summaryrefslogtreecommitdiff
path: root/macros/detectBRISKFeatures.sci
diff options
context:
space:
mode:
authorshamikam2017-01-16 02:56:17 +0530
committershamikam2017-01-16 02:56:17 +0530
commita6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch)
treee806e966b06a53388fb300d89534354b222c2cad /macros/detectBRISKFeatures.sci
downloadFOSSEE_Image_Processing_Toolbox-master.tar.gz
FOSSEE_Image_Processing_Toolbox-master.tar.bz2
FOSSEE_Image_Processing_Toolbox-master.zip
First CommitHEADmaster
Diffstat (limited to 'macros/detectBRISKFeatures.sci')
-rw-r--r--macros/detectBRISKFeatures.sci47
1 files changed, 47 insertions, 0 deletions
diff --git a/macros/detectBRISKFeatures.sci b/macros/detectBRISKFeatures.sci
new file mode 100644
index 0000000..4449727
--- /dev/null
+++ b/macros/detectBRISKFeatures.sci
@@ -0,0 +1,47 @@
+function [varargout] = detectBRISKFeatures(image, varargin)
+// This function is used to detect BRISK(Binary Robust Invariant Scalable Keypoints) Features in a grayscale Image.
+//
+// Calling Sequence
+// result = detectBRISKFeatures(Image);
+// result = detectBRISKFeatures(Image, Name, Value, ...)
+//
+// Parameters
+// result: BRISKPoints struct which contains Location of KeyPoints, Orientation, Metric, SignOfLaplacian, Scale and Count of the features.
+// Image : Input image, specified as a A-by-N 2D grayscale.
+// MinContrast : (Optional) The minimum difference in intensity between a corner and its surrounding region. (Default: 0.2). The value must be between 0 and 1.
+// NumOctaves : (Optional)The number of Octaves that the detector uses. (Default - 3) The value must be an integer scalar in between 1 and 4.
+// MinQuality : (Optional) This specifies the minimum quality accepted for corners. (Default - 0.1) The value must be between 0 and 1.
+// ROI : (Optional) Region Of Interest. This is taken as a vector [u v width height]. When specified, the function detects the key points within region of area width*height with u and v being the top left corner coordinates.
+//
+// Description
+// This function returns the BRISK features detected in a 2D grayscale image.
+//
+// Examples
+// image = imread('sample.jpg');
+// results = detectBRISKFeatures(image);
+//
+// Authors
+// Shashank Shekhar
+
+ image_list = mattolist(image);
+ [ lhs, rhs ] = argn(0)
+ if rhs > 9 then
+ error(msprintf("Too many input arguments"))
+ end
+ if lhs > 1 then
+ error(msprintf("Too many output arguments"))
+ end
+ select rhs
+ case 1 then
+ [a b c d e]= ocv_detectBRISKFeatures(image_list)
+ case 3 then
+ [a b c d e]= ocv_detectBRISKFeatures(image_list, varargin(1), varargin(2))
+ case 5 then
+ [a b c d e]= ocv_detectBRISKFeatures(image_list, varargin(1), varargin(2), varargin(3), varargin(4))
+ case 7 then
+ [a b c d e]= ocv_detectBRISKFeatures(image_list, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5), varargin(6))
+ case 9 then
+ [a b c d e]= ocv_detectBRISKFeatures(image_list, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5), varargin(6), varargin(7), varargin(8))
+ end
+ varargout(1) = struct('Keypoints', a, 'Orientation', b, 'Metric', c ,'Scale', d, 'Count', e);
+endfunction