summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/flann/index_testing.h
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /thirdparty/linux/include/opencv2/flann/index_testing.h
downloadFOSSEE_Image_Processing_Toolbox-master.tar.gz
FOSSEE_Image_Processing_Toolbox-master.tar.bz2
FOSSEE_Image_Processing_Toolbox-master.zip
First CommitHEADmaster
Diffstat (limited to 'thirdparty/linux/include/opencv2/flann/index_testing.h')
-rw-r--r--thirdparty/linux/include/opencv2/flann/index_testing.h318
1 files changed, 318 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/flann/index_testing.h b/thirdparty/linux/include/opencv2/flann/index_testing.h
new file mode 100644
index 0000000..d764004
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/flann/index_testing.h
@@ -0,0 +1,318 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_INDEX_TESTING_H_
+#define OPENCV_FLANN_INDEX_TESTING_H_
+
+#include <cstring>
+#include <cassert>
+#include <cmath>
+
+#include "matrix.h"
+#include "nn_index.h"
+#include "result_set.h"
+#include "logger.h"
+#include "timer.h"
+
+
+namespace cvflann
+{
+
+inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
+{
+ int count = 0;
+ for (int i=0; i<n; ++i) {
+ for (int k=0; k<n; ++k) {
+ if (neighbors[i]==groundTruth[k]) {
+ count++;
+ break;
+ }
+ }
+ }
+ return count;
+}
+
+
+template <typename Distance>
+typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
+ int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
+{
+ typedef typename Distance::ResultType DistanceType;
+
+ DistanceType ret = 0;
+ for (int i=0; i<n; ++i) {
+ DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
+ DistanceType num = distance(inputData[neighbors[i]], target, veclen);
+
+ if ((den==0)&&(num==0)) {
+ ret += 1;
+ }
+ else {
+ ret += num/den;
+ }
+ }
+
+ return ret;
+}
+
+template <typename Distance>
+float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+ const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
+ float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
+{
+ typedef typename Distance::ResultType DistanceType;
+
+ if (matches.cols<size_t(nn)) {
+ Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
+
+ throw FLANNException("Ground truth is not computed for as many neighbors as requested");
+ }
+
+ KNNResultSet<DistanceType> resultSet(nn+skipMatches);
+ SearchParams searchParams(checks);
+
+ std::vector<int> indices(nn+skipMatches);
+ std::vector<DistanceType> dists(nn+skipMatches);
+ int* neighbors = &indices[skipMatches];
+
+ int correct = 0;
+ DistanceType distR = 0;
+ StartStopTimer t;
+ int repeats = 0;
+ while (t.value<0.2) {
+ repeats++;
+ t.start();
+ correct = 0;
+ distR = 0;
+ for (size_t i = 0; i < testData.rows; i++) {
+ resultSet.init(&indices[0], &dists[0]);
+ index.findNeighbors(resultSet, testData[i], searchParams);
+
+ correct += countCorrectMatches(neighbors,matches[i], nn);
+ distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
+ }
+ t.stop();
+ }
+ time = float(t.value/repeats);
+
+ float precicion = (float)correct/(nn*testData.rows);
+
+ dist = distR/(testData.rows*nn);
+
+ Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
+ checks, precicion, time, 1000.0 * time / testData.rows, dist);
+
+ return precicion;
+}
+
+
+template <typename Distance>
+float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+ const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
+ int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
+{
+ typedef typename Distance::ResultType DistanceType;
+
+ Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
+ Logger::info("---------------------------------------------------------\n");
+
+ float time = 0;
+ DistanceType dist = 0;
+ precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
+
+ return time;
+}
+
+template <typename Distance>
+float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+ const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
+ float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
+{
+ typedef typename Distance::ResultType DistanceType;
+ const float SEARCH_EPS = 0.001f;
+
+ Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
+ Logger::info("---------------------------------------------------------\n");
+
+ int c2 = 1;
+ float p2;
+ int c1 = 1;
+ //float p1;
+ float time;
+ DistanceType dist;
+
+ p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+
+ if (p2>precision) {
+ Logger::info("Got as close as I can\n");
+ checks = c2;
+ return time;
+ }
+
+ while (p2<precision) {
+ c1 = c2;
+ //p1 = p2;
+ c2 *=2;
+ p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+ }
+
+ int cx;
+ float realPrecision;
+ if (fabs(p2-precision)>SEARCH_EPS) {
+ Logger::info("Start linear estimation\n");
+ // after we got to values in the vecinity of the desired precision
+ // use linear approximation get a better estimation
+
+ cx = (c1+c2)/2;
+ realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+ while (fabs(realPrecision-precision)>SEARCH_EPS) {
+
+ if (realPrecision<precision) {
+ c1 = cx;
+ }
+ else {
+ c2 = cx;
+ }
+ cx = (c1+c2)/2;
+ if (cx==c1) {
+ Logger::info("Got as close as I can\n");
+ break;
+ }
+ realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+ }
+
+ c2 = cx;
+ p2 = realPrecision;
+
+ }
+ else {
+ Logger::info("No need for linear estimation\n");
+ cx = c2;
+ realPrecision = p2;
+ }
+
+ checks = cx;
+ return time;
+}
+
+
+template <typename Distance>
+void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+ const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
+ float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
+{
+ typedef typename Distance::ResultType DistanceType;
+
+ const float SEARCH_EPS = 0.001;
+
+ // make sure precisions array is sorted
+ std::sort(precisions, precisions+precisions_length);
+
+ int pindex = 0;
+ float precision = precisions[pindex];
+
+ Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
+ Logger::info("---------------------------------------------------------\n");
+
+ int c2 = 1;
+ float p2;
+
+ int c1 = 1;
+ float p1;
+
+ float time;
+ DistanceType dist;
+
+ p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+
+ // if precision for 1 run down the tree is already
+ // better then some of the requested precisions, then
+ // skip those
+ while (precisions[pindex]<p2 && pindex<precisions_length) {
+ pindex++;
+ }
+
+ if (pindex==precisions_length) {
+ Logger::info("Got as close as I can\n");
+ return;
+ }
+
+ for (int i=pindex; i<precisions_length; ++i) {
+
+ precision = precisions[i];
+ while (p2<precision) {
+ c1 = c2;
+ p1 = p2;
+ c2 *=2;
+ p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+ if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
+ }
+
+ int cx;
+ float realPrecision;
+ if (fabs(p2-precision)>SEARCH_EPS) {
+ Logger::info("Start linear estimation\n");
+ // after we got to values in the vecinity of the desired precision
+ // use linear approximation get a better estimation
+
+ cx = (c1+c2)/2;
+ realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+ while (fabs(realPrecision-precision)>SEARCH_EPS) {
+
+ if (realPrecision<precision) {
+ c1 = cx;
+ }
+ else {
+ c2 = cx;
+ }
+ cx = (c1+c2)/2;
+ if (cx==c1) {
+ Logger::info("Got as close as I can\n");
+ break;
+ }
+ realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+ }
+
+ c2 = cx;
+ p2 = realPrecision;
+
+ }
+ else {
+ Logger::info("No need for linear estimation\n");
+ cx = c2;
+ realPrecision = p2;
+ }
+
+ }
+}
+
+}
+
+#endif //OPENCV_FLANN_INDEX_TESTING_H_