diff options
author | shamikam | 2017-01-16 02:56:17 +0530 |
---|---|---|
committer | shamikam | 2017-01-16 02:56:17 +0530 |
commit | a6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch) | |
tree | e806e966b06a53388fb300d89534354b222c2cad /thirdparty/linux/include/opencv2/objdetect.hpp | |
download | FOSSEE_Image_Processing_Toolbox-master.tar.gz FOSSEE_Image_Processing_Toolbox-master.tar.bz2 FOSSEE_Image_Processing_Toolbox-master.zip |
Diffstat (limited to 'thirdparty/linux/include/opencv2/objdetect.hpp')
-rw-r--r-- | thirdparty/linux/include/opencv2/objdetect.hpp | 466 |
1 files changed, 466 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/objdetect.hpp b/thirdparty/linux/include/opencv2/objdetect.hpp new file mode 100644 index 0000000..cd444d2 --- /dev/null +++ b/thirdparty/linux/include/opencv2/objdetect.hpp @@ -0,0 +1,466 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OBJDETECT_HPP +#define OPENCV_OBJDETECT_HPP + +#include "opencv2/core.hpp" + +/** +@defgroup objdetect Object Detection + +Haar Feature-based Cascade Classifier for Object Detection +---------------------------------------------------------- + +The object detector described below has been initially proposed by Paul Viola @cite Viola01 and +improved by Rainer Lienhart @cite Lienhart02 . + +First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is +trained with a few hundred sample views of a particular object (i.e., a face or a car), called +positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary +images of the same size. + +After a classifier is trained, it can be applied to a region of interest (of the same size as used +during the training) in an input image. The classifier outputs a "1" if the region is likely to show +the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can +move the search window across the image and check every location using the classifier. The +classifier is designed so that it can be easily "resized" in order to be able to find the objects of +interest at different sizes, which is more efficient than resizing the image itself. So, to find an +object of an unknown size in the image the scan procedure should be done several times at different +scales. + +The word "cascade" in the classifier name means that the resultant classifier consists of several +simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some +stage the candidate is rejected or all the stages are passed. The word "boosted" means that the +classifiers at every stage of the cascade are complex themselves and they are built out of basic +classifiers using one of four different boosting techniques (weighted voting). Currently Discrete +Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are +decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic +classifiers, and are calculated as described below. The current algorithm uses the following +Haar-like features: + +![image](pics/haarfeatures.png) + +The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within +the region of interest and the scale (this scale is not the same as the scale used at the detection +stage, though these two scales are multiplied). For example, in the case of the third line feature +(2c) the response is calculated as the difference between the sum of image pixels under the +rectangle covering the whole feature (including the two white stripes and the black stripe in the +middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to +compensate for the differences in the size of areas. The sums of pixel values over a rectangular +regions are calculated rapidly using integral images (see below and the integral description). + +To see the object detector at work, have a look at the facedetect demo: +<https://github.com/opencv/opencv/tree/master/samples/cpp/dbt_face_detection.cpp> + +The following reference is for the detection part only. There is a separate application called +opencv_traincascade that can train a cascade of boosted classifiers from a set of samples. + +@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in +addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection +using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at +<http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf> + +@{ + @defgroup objdetect_c C API +@} + */ + +typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; + +namespace cv +{ + +//! @addtogroup objdetect +//! @{ + +///////////////////////////// Object Detection //////////////////////////// + +//! class for grouping object candidates, detected by Cascade Classifier, HOG etc. +//! instance of the class is to be passed to cv::partition (see cxoperations.hpp) +class CV_EXPORTS SimilarRects +{ +public: + SimilarRects(double _eps) : eps(_eps) {} + inline bool operator()(const Rect& r1, const Rect& r2) const + { + double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5; + return std::abs(r1.x - r2.x) <= delta && + std::abs(r1.y - r2.y) <= delta && + std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && + std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; + } + double eps; +}; + +/** @brief Groups the object candidate rectangles. + +@param rectList Input/output vector of rectangles. Output vector includes retained and grouped +rectangles. (The Python list is not modified in place.) +@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a +group of rectangles to retain it. +@param eps Relative difference between sides of the rectangles to merge them into a group. + +The function is a wrapper for the generic function partition . It clusters all the input rectangles +using the rectangle equivalence criteria that combines rectangles with similar sizes and similar +locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If +\f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small +clusters containing less than or equal to groupThreshold rectangles are rejected. In each other +cluster, the average rectangle is computed and put into the output rectangle list. + */ +CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2); +/** @overload */ +CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, + int groupThreshold, double eps = 0.2); +/** @overload */ +CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, + double eps, std::vector<int>* weights, std::vector<double>* levelWeights ); +/** @overload */ +CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, + std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2); +/** @overload */ +CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, + std::vector<double>& foundScales, + double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); + +template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const; + +enum { CASCADE_DO_CANNY_PRUNING = 1, + CASCADE_SCALE_IMAGE = 2, + CASCADE_FIND_BIGGEST_OBJECT = 4, + CASCADE_DO_ROUGH_SEARCH = 8 + }; + +class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm +{ +public: + virtual ~BaseCascadeClassifier(); + virtual bool empty() const = 0; + virtual bool load( const String& filename ) = 0; + virtual void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + double scaleFactor, + int minNeighbors, int flags, + Size minSize, Size maxSize ) = 0; + + virtual void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + CV_OUT std::vector<int>& numDetections, + double scaleFactor, + int minNeighbors, int flags, + Size minSize, Size maxSize ) = 0; + + virtual void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + CV_OUT std::vector<int>& rejectLevels, + CV_OUT std::vector<double>& levelWeights, + double scaleFactor, + int minNeighbors, int flags, + Size minSize, Size maxSize, + bool outputRejectLevels ) = 0; + + virtual bool isOldFormatCascade() const = 0; + virtual Size getOriginalWindowSize() const = 0; + virtual int getFeatureType() const = 0; + virtual void* getOldCascade() = 0; + + class CV_EXPORTS MaskGenerator + { + public: + virtual ~MaskGenerator() {} + virtual Mat generateMask(const Mat& src)=0; + virtual void initializeMask(const Mat& /*src*/) { } + }; + virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0; + virtual Ptr<MaskGenerator> getMaskGenerator() = 0; +}; + +/** @brief Cascade classifier class for object detection. + */ +class CV_EXPORTS_W CascadeClassifier +{ +public: + CV_WRAP CascadeClassifier(); + /** @brief Loads a classifier from a file. + + @param filename Name of the file from which the classifier is loaded. + */ + CV_WRAP CascadeClassifier(const String& filename); + ~CascadeClassifier(); + /** @brief Checks whether the classifier has been loaded. + */ + CV_WRAP bool empty() const; + /** @brief Loads a classifier from a file. + + @param filename Name of the file from which the classifier is loaded. The file may contain an old + HAAR classifier trained by the haartraining application or a new cascade classifier trained by the + traincascade application. + */ + CV_WRAP bool load( const String& filename ); + /** @brief Reads a classifier from a FileStorage node. + + @note The file may contain a new cascade classifier (trained traincascade application) only. + */ + CV_WRAP bool read( const FileNode& node ); + + /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list + of rectangles. + + @param image Matrix of the type CV_8U containing an image where objects are detected. + @param objects Vector of rectangles where each rectangle contains the detected object, the + rectangles may be partially outside the original image. + @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. + @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have + to retain it. + @param flags Parameter with the same meaning for an old cascade as in the function + cvHaarDetectObjects. It is not used for a new cascade. + @param minSize Minimum possible object size. Objects smaller than that are ignored. + @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. + + The function is parallelized with the TBB library. + + @note + - (Python) A face detection example using cascade classifiers can be found at + opencv_source_code/samples/python/facedetect.py + */ + CV_WRAP void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + double scaleFactor = 1.1, + int minNeighbors = 3, int flags = 0, + Size minSize = Size(), + Size maxSize = Size() ); + + /** @overload + @param image Matrix of the type CV_8U containing an image where objects are detected. + @param objects Vector of rectangles where each rectangle contains the detected object, the + rectangles may be partially outside the original image. + @param numDetections Vector of detection numbers for the corresponding objects. An object's number + of detections is the number of neighboring positively classified rectangles that were joined + together to form the object. + @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. + @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have + to retain it. + @param flags Parameter with the same meaning for an old cascade as in the function + cvHaarDetectObjects. It is not used for a new cascade. + @param minSize Minimum possible object size. Objects smaller than that are ignored. + @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. + */ + CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + CV_OUT std::vector<int>& numDetections, + double scaleFactor=1.1, + int minNeighbors=3, int flags=0, + Size minSize=Size(), + Size maxSize=Size() ); + + /** @overload + if `outputRejectLevels` is `true` returns `rejectLevels` and `levelWeights` + */ + CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image, + CV_OUT std::vector<Rect>& objects, + CV_OUT std::vector<int>& rejectLevels, + CV_OUT std::vector<double>& levelWeights, + double scaleFactor = 1.1, + int minNeighbors = 3, int flags = 0, + Size minSize = Size(), + Size maxSize = Size(), + bool outputRejectLevels = false ); + + CV_WRAP bool isOldFormatCascade() const; + CV_WRAP Size getOriginalWindowSize() const; + CV_WRAP int getFeatureType() const; + void* getOldCascade(); + + CV_WRAP static bool convert(const String& oldcascade, const String& newcascade); + + void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator); + Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator(); + + Ptr<BaseCascadeClassifier> cc; +}; + +CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator(); + +//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// + +//! struct for detection region of interest (ROI) +struct DetectionROI +{ + //! scale(size) of the bounding box + double scale; + //! set of requrested locations to be evaluated + std::vector<cv::Point> locations; + //! vector that will contain confidence values for each location + std::vector<double> confidences; +}; + +struct CV_EXPORTS_W HOGDescriptor +{ +public: + enum { L2Hys = 0 + }; + enum { DEFAULT_NLEVELS = 64 + }; + + CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), + cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), + histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), + free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false) + {} + + CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, + Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, + int _histogramNormType=HOGDescriptor::L2Hys, + double _L2HysThreshold=0.2, bool _gammaCorrection=false, + int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false) + : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), + nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), + histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), + gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient) + {} + + CV_WRAP HOGDescriptor(const String& filename) + { + load(filename); + } + + HOGDescriptor(const HOGDescriptor& d) + { + d.copyTo(*this); + } + + virtual ~HOGDescriptor() {} + + CV_WRAP size_t getDescriptorSize() const; + CV_WRAP bool checkDetectorSize() const; + CV_WRAP double getWinSigma() const; + + CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); + + virtual bool read(FileNode& fn); + virtual void write(FileStorage& fs, const String& objname) const; + + CV_WRAP virtual bool load(const String& filename, const String& objname = String()); + CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; + virtual void copyTo(HOGDescriptor& c) const; + + CV_WRAP virtual void compute(InputArray img, + CV_OUT std::vector<float>& descriptors, + Size winStride = Size(), Size padding = Size(), + const std::vector<Point>& locations = std::vector<Point>()) const; + + //! with found weights output + CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, + CV_OUT std::vector<double>& weights, + double hitThreshold = 0, Size winStride = Size(), + Size padding = Size(), + const std::vector<Point>& searchLocations = std::vector<Point>()) const; + //! without found weights output + virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, + double hitThreshold = 0, Size winStride = Size(), + Size padding = Size(), + const std::vector<Point>& searchLocations=std::vector<Point>()) const; + + //! with result weights output + CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, + CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, + Size winStride = Size(), Size padding = Size(), double scale = 1.05, + double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const; + //! without found weights output + virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, + double hitThreshold = 0, Size winStride = Size(), + Size padding = Size(), double scale = 1.05, + double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const; + + CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, + Size paddingTL = Size(), Size paddingBR = Size()) const; + + CV_WRAP static std::vector<float> getDefaultPeopleDetector(); + CV_WRAP static std::vector<float> getDaimlerPeopleDetector(); + + CV_PROP Size winSize; + CV_PROP Size blockSize; + CV_PROP Size blockStride; + CV_PROP Size cellSize; + CV_PROP int nbins; + CV_PROP int derivAperture; + CV_PROP double winSigma; + CV_PROP int histogramNormType; + CV_PROP double L2HysThreshold; + CV_PROP bool gammaCorrection; + CV_PROP std::vector<float> svmDetector; + UMat oclSvmDetector; + float free_coef; + CV_PROP int nlevels; + CV_PROP bool signedGradient; + + + //! evaluate specified ROI and return confidence value for each location + virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations, + CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, + double hitThreshold = 0, cv::Size winStride = Size(), + cv::Size padding = Size()) const; + + //! evaluate specified ROI and return confidence value for each location in multiple scales + virtual void detectMultiScaleROI(const cv::Mat& img, + CV_OUT std::vector<cv::Rect>& foundLocations, + std::vector<DetectionROI>& locations, + double hitThreshold = 0, + int groupThreshold = 0) const; + + //! read/parse Dalal's alt model file + void readALTModel(String modelfile); + void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const; +}; + +//! @} objdetect + +} + +#include "opencv2/objdetect/detection_based_tracker.hpp" + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/objdetect/objdetect_c.h" +#endif + +#endif |