diff options
author | shamikam | 2017-01-16 02:56:17 +0530 |
---|---|---|
committer | shamikam | 2017-01-16 02:56:17 +0530 |
commit | a6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch) | |
tree | e806e966b06a53388fb300d89534354b222c2cad /sci_gateway/cpp/opencv_imhistmatch.cpp | |
download | FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2 FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip |
Diffstat (limited to 'sci_gateway/cpp/opencv_imhistmatch.cpp')
-rw-r--r-- | sci_gateway/cpp/opencv_imhistmatch.cpp | 296 |
1 files changed, 296 insertions, 0 deletions
diff --git a/sci_gateway/cpp/opencv_imhistmatch.cpp b/sci_gateway/cpp/opencv_imhistmatch.cpp new file mode 100644 index 0000000..146b0b3 --- /dev/null +++ b/sci_gateway/cpp/opencv_imhistmatch.cpp @@ -0,0 +1,296 @@ +/* + * imhistmatch + * + * histogram matching in scilab + * + */ + +// Created by Samiran Roy, mail: samiranroy@cse.iitb.ac.in +// An implementation of imhistmatch method +// Usage: +// 1) imhistmatch(image,referenceimage) +// 2) imhistmatch(image,referenceimage,outputbins) + +// Known Changes from Matlab: +/* + * Default number of bins is 256 - for both input and output + */ + +#include <numeric> +#include "opencv2/core/core.hpp" +#include "opencv2/highgui/highgui.hpp" +#include "opencv2/opencv.hpp" +#include <iostream> +using namespace cv; +using namespace std; +extern "C" { +#include "api_scilab.h" +#include "Scierror.h" +#include "BOOL.h" +#include <localization.h> +#include "sciprint.h" +#include "../common.h" + +// Matches the input image histogram with the reference image histogram, +// returning the output in n bins + +Mat match(Mat image, Mat ref, int bins) { + Mat dst, hist; + Mat input_image = Mat::zeros(image.size(), CV_8U); + Mat refhist; + + int inputbins = 256; + + Mat cdf = Mat(inputbins, 1, CV_8U, cvScalar(0)); + + Mat refcdf = Mat(bins, 1, CV_8U, cvScalar(0)); + + // Calculating histogram of image + image.convertTo(dst, CV_8U, 1, 0); + + calcHist(&dst, 1, 0, Mat(), hist, 1, &inputbins, 0); + + // Calculating histogram of reference image + + ref.convertTo(dst, CV_8U, 1, 0); + calcHist(&dst, 1, 0, Mat(), refhist, 1, &bins, 0); + + hist.copyTo(cdf); + refhist.copyTo(refcdf); + + // calculate cdf + for (int h = 1; h < inputbins; h++) { + float binVal = hist.at<float>(h, 0); + + cdf.at<float>(h, 0) = cdf.at<float>(h, 0) + cdf.at<float>(h - 1, 0); + } + + // normalize histogram + for (int h = 0; h < inputbins; h++) { + cdf.at<float>(h, 0) = cdf.at<float>(h, 0) / cdf.at<float>(inputbins - 1, 0); + } + + // for reference image + + // calculate cdf + for (int h = 1; h < bins; h++) { + float binVal = refhist.at<float>(h, 0); + + refcdf.at<float>(h, 0) = + refcdf.at<float>(h, 0) + refcdf.at<float>(h - 1, 0); + } + + // normalize histogram + for (int h = 0; h < bins; h++) { + refcdf.at<float>(h, 0) = + refcdf.at<float>(h, 0) / refcdf.at<float>(bins - 1, 0); + } + + // for( int h = 0; h < bins; h++ ) + // { + // sciprint("%f\n",refcdf.at<float>(h,0)); + + // } + + // sciprint("\n"); + + // for( int h = 0; h < bins; h++ ) + // { + // sciprint("%f\n",cdf.at<float>(h,0)); + + // } + + float observed_cdf, minval; + float minindex; + + for (int i = 0; i < input_image.rows; i++) + for (int j = 0; j < input_image.cols; j++) { + observed_cdf = cdf.at<float>(image.at<uchar>(i, j), 0); + + minval = 1000; // will be overwritten + + for (int h = 0; h < bins; h++) { + if ((abs(refcdf.at<float>(h, 0) - observed_cdf)) < minval) { + minval = abs(refcdf.at<float>(h, 0) - observed_cdf); + minindex = h; + } + // sciprint("%d\n",minindex); + } + + input_image.at<uchar>(i, j) = minindex; + } + transpose(input_image, input_image); + + return input_image; +} + +int opencv_imhistmatch(char *fname, unsigned long fname_len) { + SciErr sciErr; + int intErr = 0; + + int *piAddr = NULL; + int *piAddrNew = NULL; + int *piAddr2 = NULL; + int *piAddr3 = NULL; + + double num_bins = 256; // default number of bins for histogram calculation + + // checking input argument + CheckInputArgument(pvApiCtx, 2, 3); + CheckOutputArgument(pvApiCtx, 1, 1); + + // Get the number of input arguments + int inputarg = *getNbInputArgument(pvApiCtx); + + // get input matrix + + Mat image, new_image, r, g, b; + retrieveImage(image, 1); + + Mat ref; + retrieveImage(ref, 2); + + int case1 = 0; + if (image.channels() == 1) + + { + if (ref.channels() != 1) { + sciprint( + "If A is a grayscale image, the ref image must also be grayscale\n"); + return 0; + + } else { + case1 = 1; + } + } + + else if (image.channels() == 3) + + { + if (ref.channels() == 1) { + case1 = 2; + } + if (ref.channels() == 3) { + case1 = 3; + } + } + + else { + sciprint("Invalid Image\n"); + return 0; + } + + if (!((image.channels() == 3) || (image.channels() == 1))) { + sciprint("Invalid Image\n"); + return 0; + } + + if (!((ref.channels() == 3) || (ref.channels() == 1))) { + sciprint("Invalid Reference Image\n"); + return 0; + } + + if (inputarg == 3) { + // Get the number of bins for histogram calculation + sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr3); + if (sciErr.iErr) { + printError(&sciErr, 0); + return 0; + } + + intErr = getScalarDouble(pvApiCtx, piAddr3, &num_bins); + if (sciErr.iErr) { + return intErr; + } + + if (num_bins < 1) { + sciprint("Invalid number of histogram bins\n"); + return 0; + } + } + + int bins = (int)num_bins; + + if (case1 == 1) { + new_image = match(image, ref, bins); + + } + + else if (case1 == 2) { + Mat rgb[3]; + + split(image, rgb); + + r = match(rgb[0], ref, bins); + + g = match(rgb[1], ref, bins); + + b = match(rgb[2], ref, bins); + + vector<Mat> channels; + + channels.push_back(r); + channels.push_back(g); + channels.push_back(b); + + merge(channels, new_image); + + transpose(new_image, new_image); + + } + + else if (case1 == 3) { + Mat rgb[3]; + Mat rgbref[3]; + + split(ref, rgbref); + split(image, rgb); + + r = match(rgb[0], rgbref[0], bins); + + g = match(rgb[1], rgbref[1], bins); + + b = match(rgb[2], rgbref[2], bins); + + vector<Mat> channels; + + channels.push_back(r); + channels.push_back(g); + channels.push_back(b); + + merge(channels, new_image); + + transpose(new_image, new_image); + } + + // Normalizing the final image + cv::normalize(new_image, new_image, 0, 255, NORM_MINMAX, CV_8U); + + // sciprint("\n"); + + // for (int i = 0; i < new_image.rows; i++) { + // for (int j = 0; j < new_image.cols; j++) { + // sciprint(" %i ", new_image.at<uchar>(i,j)); + + // } + + // sciprint("\n"); + // } + + int temp = nbInputArgument(pvApiCtx) + 1; + string tempstring = type2str(new_image.type()); + char *checker; + checker = (char *)malloc(tempstring.size() + 1); + memcpy(checker, tempstring.c_str(), tempstring.size() + 1); + returnImage(checker, new_image, 1); + free(checker); + + // Assigning the list as the Output Variable + AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1; + // Returning the Output Variables as arguments to the Scilab environment + ReturnArguments(pvApiCtx); + return 0; +} +/* ==================================================================== */ +} + |