summaryrefslogtreecommitdiff
path: root/sci_gateway/cpp/opencv_wiener2.cpp
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /sci_gateway/cpp/opencv_wiener2.cpp
downloadFOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip
First CommitHEADmaster
Diffstat (limited to 'sci_gateway/cpp/opencv_wiener2.cpp')
-rw-r--r--sci_gateway/cpp/opencv_wiener2.cpp178
1 files changed, 178 insertions, 0 deletions
diff --git a/sci_gateway/cpp/opencv_wiener2.cpp b/sci_gateway/cpp/opencv_wiener2.cpp
new file mode 100644
index 0000000..802d9ce
--- /dev/null
+++ b/sci_gateway/cpp/opencv_wiener2.cpp
@@ -0,0 +1,178 @@
+/*////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+Created By: Riddhish Bhalodia
+Date: 14th October 2015
+
+Usage:
+
+void wiener2(Mat img,int n, double sigma)
+
+1) img : Input image, grayscale only
+2) n : filt size
+3) sigma : noise var, if sigma = 0 then the variance is estimated from data
+
+*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+#include <numeric>
+#include "opencv2/core/core.hpp"
+#include "opencv2/highgui/highgui.hpp"
+#include "opencv2/opencv.hpp"
+#include <iostream>
+using namespace cv;
+using namespace std;
+extern "C"
+{
+ #include "api_scilab.h"
+ #include "Scierror.h"
+ #include "BOOL.h"
+ #include <localization.h>
+ #include "sciprint.h"
+ #include "../common.h"
+
+ int opencv_wiener2(char *fname, unsigned long fname_len){
+
+ SciErr sciErr;
+ int intErr = 0;
+ int iRows=0,iCols=0;
+ int *piAddr = NULL;
+ int *piAddrNew = NULL;
+ int *piAddr2 = NULL;
+ int *piAddr3 = NULL;
+ double n;
+ double sigma;
+
+
+ Mat img;
+ //checking input argument
+ CheckInputArgument(pvApiCtx, 3, 3);
+ CheckOutputArgument(pvApiCtx, 1, 1) ;
+
+ retrieveImage(img, 1);
+ //for value of the scale factor
+ sciErr = getVarAddressFromPosition(pvApiCtx,2,&piAddr2);
+ if (sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ intErr = getScalarDouble(pvApiCtx, piAddr2, &n);
+ if(intErr)
+ {
+ return intErr;
+ }
+
+ sciErr = getVarAddressFromPosition(pvApiCtx,3,&piAddr3);
+ if (sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ intErr = getScalarDouble(pvApiCtx, piAddr3, &sigma);
+ if(intErr)
+ {
+ return intErr;
+ }
+
+ // The error checks for the function
+ if(n != round(n) || n<=0 || int(n)%2==0)
+ {
+ sciprint("The value of n must be an odd integer \n");
+ return 0;
+ }
+
+ Mat out = Mat::zeros(img.size(),img.type());
+ sigma=255*255*sigma;
+ if(img.channels() !=1){
+ sciprint("Grayscale images only!");
+ return 0;
+ }
+
+ int i_min,i_max,j_min,j_max;
+ int w = (n-1)/2;
+
+ if(sigma==0){
+ double noise_est = 0;
+ for(int i=0;i<img.rows;i++){
+ for(int j=0;j<img.cols;j++){
+ i_min = max(i-w,0);
+ i_max = min(i+w,img.rows-1);
+ j_min = max(j-w,0);
+ j_max = min(j+w,img.cols-1);
+
+ // find mean of the patch
+ double mean = 0;
+ for(int ii=i_min;ii<(i_max+1);ii++){
+ for(int jj=j_min;jj<(j_max+1);jj++){
+ mean = mean + ((double)img.at<uchar>(ii,jj));
+
+ }
+ }
+ mean = mean/(n*n);
+
+ double var=0;
+ for(int ii=i_min;ii<(i_max+1);ii++){
+ for(int jj=j_min;jj<(j_max+1);jj++){
+ var = var + ((double)img.at<uchar>(ii,jj))*((double)img.at<uchar>(ii,jj));
+ }
+ }
+ var = var/(n*n);
+ var = var - mean*mean;
+ noise_est = noise_est + var;
+ }
+ }
+ noise_est = noise_est/(img.rows*img.cols);
+ sigma = noise_est;
+ }
+
+ for(int i=0;i<img.rows;i++){
+ for(int j=0;j<img.cols;j++){
+ i_min = max(i-w,0);
+ i_max = min(i+w,img.rows-1);
+ j_min = max(j-w,0);
+ j_max = min(j+w,img.cols-1);
+
+ // find mean of the patch
+ double mean = 0;
+ for(int ii=i_min;ii<(i_max+1);ii++){
+ for(int jj=j_min;jj<(j_max+1);jj++){
+ mean = mean + ((double)img.at<uchar>(ii,jj));
+
+ }
+ }
+ mean = mean/(n*n);
+
+ // find variance of the patch
+ double var=0;
+ for(int ii=i_min;ii<(i_max+1);ii++){
+ for(int jj=j_min;jj<(j_max+1);jj++){
+ var = var + ((double)img.at<uchar>(ii,jj))*((double)img.at<uchar>(ii,jj));
+ }
+ }
+ var = var/(n*n);
+ var = var - mean*mean;
+
+ double temp;
+ double sum=0;
+
+ temp = mean + (fmax(0,(var - sigma))/fmax(var,sigma))*(((double)img.at<uchar>(i,j)) - mean);
+ out.at<uchar>(i,j) = temp;
+ }
+ }
+
+
+ // out is the return image
+ string tempstring = type2str(out.type());
+ char *checker;
+ checker = (char *)malloc(tempstring.size() + 1);
+ memcpy(checker, tempstring.c_str(), tempstring.size() + 1);
+ returnImage(checker,out,1);
+ free(checker);
+ //Assigning the list as the Output Variable
+ AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
+
+ ReturnArguments(pvApiCtx);
+ return 0;
+
+
+ }
+} \ No newline at end of file