summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/optflow
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /thirdparty/linux/include/opencv2/optflow
downloadFOSSEE_Image_Processing_Toolbox-master.tar.gz
FOSSEE_Image_Processing_Toolbox-master.tar.bz2
FOSSEE_Image_Processing_Toolbox-master.zip
First CommitHEADmaster
Diffstat (limited to 'thirdparty/linux/include/opencv2/optflow')
-rw-r--r--thirdparty/linux/include/opencv2/optflow/motempl.hpp147
-rw-r--r--thirdparty/linux/include/opencv2/optflow/pcaflow.hpp149
-rw-r--r--thirdparty/linux/include/opencv2/optflow/sparse_matching_gpc.hpp380
3 files changed, 676 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/optflow/motempl.hpp b/thirdparty/linux/include/opencv2/optflow/motempl.hpp
new file mode 100644
index 0000000..aeea9e8
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/optflow/motempl.hpp
@@ -0,0 +1,147 @@
+/*
+By downloading, copying, installing or using the software you agree to this
+license. If you do not agree to this license, do not download, install,
+copy or use the software.
+
+
+ License Agreement
+ For Open Source Computer Vision Library
+ (3-clause BSD License)
+
+Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+Third party copyrights are property of their respective owners.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+ * Neither the names of the copyright holders nor the names of the contributors
+ may be used to endorse or promote products derived from this software
+ without specific prior written permission.
+
+This software is provided by the copyright holders and contributors "as is" and
+any express or implied warranties, including, but not limited to, the implied
+warranties of merchantability and fitness for a particular purpose are
+disclaimed. In no event shall copyright holders or contributors be liable for
+any direct, indirect, incidental, special, exemplary, or consequential damages
+(including, but not limited to, procurement of substitute goods or services;
+loss of use, data, or profits; or business interruption) however caused
+and on any theory of liability, whether in contract, strict liability,
+or tort (including negligence or otherwise) arising in any way out of
+the use of this software, even if advised of the possibility of such damage.
+*/
+
+#ifndef __OPENCV_OPTFLOW_MOTEMPL_HPP__
+#define __OPENCV_OPTFLOW_MOTEMPL_HPP__
+
+#include "opencv2/core.hpp"
+
+namespace cv
+{
+namespace motempl
+{
+
+//! @addtogroup optflow
+//! @{
+
+/** @brief Updates the motion history image by a moving silhouette.
+
+@param silhouette Silhouette mask that has non-zero pixels where the motion occurs.
+@param mhi Motion history image that is updated by the function (single-channel, 32-bit
+floating-point).
+@param timestamp Current time in milliseconds or other units.
+@param duration Maximal duration of the motion track in the same units as timestamp .
+
+The function updates the motion history image as follows:
+
+\f[\texttt{mhi} (x,y)= \forkthree{\texttt{timestamp}}{if \(\texttt{silhouette}(x,y) \ne 0\)}{0}{if \(\texttt{silhouette}(x,y) = 0\) and \(\texttt{mhi} < (\texttt{timestamp} - \texttt{duration})\)}{\texttt{mhi}(x,y)}{otherwise}\f]
+
+That is, MHI pixels where the motion occurs are set to the current timestamp , while the pixels
+where the motion happened last time a long time ago are cleared.
+
+The function, together with calcMotionGradient and calcGlobalOrientation , implements a motion
+templates technique described in @cite Davis97 and @cite Bradski00 .
+ */
+CV_EXPORTS_W void updateMotionHistory( InputArray silhouette, InputOutputArray mhi,
+ double timestamp, double duration );
+
+/** @brief Calculates a gradient orientation of a motion history image.
+
+@param mhi Motion history single-channel floating-point image.
+@param mask Output mask image that has the type CV_8UC1 and the same size as mhi . Its non-zero
+elements mark pixels where the motion gradient data is correct.
+@param orientation Output motion gradient orientation image that has the same type and the same
+size as mhi . Each pixel of the image is a motion orientation, from 0 to 360 degrees.
+@param delta1 Minimal (or maximal) allowed difference between mhi values within a pixel
+neighborhood.
+@param delta2 Maximal (or minimal) allowed difference between mhi values within a pixel
+neighborhood. That is, the function finds the minimum ( \f$m(x,y)\f$ ) and maximum ( \f$M(x,y)\f$ ) mhi
+values over \f$3 \times 3\f$ neighborhood of each pixel and marks the motion orientation at \f$(x, y)\f$
+as valid only if
+\f[\min ( \texttt{delta1} , \texttt{delta2} ) \le M(x,y)-m(x,y) \le \max ( \texttt{delta1} , \texttt{delta2} ).\f]
+@param apertureSize Aperture size of the Sobel operator.
