summaryrefslogtreecommitdiff
path: root/macros/detectFASTFeatures.sci
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /macros/detectFASTFeatures.sci
downloadFOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2
FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip
First CommitHEADmaster
Diffstat (limited to 'macros/detectFASTFeatures.sci')
-rw-r--r--macros/detectFASTFeatures.sci53
1 files changed, 53 insertions, 0 deletions
diff --git a/macros/detectFASTFeatures.sci b/macros/detectFASTFeatures.sci
new file mode 100644
index 0000000..e78baba
--- /dev/null
+++ b/macros/detectFASTFeatures.sci
@@ -0,0 +1,53 @@
+function [cornerPoints]=detectFASTFeatures(image,varargin)
+// This function is used to detect the corner points using FAST Alogrithm
+//
+// Calling Sequence
+// [ Location Count Metric ] = detectFASTFeatures( Image, Name, Value... )
+//
+// Parameters
+// Image: Input Image, should be a 2-D grayscale. The Input Image should be real
+// MinQuality [Optional Input Argument]: Minimum Accepted Quality of Corners, can be specified as a scalar value between [0,1]. Default: 0.1
+// MinContrast [Optional Input Argument]: Minimum Intensity difference for Corners to be detected, can be specified as a scalar value between[0,1]. Default: 0.2
+// ROI [Optional Input Argument]: Specify a rectangular region of operation. Format [ x y width height ]. Default: [1 1 size(Image,2) size(Image,1)]
+// Location: Set of x,y coordinates for the deteccted points
+// Count: Number of corner points detected
+// Metric: Value describing the strength of each detected Point
+//
+// Description
+// The detectFASTFeatures function uses the Features from Accelerated Segment Test (FAST) algorithm to find feature points.
+//
+// Examples
+// image = imread('sample.jpg');
+// [location count metric] = detectFastFeatures(image);
+//
+// With Optional Arguments:
+// [location count metric] = detectFASTFeatures(image,"MinContrast",0.2);
+//
+// Authors
+// Umang Agrawal
+// Sridhar Reddy
+
+ [lhs rhs]=argn(0);
+ if lhs>3
+ error(msprintf(" Too many output arguments"));
+ elseif rhs-1>6
+ error(msprintf(" Too many input arguments"));
+ elseif modulo(rhs-1,2)<>0
+ error(msprintf("Either Argument Name or its Value missing"));
+ end
+ imageList=mattolist(image);
+ select rhs-1
+ case 0 then
+ [location count metric]=opencv_detectFASTFeatures(imageList);
+ case 2 then
+ [location count metric]=opencv_detectFASTFeatures(imageList,varargin(1),varargin(2));
+ case 4 then
+ [location count metric]=opencv_detectFASTFeatures(imageList,varargin(1),varargin(2),varargin(3),varargin(4));
+ case 6 then
+ [location count metric]=opencv_detectFASTFeatures(imageList,varargin(1),varargin(2),varargin(3),varargin(4),varargin(5),varargin(6));
+ end
+ cornerPoints=struct('Type','cornerPoints','Location',location,'Metric',metric,'Count',count);
+ //for i=1:count
+ // cornerPoints(i)=struct('Location',location(i,:),'metric',metric(i,:),'Count',1);
+ //end
+endfunction