ virtual float operator()( int featureIdx, int sampleIdx );
+ virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const;
+ void writeFeature( FileStorage &fs ) const; // for old file format
+ const std::vector<CvHaarEvaluator::FeatureHaar>& getFeatures() const;
+ inline CvHaarEvaluator::FeatureHaar& getFeatures( int idx )
+ {
+ return features[idx];
+ }
+ void setWinSize( Size patchSize );
+ Size setWinSize() const;
+ virtual void generateFeatures();
+
+ /**
+ * TODO new method
+ * \brief Overload the original generateFeatures in order to limit the number of the features
+ * @param numFeatures Number of the features
+ */
+
+ virtual void generateFeatures( int numFeatures );
+
+ protected:
+ bool isIntegral;
+
+ /* TODO Added from MIL implementation */
+ Mat _ii_img;
+ void compute_integral( const cv::Mat & img, std::vector<cv::Mat_<float> > & ii_imgs )
+ {
+ Mat ii_img;
+ integral( img, ii_img, CV_32F );
+ split( ii_img, ii_imgs );
+ }
+
+ std::vector<FeatureHaar> features;
+ Mat sum; /* sum images (each row represents image) */
+};
+
+struct CvHOGFeatureParams : public CvFeatureParams
+{
+ CvHOGFeatureParams();
+};
+
+class CvHOGEvaluator : public CvFeatureEvaluator
+{
+ public:
+ virtual ~CvHOGEvaluator()
+ {
+ }
+ virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
+ virtual void setImage( const Mat& img, uchar clsLabel, int idx );
+ virtual float operator()( int varIdx, int sampleIdx );
+ virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const;
+ protected:
+ virtual void generateFeatures();
+ virtual void integralHistogram( const Mat &img, std::vector<Mat> &histogram, Mat &norm, int nbins ) const;
+ class Feature
+ {
+ public:
+ Feature();
+ Feature( int offset, int x, int y, int cellW, int cellH );
+ float calc( const std::vector<Mat> &_hists, const Mat &_normSum, size_t y, int featComponent ) const;
+ void write( FileStorage &fs ) const;
+ void write( FileStorage &fs, int varIdx ) const;
+
+ Rect rect[N_CELLS]; //cells
+
+ struct
+ {
+ int p0, p1, p2, p3;
+ } fastRect[N_CELLS];
+ };
+ std::vector<Feature> features;
+
+ Mat normSum; //for nomalization calculation (L1 or L2)
+ std::vector<Mat> hist;
+};
+
+inline float CvHOGEvaluator::operator()( int varIdx, int sampleIdx )
+{
+ int featureIdx = varIdx / ( N_BINS * N_CELLS );
+ int componentIdx = varIdx % ( N_BINS * N_CELLS );
+ //return features[featureIdx].calc( hist, sampleIdx, componentIdx);
+ return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx );
+}
+
+inline float CvHOGEvaluator::Feature::calc( const std::vector<Mat>& _hists, const Mat& _normSum, size_t y, int featComponent ) const
+{
+ float normFactor;
+ float res;
+
+ int binIdx = featComponent % N_BINS;
+ int cellIdx = featComponent / N_BINS;
+
+ const float *phist = _hists[binIdx].ptr<float>( (int) y );
+ res = phist[fastRect[cellIdx].p0] - phist[fastRect[cellIdx].p1] - phist[fastRect[cellIdx].p2] + phist[fastRect[cellIdx].p3];
+
+ const float *pnormSum = _normSum.ptr<float>( (int) y );
+ normFactor = (float) ( pnormSum[fastRect[0].p0] - pnormSum[fastRect[1].p1] - pnormSum[fastRect[2].p2] + pnormSum[fastRect[3].p3] );
+ res = ( res > 0.001f ) ? ( res / ( normFactor + 0.001f ) ) : 0.f; //for cutting negative values, which apper due to floating precision
+
+ return res;
+}
+
+struct CvLBPFeatureParams : CvFeatureParams
+{
+ CvLBPFeatureParams();
+
+};
+
+class CvLBPEvaluator : public CvFeatureEvaluator
+{
+ public:
+ virtual ~CvLBPEvaluator()
+ {
+ }
+ virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
+ virtual void setImage( const Mat& img, uchar clsLabel, int idx );
+ virtual float operator()( int featureIdx, int sampleIdx )
+ {
+ return (float) features[featureIdx].calc( sum, sampleIdx );
+ }
+ virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const;
+ protected:
+ virtual void generateFeatures();
+
+ class Feature
+ {
+ public:
+ Feature();
+ Feature( int offset, int x, int y, int _block_w, int _block_h );
+ uchar calc( const Mat& _sum, size_t y ) const;
+ void write( FileStorage &fs ) const;
+
+ Rect rect;
+ int p[16];
+ };
+ std::vector<Feature> features;
+
+ Mat sum;
+};
+
+inline uchar CvLBPEvaluator::Feature::calc( const Mat &_sum, size_t y ) const
+{
+ const int* psum = _sum.ptr<int>( (int) y );
+ int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]];
+
+ return (uchar) ( ( psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0 ) | // 0
+ ( psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0 ) | // 1
+ ( psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0 ) | // 2
+ ( psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0 ) | // 5
+ ( psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0 ) | // 8
+ ( psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0 ) | // 7
+ ( psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0 ) | // 6
+ ( psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0 ) ); // 3
+}
+
+//! @}
+
+} /* namespace cv */
+
+#endif