+
+The function calculates a gradient orientation at each pixel \f$(x, y)\f$ as:
+
+\f[\texttt{orientation} (x,y)= \arctan{\frac{d\texttt{mhi}/dy}{d\texttt{mhi}/dx}}\f]
+
+In fact, fastAtan2 and phase are used so that the computed angle is measured in degrees and covers
+the full range 0..360. Also, the mask is filled to indicate pixels where the computed angle is
+valid.
+
+@note
+ - (Python) An example on how to perform a motion template technique can be found at
+ opencv_source_code/samples/python2/motempl.py
+ */
+CV_EXPORTS_W void calcMotionGradient( InputArray mhi, OutputArray mask, OutputArray orientation,
+ double delta1, double delta2, int apertureSize = 3 );
+
+/** @brief Calculates a global motion orientation in a selected region.
+
+@param orientation Motion gradient orientation image calculated by the function calcMotionGradient
+@param mask Mask image. It may be a conjunction of a valid gradient mask, also calculated by
+calcMotionGradient , and the mask of a region whose direction needs to be calculated.
+@param mhi Motion history image calculated by updateMotionHistory .
+@param timestamp Timestamp passed to updateMotionHistory .
+@param duration Maximum duration of a motion track in milliseconds, passed to updateMotionHistory
+
+The function calculates an average motion direction in the selected region and returns the angle
+between 0 degrees and 360 degrees. The average direction is computed from the weighted orientation
+histogram, where a recent motion has a larger weight and the motion occurred in the past has a
+smaller weight, as recorded in mhi .
+ */
+CV_EXPORTS_W double calcGlobalOrientation( InputArray orientation, InputArray mask, InputArray mhi,
+ double timestamp, double duration );
+
+/** @brief Splits a motion history image into a few parts corresponding to separate independent motions (for
+example, left hand, right hand).
+
+@param mhi Motion history image.
+@param segmask Image where the found mask should be stored, single-channel, 32-bit floating-point.
+@param boundingRects Vector containing ROIs of motion connected components.
+@param timestamp Current time in milliseconds or other units.
+@param segThresh Segmentation threshold that is recommended to be equal to the interval between
+motion history "steps" or greater.
+
+The function finds all of the motion segments and marks them in segmask with individual values
+(1,2,...). It also computes a vector with ROIs of motion connected components. After that the motion
+direction for every component can be calculated with calcGlobalOrientation using the extracted mask
+of the particular component.
+ */
+CV_EXPORTS_W void segmentMotion( InputArray mhi, OutputArray segmask,
+ CV_OUT std::vector<Rect>& boundingRects,
+ double timestamp, double segThresh );
+
+
+//! @}
+
+}
+}
+
+#endif
diff --git a/thirdparty/linux/include/opencv2/optflow/pcaflow.hpp b/thirdparty/linux/include/opencv2/optflow/pcaflow.hpp
new file mode 100644
index 0000000..6645363
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/optflow/pcaflow.hpp
@@ -0,0 +1,149 @@
+/*
+By downloading, copying, installing or using the software you agree to this
+license. If you do not agree to this license, do not download, install,
+copy or use the software.
+
+
+ License Agreement
+ For Open Source Computer Vision Library
+ (3-clause BSD License)
+
+Copyright (C) 2016, OpenCV Foundation, all rights reserved.
+Third party copyrights are property of their respective owners.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+ * Neither the names of the copyright holders nor the names of the contributors
+ may be used to endorse or promote products derived from this software
+ without specific prior written permission.
+
+This software is provided by the copyright holders and contributors "as is" and
+any express or implied warranties, including, but not limited to, the implied
+warranties of merchantability and fitness for a particular purpose are
+disclaimed. In no event shall copyright holders or contributors be liable for
+any direct, indirect, incidental, special, exemplary, or consequential damages
+(including, but not limited to, procurement of substitute goods or services;
+loss of use, data, or profits; or business interruption) however caused
+and on any theory of liability, whether in contract, strict liability,
+or tort (including negligence or otherwise) arising in any way out of
+the use of this software, even if advised of the possibility of such damage.
