diff options
Diffstat (limited to 'board/xilinx/xilinx_enet/xemac_intr.c')
-rwxr-xr-x | board/xilinx/xilinx_enet/xemac_intr.c | 402 |
1 files changed, 402 insertions, 0 deletions
diff --git a/board/xilinx/xilinx_enet/xemac_intr.c b/board/xilinx/xilinx_enet/xemac_intr.c new file mode 100755 index 0000000..b9a2621 --- /dev/null +++ b/board/xilinx/xilinx_enet/xemac_intr.c @@ -0,0 +1,402 @@ +/****************************************************************************** +* +* Author: Xilinx, Inc. +* +* +* This program is free software; you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by the +* Free Software Foundation; either version 2 of the License, or (at your +* option) any later version. +* +* +* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A +* COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS +* ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD, +* XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE +* FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING +* ANY THIRD PARTY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION. +* XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO +* THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY +* WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM +* CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND +* FITNESS FOR A PARTICULAR PURPOSE. +* +* +* Xilinx hardware products are not intended for use in life support +* appliances, devices, or systems. Use in such applications is +* expressly prohibited. +* +* +* (c) Copyright 2002-2004 Xilinx Inc. +* All rights reserved. +* +* +* You should have received a copy of the GNU General Public License along +* with this program; if not, write to the Free Software Foundation, Inc., +* 675 Mass Ave, Cambridge, MA 02139, USA. +* +******************************************************************************/ +/*****************************************************************************/ +/** +* +* @file xemac_intr.c +* +* This file contains general interrupt-related functions of the XEmac driver. +* +* <pre> +* MODIFICATION HISTORY: +* +* Ver Who Date Changes +* ----- ---- -------- ----------------------------------------------- +* 1.00a rpm 07/31/01 First release +* 1.00b rpm 02/20/02 Repartitioned files and functions +* 1.00c rpm 12/05/02 New version includes support for simple DMA +* 1.00c rpm 03/31/03 Added comment to indicate that no Receive Length FIFO +* overrun interrupts occur in v1.00l and later of the EMAC +* device. This avoids the need to reset the device on +* receive overruns. +* </pre> +* +******************************************************************************/ + +/***************************** Include Files *********************************/ + +#include "xbasic_types.h" +#include "xemac_i.h" +#include "xio.h" +#include "xipif_v1_23_b.h" /* Uses v1.23b of the IPIF */ + +/************************** Constant Definitions *****************************/ + +/**************************** Type Definitions *******************************/ + +/***************** Macros (Inline Functions) Definitions *********************/ + +/************************** Variable Definitions *****************************/ + +/************************** Function Prototypes ******************************/ + +/*****************************************************************************/ +/** +* +* Set the callback function for handling asynchronous errors. The upper layer +* software should call this function during initialization. +* +* The error callback is invoked by the driver within interrupt context, so it +* needs to do its job quickly. If there are potentially slow operations within +* the callback, these should be done at task-level. +* +* The Xilinx errors that must be handled by the callback are: +* - XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is +* typically a bus error or bus timeout. The handler must reset and +* re-configure the device. +* - XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a +* deadlock condition in the packet FIFO. The handler must reset and +* re-configure the device. +* - XST_RESET_ERROR indicates an unrecoverable MAC error occurred, usually an +* overrun or underrun. The handler must reset and re-configure the device. +* - XST_DMA_SG_NO_LIST indicates an attempt was made to access a scatter-gather +* DMA list that has not yet been created. +* - XST_DMA_SG_LIST_EMPTY indicates the driver tried to get a descriptor from +* the receive descriptor list, but the list was empty. +* +* @param InstancePtr is a pointer to the XEmac instance to be worked on. +* @param CallBackRef is a reference pointer to be passed back to the adapter in +* the callback. This helps the adapter correlate the callback to a +* particular driver. +* @param FuncPtr is the pointer to the callback function. +* +* @return +* +* None. +* +* @note +* +* None. +* +******************************************************************************/ +void +XEmac_SetErrorHandler(XEmac * InstancePtr, void *CallBackRef, + XEmac_ErrorHandler FuncPtr) +{ + XASSERT_VOID(InstancePtr != NULL); + XASSERT_VOID(FuncPtr != NULL); + XASSERT_VOID(InstancePtr->IsReady == XCOMPONENT_IS_READY); + + InstancePtr->ErrorHandler = FuncPtr; + InstancePtr->ErrorRef = CallBackRef; +} + +/****************************************************************************/ +/* +* +* Check the interrupt status bits of the Ethernet MAC for errors. Errors +* currently handled are: +* - Receive length FIFO overrun. Indicates data was lost due to the receive +* length FIFO becoming full during the reception of a packet. Only a device +* reset clears this condition. +* - Receive length FIFO underrun. An attempt to read an empty FIFO. Only a +* device reset clears this condition. +* - Transmit status FIFO overrun. Indicates data was lost due to the transmit +* status FIFO becoming full following the transmission of a packet. Only a +* device reset clears this condition. +* - Transmit status FIFO underrun. An attempt to read an empty FIFO. Only a +* device reset clears this condition. +* - Transmit length FIFO overrun. Indicates data was lost due to the transmit +* length FIFO becoming full following the transmission of a packet. Only a +* device reset clears this condition. +* - Transmit length FIFO underrun. An attempt to read an empty FIFO. Only a +* device reset clears this condition. +* - Receive data FIFO overrun. Indicates data was lost due to the receive data +* FIFO becoming full during the reception of a packet. +* - Receive data errors: +* - Receive missed frame error. Valid data was lost by the MAC. +* - Receive collision error. Data was lost by the MAC due to a collision. +* - Receive FCS error. Data was dicarded by the MAC due to FCS error. +* - Receive length field error. Data was dicarded by the MAC due to an invalid +* length field in the packet. +* - Receive short error. Data was dicarded by the MAC because a packet was +* shorter than allowed. +* - Receive long error. Data was dicarded by the MAC because a packet was +* longer than allowed. +* - Receive alignment error. Data was truncated by the MAC because its length +* was not byte-aligned. +* +* @param InstancePtr is a pointer to the XEmac instance to be worked on. +* @param IntrStatus is the contents of the interrupt status register to be checked +* +* @return +* +* None. +* +* @note +* +* This function is intended for internal use only. +* +******************************************************************************/ +void +XEmac_CheckEmacError(XEmac * InstancePtr, u32 IntrStatus) +{ + u32 ResetError = FALSE; + + /* + * First check for receive fifo overrun/underrun errors. Most require a + * reset by the user to clear, but the data FIFO overrun error does not. + */ + if (IntrStatus & XEM_EIR_RECV_DFIFO_OVER_MASK) { + InstancePtr->Stats.RecvOverrunErrors++; + InstancePtr->Stats.FifoErrors++; + } + + if (IntrStatus & XEM_EIR_RECV_LFIFO_OVER_MASK) { + /* + * Receive Length FIFO overrun interrupts no longer occur in v1.00l + * and later of the EMAC device. Frames are just dropped by the EMAC + * if the length FIFO is full. The user would notice the Receive Missed + * Frame count incrementing without any other errors being reported. + * This code is left here for backward compatibility with v1.00k and + * older EMAC devices. + */ + InstancePtr->Stats.RecvOverrunErrors++; + InstancePtr->Stats.FifoErrors++; + ResetError = TRUE; /* requires a reset */ + } + + if (IntrStatus & XEM_EIR_RECV_LFIFO_UNDER_MASK) { + InstancePtr->Stats.RecvUnderrunErrors++; + InstancePtr->Stats.FifoErrors++; + ResetError = TRUE; /* requires a reset */ + } + + /* + * Now check for general receive errors. Get the latest count where + * available, otherwise just bump the statistic so we know the interrupt + * occurred. + */ + if (IntrStatus & XEM_EIR_RECV_ERROR_MASK) { + if (IntrStatus & XEM_EIR_RECV_MISSED_FRAME_MASK) { + /* + * Caused by length FIFO or data FIFO overruns on receive side + */ + InstancePtr->Stats.RecvMissedFrameErrors = + XIo_In32(InstancePtr->BaseAddress + + XEM_RMFC_OFFSET); + } + + if (IntrStatus & XEM_EIR_RECV_COLLISION_MASK) { + InstancePtr->Stats.RecvCollisionErrors = + XIo_In32(InstancePtr->BaseAddress + XEM_RCC_OFFSET); + } + + if (IntrStatus & XEM_EIR_RECV_FCS_ERROR_MASK) { + InstancePtr->Stats.RecvFcsErrors = + XIo_In32(InstancePtr->BaseAddress + + XEM_RFCSEC_OFFSET); + } + + if (IntrStatus & XEM_EIR_RECV_LEN_ERROR_MASK) { + InstancePtr->Stats.RecvLengthFieldErrors++; + } + + if (IntrStatus & XEM_EIR_RECV_SHORT_ERROR_MASK) { + InstancePtr->Stats.RecvShortErrors++; + } + + if (IntrStatus & XEM_EIR_RECV_LONG_ERROR_MASK) { + InstancePtr->Stats.RecvLongErrors++; + } + + if (IntrStatus & XEM_EIR_RECV_ALIGN_ERROR_MASK) { + InstancePtr->Stats.RecvAlignmentErrors = + XIo_In32(InstancePtr->BaseAddress + + XEM_RAEC_OFFSET); + } + + /* + * Bump recv interrupts stats