summaryrefslogtreecommitdiff
path: root/macros/detectMinEigenFeatures.sci
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /macros/detectMinEigenFeatures.sci
downloadFOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip
First CommitHEADmaster
Diffstat (limited to 'macros/detectMinEigenFeatures.sci')
-rw-r--r--macros/detectMinEigenFeatures.sci50
1 files changed, 50 insertions, 0 deletions
diff --git a/macros/detectMinEigenFeatures.sci b/macros/detectMinEigenFeatures.sci
new file mode 100644
index 0000000..e6b4485
--- /dev/null
+++ b/macros/detectMinEigenFeatures.sci
@@ -0,0 +1,50 @@
+function [cornerPoints]=detectMinEigenFeatures(image,varargin)
+// This function is used to find corner points in an image using Minimum Eigen Value algorithm.
+//
+// Calling Sequence
+// points = detectMinEigenFeatures(I);
+// points = detectMinEigenFeatures(I, Name, Value, ...);
+//
+// Parameters
+// points: Structure of corner points
+// I: Input image to detectHarrisFeatures()
+// MinQuality: (Optional) Minimum accepted quality of corners (Default- 0.01)
+// FilterSize: (Optional) Dimension of Gaussian Filter (Default: 5)
+// ROI: (Optional) Rectangular region for corner detection
+//
+// Description
+// This function detects corners in an image I. These corner points are used to extract features and hence recognize the contents of an image.
+//
+// Examples
+// I = imread('sample.jpg');
+// points = detectMinEigenFeatures(I);
+//
+// Authors
+// Rohit Suri
+// Sridhar Reddy
+
+ [lhs rhs]=argn(0);
+ if lhs>1
+ error(msprintf(" Too many output arguments"));
+ elseif rhs>7
+ error(msprintf(" Too many input arguments"));
+ elseif modulo(rhs,2)==0
+ error(msprintf("Either Argument Name or its Value missing"));
+ end
+ imageList=mattolist(image);
+ select rhs-1
+ case 0 then
+ [location metric count]=opencv_detectMinEigenFeaturess(imageList);
+ case 2 then
+ [location metric count]=opencv_detectMinEigenFeatures(imageList,varargin(1),varargin(2));
+ case 4 then
+ [location metric count]=opencv_detectMinEigenFeatures(imageList,varargin(1),varargin(2),varargin(3),varargin(4));
+ case 6 then
+ [location metric count]=opencv_detectMinEigenFeatures(imageList,varargin(1),varargin(2),varargin(3),varargin(4),varargin(5),varargin(6));
+ end
+ //disp(count(1,1));
+ cornerPoints=struct('Type','cornerPoints','Location',location,'Metric',metric,'Count',count);
+ //for i=1:count(1,1)
+ // cornerPoints(i)=struct('Type','cornerPoints','Location',location(i,:),'Metric',metric(i,:),'Count',1);
+ //end
+endfunction