+*/
+
+/**
+ * @file pcaflow.hpp
+ * @author Vladislav Samsonov <vvladxx@gmail.com>
+ * @brief Implementation of the PCAFlow algorithm from the following paper:
+ * http://files.is.tue.mpg.de/black/papers/cvpr2015_pcaflow.pdf
+ *
+ * @cite Wulff:CVPR:2015
+ *
+ * There are some key differences which distinguish this algorithm from the original PCAFlow (see paper):
+ * - Discrete Cosine Transform basis is used instead of basis extracted with PCA.
+ * Reasoning: DCT basis has comparable performance and it doesn't require additional storage space.
+ * Also, this decision helps to avoid overloading the algorithm with a lot of external input.
+ * - Usage of built-in OpenCV feature tracking instead of libviso.
+*/
+
+#ifndef __OPENCV_OPTFLOW_PCAFLOW_HPP__
+#define __OPENCV_OPTFLOW_PCAFLOW_HPP__
+
+#include "opencv2/core.hpp"
+#include "opencv2/video.hpp"
+
+namespace cv
+{
+namespace optflow
+{
+
+//! @addtogroup optflow
+//! @{
+
+/** @brief
+ * This class can be used for imposing a learned prior on the resulting optical flow.
+ * Solution will be regularized according to this prior.
+ * You need to generate appropriate prior file with "learn_prior.py" script beforehand.
+ */
+class CV_EXPORTS_W PCAPrior
+{
+private:
+ Mat L1;
+ Mat L2;
+ Mat c1;
+ Mat c2;
+
+public:
+ PCAPrior( const char *pathToPrior );
+
+ int getPadding() const { return L1.size().height; }
+
+ int getBasisSize() const { return L1.size().width; }
+
+ void fillConstraints( float *A1, float *A2, float *b1, float *b2 ) const;
+};
+
+/** @brief PCAFlow algorithm.
+ */
+class CV_EXPORTS_W OpticalFlowPCAFlow : public DenseOpticalFlow
+{
+protected:
+ const Ptr<const PCAPrior> prior;
+ const Size basisSize;
+ const float sparseRate; // (0 .. 0.1)
+ const float retainedCornersFraction; // [0 .. 1]
+ const float occlusionsThreshold;
+ const float dampingFactor;
+ const float claheClip;
+ bool useOpenCL;
+
+public:
+ /** @brief Creates an instance of PCAFlow algorithm.
+ * @param _prior Learned prior or no prior (default). @see cv::optflow::PCAPrior
+ * @param _basisSize Number of basis vectors.
+ * @param _sparseRate Controls density of sparse matches.
+ * @param _retainedCornersFraction Retained corners fraction.
+ * @param _occlusionsThreshold Occlusion threshold.
+ * @param _dampingFactor Regularization term for solving least-squares. It is not related to the prior regularization.
+ * @param _claheClip Clip parameter for CLAHE.
+ */
+ OpticalFlowPCAFlow( Ptr<const PCAPrior> _prior = Ptr<const PCAPrior>(), const Size _basisSize = Size( 18, 14 ),
+ float _sparseRate = 0.024, float _retainedCornersFraction = 0.2,
+ float _occlusionsThreshold = 0.0003, float _dampingFactor = 0.00002, float _claheClip = 14 );
+
+ void calc( InputArray I0, InputArray I1, InputOutputArray flow );
+ void collectGarbage();
+
+private:
+ void findSparseFeatures( UMat &from, UMat &to, std::vector<Point2f> &features,
+ std::vector<Point2f> &predictedFeatures ) const;
+
+ void removeOcclusions( UMat &from, UMat &to, std::vector<Point2f> &features,
+ std::vector<Point2f> &predictedFeatures ) const;
+
+ void getSystem( OutputArray AOut, OutputArray b1Out, OutputArray b2Out, const std::vector<Point2f> &features,
+ const std::vector<Point2f> &predictedFeatures, const Size size );
+
+ void getSystem( OutputArray A1Out, OutputArray A2Out, OutputArray b1Out, OutputArray b2Out,
+ const std::vector<Point2f> &features, const std::vector<Point2f> &predictedFeatures,
+ const Size size );
+
+ OpticalFlowPCAFlow& operator=( const OpticalFlowPCAFlow& ); // make it non-assignable
+};
+
+/** @brief Creates an instance of PCAFlow
+*/
+CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_PCAFlow();
+
+//! @}
+
+}
+}
+
+#endif
diff --git a/thirdparty/linux/include/opencv2/optflow/sparse_matching_gpc.hpp b/thirdparty/linux/include/opencv2/optflow/sparse_matching_gpc.hpp
new file mode 100644
index 0000000..3127710
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/optflow/sparse_matching_gpc.hpp
@@ -0,0 +1,380 @@
+/*
+By downloading, copying, installing or using the software you agree to this
+license. If you do not agree to this license, do not download, install,
+copy or use the software.