only if not scatter-gather DMA (this + * stat gets bumped elsewhere in that case) + */ + if (!XEmac_mIsSgDma(InstancePtr)) { + InstancePtr->Stats.RecvInterrupts++; /* TODO: double bump? */ + } + + } + + /* + * Check for transmit errors. These apply to both DMA and non-DMA modes + * of operation. The entire device should be reset after overruns or + * underruns. + */ + if (IntrStatus & (XEM_EIR_XMIT_SFIFO_OVER_MASK | + XEM_EIR_XMIT_LFIFO_OVER_MASK)) { + InstancePtr->Stats.XmitOverrunErrors++; + InstancePtr->Stats.FifoErrors++; + ResetError = TRUE; + } + + if (IntrStatus & (XEM_EIR_XMIT_SFIFO_UNDER_MASK | + XEM_EIR_XMIT_LFIFO_UNDER_MASK)) { + InstancePtr->Stats.XmitUnderrunErrors++; + InstancePtr->Stats.FifoErrors++; + ResetError = TRUE; + } + + if (ResetError) { + /* + * If a reset error occurred, disable the EMAC interrupts since the + * reset-causing interrupt(s) is latched in the EMAC - meaning it will + * keep occurring until the device is reset. In order to give the higher + * layer software time to reset the device, we have to disable the + * overrun/underrun interrupts until that happens. We trust that the + * higher layer resets the device. We are able to get away with disabling + * all EMAC interrupts since the only interrupts it generates are for + * error conditions, and we don't care about any more errors right now. + */ + XIIF_V123B_WRITE_IIER(InstancePtr->BaseAddress, 0); + + /* + * Invoke the error handler callback, which should result in a reset + * of the device by the upper layer software. + */ + InstancePtr->ErrorHandler(InstancePtr->ErrorRef, + XST_RESET_ERROR); + } +} + +/*****************************************************************************/ +/* +* +* Check the receive packet FIFO for errors. FIFO error interrupts are: +* - Deadlock. See the XPacketFifo component for a description of deadlock on a +* FIFO. +* +* @param InstancePtr is a pointer to the XEmac instance to be worked on. +* +* @return +* +* Although the function returns void, it can return an asynchronous error to the +* application through the error handler. It can return XST_FIFO_ERROR if a FIFO +* error occurred. +* +* @note +* +* This function is intended for internal use only. +* +******************************************************************************/ +void +XEmac_CheckFifoRecvError(XEmac * InstancePtr) +{ + /* + * Although the deadlock is currently the only interrupt from a packet + * FIFO, make sure it is deadlocked before taking action. There is no + * need to clear this interrupt since it requires a reset of the device. + */ + if (XPF_V100B_IS_DEADLOCKED(&InstancePtr->RecvFifo)) { + u32 IntrEnable; + + InstancePtr->Stats.FifoErrors++; + + /* + * Invoke the error callback function, which should result in a reset + * of the device by the upper layer software. We first need to disable + * the FIFO interrupt, since otherwise the upper layer thread that + * handles the reset may never run because this interrupt condition + * doesn't go away until a reset occurs (there is no way to ack it). + */ + IntrEnable = XIIF_V123B_READ_DIER(InstancePtr->BaseAddress); + XIIF_V123B_WRITE_DIER(InstancePtr->BaseAddress, + IntrEnable & ~XEM_IPIF_RECV_FIFO_MASK); + + InstancePtr->ErrorHandler(InstancePtr->ErrorRef, + XST_FIFO_ERROR); + } +} + +/*****************************************************************************/ +/* +* +* Check the send packet FIFO for errors. FIFO error interrupts are: +* - Deadlock. See the XPacketFifo component for a description of deadlock on a +* FIFO. +* +* @param InstancePtr is a pointer to the XEmac instance to be worked on. +* +* @return +* +* Although the function returns void, it can return an asynchronous error to the +* application through the error handler. It can return XST_FIFO_ERROR if a FIFO +* error occurred. +* +* @note +* +* This function is intended for internal use only. +* +******************************************************************************/ +void +XEmac_CheckFifoSendError(XEmac * InstancePtr) +{ + /* + * Although the deadlock is currently the only interrupt from a packet + * FIFO, make sure it is deadlocked before taking action. There is no + * need to clear this interrupt since it requires a reset of the device. + */ + if (XPF_V100B_IS_DEADLOCKED(&InstancePtr->SendFifo)) { + u32 IntrEnable; + + InstancePtr->Stats.FifoErrors++; + + /* + * Invoke the error callback function, which should result in a reset + * of the device by the upper layer software. We first need to disable + * the FIFO interrupt, since otherwise the upper layer thread that + * handles the reset may never run because this interrupt condition + * doesn't go away until a reset occurs (there is no way to ack it). + */ + IntrEnable = XIIF_V123B_READ_DIER(InstancePtr->BaseAddress); + XIIF_V123B_WRITE_DIER(InstancePtr->BaseAddress, + IntrEnable & ~XEM_IPIF_SEND_FIFO_MASK); + + InstancePtr->ErrorHandler(InstancePtr->ErrorRef, + XST_FIFO_ERROR); + } +} |