+
+
+ License Agreement
+ For Open Source Computer Vision Library
+ (3-clause BSD License)
+
+Copyright (C) 2016, OpenCV Foundation, all rights reserved.
+Third party copyrights are property of their respective owners.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+ * Neither the names of the copyright holders nor the names of the contributors
+ may be used to endorse or promote products derived from this software
+ without specific prior written permission.
+
+This software is provided by the copyright holders and contributors "as is" and
+any express or implied warranties, including, but not limited to, the implied
+warranties of merchantability and fitness for a particular purpose are
+disclaimed. In no event shall copyright holders or contributors be liable for
+any direct, indirect, incidental, special, exemplary, or consequential damages
+(including, but not limited to, procurement of substitute goods or services;
+loss of use, data, or profits; or business interruption) however caused
+and on any theory of liability, whether in contract, strict liability,
+or tort (including negligence or otherwise) arising in any way out of
+the use of this software, even if advised of the possibility of such damage.
+*/
+
+/**
+ * @file sparse_matching_gpc.hpp
+ * @author Vladislav Samsonov <vvladxx@gmail.com>
+ * @brief Implementation of the Global Patch Collider.
+ *
+ * Implementation of the Global Patch Collider algorithm from the following paper:
+ * http://research.microsoft.com/en-us/um/people/pkohli/papers/wfrik_cvpr2016.pdf
+ *
+ * @cite Wang_2016_CVPR
+ */
+
+#ifndef __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
+#define __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__
+
+#include "opencv2/core.hpp"
+#include "opencv2/core/hal/intrin.hpp"
+#include "opencv2/imgproc.hpp"
+
+namespace cv
+{
+namespace optflow
+{
+
+//! @addtogroup optflow
+//! @{
+
+struct CV_EXPORTS_W GPCPatchDescriptor
+{
+ static const unsigned nFeatures = 18; //!< number of features in a patch descriptor
+ Vec< double, nFeatures > feature;
+
+ double dot( const Vec< double, nFeatures > &coef ) const;
+
+ void markAsSeparated() { feature[0] = std::numeric_limits< double >::quiet_NaN(); }
+
+ bool isSeparated() const { return cvIsNaN( feature[0] ) != 0; }
+};
+
+struct CV_EXPORTS_W GPCPatchSample
+{
+ GPCPatchDescriptor ref;
+ GPCPatchDescriptor pos;
+ GPCPatchDescriptor neg;
+
+ void getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const;
+};
+
+typedef std::vector< GPCPatchSample > GPCSamplesVector;
+
+/** @brief Descriptor types for the Global Patch Collider.
+ */
+enum GPCDescType
+{
+ GPC_DESCRIPTOR_DCT = 0, //!< Better quality but slow
+ GPC_DESCRIPTOR_WHT //!< Worse quality but much faster
+};
+
+/** @brief Class encapsulating training samples.
+ */
+class CV_EXPORTS_W GPCTrainingSamples
+{
+private:
+ GPCSamplesVector samples;
+ int descriptorType;
+
+public:
+ /** @brief This function can be used to extract samples from a pair of images and a ground truth flow.
+ * Sizes of all the provided vectors must be equal.
+ */
+ static Ptr< GPCTrainingSamples > create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo,
+ const std::vector< String > &gt, int descriptorType );
+
+ static Ptr< GPCTrainingSamples > create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
+ int descriptorType );
+
+ size_t size() const { return samples.size(); }
+
+ int type() const { return descriptorType; }
+
+ operator GPCSamplesVector &() { return samples; }
+};
+
+/** @brief Class encapsulating training parameters.
+ */
+struct GPCTrainingParams
+{
+ unsigned maxTreeDepth; //!< Maximum tree depth to stop partitioning.
+ int minNumberOfSamples; //!< Minimum number of samples in the node to stop partitioning.
+ int descriptorType; //!< Type of descriptors to use.
+ bool printProgress; //!< Print progress to stdout.
+
+ GPCTrainingParams( unsigned _maxTreeDepth = 20, int _minNumberOfSamples = 3, GPCDescType _descriptorType = GPC_DESCRIPTOR_DCT,
+ bool _printProgress = true )
+ : maxTreeDepth( _maxTreeDepth ), minNumberOfSamples( _minNumberOfSamples ), descriptorType( _descriptorType ),
+ printProgress( _printProgress )
+ {
+ CV_Assert( check() );
+ }
+
+ GPCTrainingParams( const GPCTrainingParams &params )
+ : maxTreeDepth( params.maxTreeDepth ), minNumberOfSamples( params.minNumberOfSamples ), descriptorType( params.descriptorType ),
+ printProgress( params.printProgress )
+ {
+ CV_Assert( check() );
+ }
+
+ bool check() const { return maxTreeDepth > 1 && minNumberOfSamples > 1; }
+};
+
+/** @brief Class encapsulating matching parameters.
+ */
+struct GPCMatchingParams
+{
+ bool useOpenCL; //!< Whether to use OpenCL to speed up the matching.
+
+ GPCMatchingParams( bool _useOpenCL = false ) : useOpenCL( _useOpenCL ) {}
+
+ GPCMatchingParams( const GPCMatchingParams &params ) : useOpenCL( params.useOpenCL ) {}
+};
+
+/** @brief Class for individual tree.
+ */
+class CV_EXPORTS_W GPCTree : public Algorithm
+{
+public:
+ struct Node
+ {
+ Vec< double, GPCPatchDescriptor::nFeatures > coef; //!< Hyperplane coefficients
+ double rhs; //!< Bias term of the hyperplane
+ unsigned left;
+ unsigned right;
+
+ bool operator==( const Node &n ) const { return coef == n.coef && rhs == n.rhs && left == n.left && right == n.right; }
+ };
+
+private:
+ typedef GPCSamplesVector::iterator SIter;
+
+ std::vector< Node > nodes;
+ GPCTrainingParams params;
+
+ bool trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth );
+
+public:
+ void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() );
+
+ void write( FileStorage &fs ) const;
+
+ void read( const FileNode &fn );
+
+ unsigned findLeafForPatch( const GPCPatchDescriptor &descr ) const;
+
+ static Ptr< GPCTree > create() { return makePtr< GPCTree >(); }
+
+ bool operator==( const GPCTree &t ) const { return nodes == t.nodes; }
+
+ int getDescriptorType() const { return params.descriptorType; }
+};
+
+template < int T > class CV_EXPORTS_W GPCForest : public Algorithm
+{
+private:
+ struct Trail
+ {
+ unsigned leaf[T]; //!< Inside which leaf of the tree 0..T the patch fell?
+ Point2i coord; //!< Patch coordinates.
+
+ bool operator==( const Trail &trail ) const { return memcmp( leaf, trail.leaf, sizeof( leaf ) ) == 0; }
+
+ bool operator<( const Trail &trail ) const
+ {
+ for ( int i = 0; i < T - 1; ++i )
+ if ( leaf[i] != trail.leaf[i] )
+ return leaf[i] < trail.leaf[i];
+ return leaf[T - 1] < trail.leaf[T - 1];
+ }
+ };
+
+ class ParallelTrailsFilling : public ParallelLoopBody
+ {
+ private:
+ const GPCForest *forest;
+ const std::vector< GPCPatchDescriptor > *descr;
+ std::vector< Trail > *trails;
+
+ ParallelTrailsFilling &operator=( const ParallelTrailsFilling & );
+
+ public:
+ ParallelTrailsFilling( const GPCForest *_forest, const std::vector< GPCPatchDescriptor > *_descr, std::vector< Trail > *_trails )
+ : forest( _forest ), descr( _descr ), trails( _trails ){};
+
+ void operator()( const Range &range ) const
+ {
+ for ( int t = range.start; t < range.end; ++t )
+ for ( size_t i = 0; i < descr->size(); ++i )
+ trails->at( i ).leaf[t] = forest->tree[t].findLeafForPatch( descr->at( i ) );
+ }
+ };
+
+ GPCTree tree[T];
+
+public:
+ /** @brief Train the forest using one sample set for every tree.
+ * Please, consider using the next method instead of this one for better quality.
+ */
+ void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() )
+ {
+ for ( int i = 0; i < T; ++i )
+ tree[i].train( samples, params );
+ }
+
+ /** @brief Train the forest using individual samples for each tree.
+ * It is generally better to use this instead of the first method.
+ */
+ void train( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, const std::vector< String > &gt,
+ const GPCTrainingParams params = GPCTrainingParams() )
+ {
+ for ( int i = 0; i < T; ++i )
+ {
+ Ptr< GPCTrainingSamples > samples =
+ GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
+ tree[i].train( *samples, params );
+ }
+ }
+
+ void train( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt,
+ const GPCTrainingParams params = GPCTrainingParams() )
+ {
+ for ( int i = 0; i < T; ++i )
+ {
+ Ptr< GPCTrainingSamples > samples =
+ GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree
+ tree[i].train( *samples, params );
+ }
+ }
+
+ void write( FileStorage &fs ) const
+ {
+ fs << "ntrees" << T << "trees"
+ << "[";
+ for ( int i = 0; i < T; ++i )
+ {
+ fs << "{";
+ tree[i].write( fs );
+ fs << "}";
+ }
+ fs << "]";
+ }
+
+ void read( const FileNode &fn )
+ {
+ CV_Assert( T <= (int)fn["ntrees"] );
+ FileNodeIterator it = fn["trees"].begin();
+ for ( int i = 0; i < T; ++i, ++it )
+ tree[i].read( *it );
+ }
+
+ /** @brief Find correspondences between two images.
+ * @param[in] imgFrom First image in a sequence.
+ * @param[in] imgTo Second image in a sequence.
+ * @param[out] corr Output vector with pairs of corresponding points.
+ * @param[in] params Additional matching parameters for fine-tuning.
+ */
+ void findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
+ const GPCMatchingParams params = GPCMatchingParams() ) const;
+
+ static Ptr< GPCForest > create() { return makePtr< GPCForest >(); }
+};
+
+class CV_EXPORTS_W GPCDetails
+{
+public:
+ static void dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr );
+
+ static void getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp,
+ int type );
+
+ static void getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y );
+};
+
+template < int T >
+void GPCForest< T >::findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr,
+ const GPCMatchingParams params ) const
+{
+ CV_Assert( imgFrom.channels() == 3 );
+ CV_Assert( imgTo.channels() == 3 );
+
+ Mat from, to;
+ imgFrom.getMat().convertTo( from, CV_32FC3 );
+ imgTo.getMat().convertTo( to, CV_32FC3 );
+ cvtColor( from, from, COLOR_BGR2YCrCb );
+ cvtColor( to, to, COLOR_BGR2YCrCb );
+
+ Mat fromCh[3], toCh[3];
+ split( from, fromCh );
+ split( to, toCh );
+
+ std::vector< GPCPatchDescriptor > descr;
+ GPCDetails::getAllDescriptorsForImage( fromCh, descr, params, tree[0].getDescriptorType() );
+ std::vector< Trail > trailsFrom( descr.size() ), trailsTo( descr.size() );
+
+ for ( size_t i = 0; i < descr.size(); ++i )
+ GPCDetails::getCoordinatesFromIndex( i, from.size(), trailsFrom[i].coord.x, trailsFrom[i].coord.y );
+ parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsFrom ) );
+
+ descr.clear();
+ GPCDetails::getAllDescriptorsForImage( toCh, descr, params, tree[0].getDescriptorType() );
+
+ for ( size_t i = 0; i < descr.size(); ++i )
+ GPCDetails::getCoordinatesFromIndex( i, to.size(), trailsTo[i].coord.x, trailsTo[i].coord.y );
+ parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsTo ) );
+
+ std::sort( trailsFrom.begin(), trailsFrom.end() );
+ std::sort( trailsTo.begin(), trailsTo.end() );
+
+ for ( size_t i = 0; i < trailsFrom.size(); ++i )
+ {
+ bool uniq = true;
+ while ( i + 1 < trailsFrom.size() && trailsFrom[i] == trailsFrom[i + 1] )
+ ++i, uniq = false;
+ if ( uniq )
+ {
+ typename std::vector< Trail >::const_iterator lb = std::lower_bound( trailsTo.begin(), trailsTo.end(), trailsFrom[i] );
+ if ( lb != trailsTo.end() && *lb == trailsFrom[i] && ( ( lb + 1 ) == trailsTo.end() || !( *lb == *( lb + 1 ) ) ) )
+ corr.push_back( std::make_pair( trailsFrom[i].coord, lb->coord ) );
+ }
+ }
+
+ GPCDetails::dropOutliers( corr );
+}
+
+//! @}
+
+} // namespace optflow
+
+CV_EXPORTS void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node );
+
+CV_EXPORTS void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node );
+} // namespace cv
+
+#endif