summaryrefslogtreecommitdiff
path: root/drivers/net/wireless/bcmdhd.1.28.23.x.cn_ap6330/aiutils.c
blob: 904d4c3ad55d3fad6cf8778acee65034591ed5e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/*
 * Misc utility routines for accessing chip-specific features
 * of the SiliconBackplane-based Broadcom chips.
 *
 * Copyright (C) 1999-2012, Broadcom Corporation
 * 
 *      Unless you and Broadcom execute a separate written software license
 * agreement governing use of this software, this software is licensed to you
 * under the terms of the GNU General Public License version 2 (the "GPL"),
 * available at http://www.broadcom.com/licenses/GPLv2.php, with the
 * following added to such license:
 * 
 *      As a special exception, the copyright holders of this software give you
 * permission to link this software with independent modules, and to copy and
 * distribute the resulting executable under terms of your choice, provided that
 * you also meet, for each linked independent module, the terms and conditions of
 * the license of that module.  An independent module is a module which is not
 * derived from this software.  The special exception does not apply to any
 * modifications of the software.
 * 
 *      Notwithstanding the above, under no circumstances may you combine this
 * software in any way with any other Broadcom software provided under a license
 * other than the GPL, without Broadcom's express prior written consent.
 *
 * $Id: aiutils.c 347614 2012-07-27 10:24:51Z $
 */
#include <bcm_cfg.h>
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <siutils.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <pcicfg.h>

#include "siutils_priv.h"

#define BCM47162_DMP() (0)
#define BCM5357_DMP() (0)
#define remap_coreid(sih, coreid)	(coreid)
#define remap_corerev(sih, corerev)	(corerev)

/* EROM parsing */

static uint32
get_erom_ent(si_t *sih, uint32 **eromptr, uint32 mask, uint32 match)
{
	uint32 ent;
	uint inv = 0, nom = 0;

	while (TRUE) {
		ent = R_REG(si_osh(sih), *eromptr);
		(*eromptr)++;

		if (mask == 0)
			break;

		if ((ent & ER_VALID) == 0) {
			inv++;
			continue;
		}

		if (ent == (ER_END | ER_VALID))
			break;

		if ((ent & mask) == match)
			break;

		nom++;
	}

	SI_VMSG(("%s: Returning ent 0x%08x\n", __FUNCTION__, ent));
	if (inv + nom) {
		SI_VMSG(("  after %d invalid and %d non-matching entries\n", inv, nom));
	}
	return ent;
}

static uint32
get_asd(si_t *sih, uint32 **eromptr, uint sp, uint ad, uint st, uint32 *addrl, uint32 *addrh,
        uint32 *sizel, uint32 *sizeh)
{
	uint32 asd, sz, szd;

	asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID);
	if (((asd & ER_TAG1) != ER_ADD) ||
	    (((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) ||
	    ((asd & AD_ST_MASK) != st)) {
		/* This is not what we want, "push" it back */
		(*eromptr)--;
		return 0;
	}
	*addrl = asd & AD_ADDR_MASK;
	if (asd & AD_AG32)
		*addrh = get_erom_ent(sih, eromptr, 0, 0);
	else
		*addrh = 0;
	*sizeh = 0;
	sz = asd & AD_SZ_MASK;
	if (sz == AD_SZ_SZD) {
		szd = get_erom_ent(sih, eromptr, 0, 0);
		*sizel = szd & SD_SZ_MASK;
		if (szd & SD_SG32)
			*sizeh = get_erom_ent(sih, eromptr, 0, 0);
	} else
		*sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT);

	SI_VMSG(("  SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n",
	        sp, ad, st, *sizeh, *sizel, *addrh, *addrl));

	return asd;
}

static void
ai_hwfixup(si_info_t *sii)
{
}


/* parse the enumeration rom to identify all cores */
void
ai_scan(si_t *sih, void *regs, uint devid)
{
	si_info_t *sii = SI_INFO(sih);
	chipcregs_t *cc = (chipcregs_t *)regs;
	uint32 erombase, *eromptr, *eromlim;

	erombase = R_REG(sii->osh, &cc->eromptr);

	switch (BUSTYPE(sih->bustype)) {
	case SI_BUS:
		eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
		break;

	case PCI_BUS:
		/* Set wrappers address */
		sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE);

		/* Now point the window at the erom */
		OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, erombase);
		eromptr = regs;
		break;

	case SPI_BUS:
	case SDIO_BUS:
		eromptr = (uint32 *)(uintptr)erombase;
		break;

	case PCMCIA_BUS:
	default:
		SI_ERROR(("Don't know how to do AXI enumertion on bus %d\n", sih->bustype));
		ASSERT(0);
		return;
	}
	eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));

	SI_VMSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%p, eromlim = 0x%p\n",
	         regs, erombase, eromptr, eromlim));
	while (eromptr < eromlim) {
		uint32 cia, cib, cid, mfg, crev, nmw, nsw, nmp, nsp;
		uint32 mpd, asd, addrl, addrh, sizel, sizeh;
		uint i, j, idx;
		bool br;

		br = FALSE;

		/* Grok a component */
		cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI);
		if (cia == (ER_END | ER_VALID)) {
			SI_VMSG(("Found END of erom after %d cores\n", sii->numcores));
			ai_hwfixup(sii);
			return;
		}

		cib = get_erom_ent(sih, &eromptr, 0, 0);

		if ((cib & ER_TAG) != ER_CI) {
			SI_ERROR(("CIA not followed by CIB\n"));
			goto error;
		}

		cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT;
		mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT;
		crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
		nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT;
		nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT;
		nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
		nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;

#ifdef BCMDBG_SI
		SI_VMSG(("Found component 0x%04x/0x%04x rev %d at erom addr 0x%p, with nmw = %d, "
		         "nsw = %d, nmp = %d & nsp = %d\n",
		         mfg, cid, crev, eromptr - 1, nmw, nsw, nmp, nsp));
#else
		BCM_REFERENCE(crev);
#endif

		if (((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) || (nsp == 0))
			continue;
		if ((nmw + nsw == 0)) {
			/* A component which is not a core */
			if (cid == OOB_ROUTER_CORE_ID) {
				asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE,
					&addrl, &addrh, &sizel, &sizeh);
				if (asd != 0) {
					sii->oob_router = addrl;
				}
			}
			if (cid != GMAC_COMMON_4706_CORE_ID)
				continue;
		}

		idx = sii->numcores;

		sii->cia[idx] = cia;
		sii->cib[idx] = cib;
		sii->coreid[idx] = remap_coreid(sih, cid);

		for (i = 0; i < nmp; i++) {
			mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
			if ((mpd & ER_TAG) != ER_MP) {
				SI_ERROR(("Not enough MP entries for component 0x%x\n", cid));
				goto error;
			}
			SI_VMSG(("  Master port %d, mp: %d id: %d\n", i,
			         (mpd & MPD_MP_MASK) >> MPD_MP_SHIFT,
			         (mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT));
		}

		/* First Slave Address Descriptor should be port 0:
		 * the main register space for the core
		 */
		asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
		if (asd == 0) {
			do {
			/* Try again to see if it is a bridge */
			asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
			              &sizel, &sizeh);
			if (asd != 0)
				br = TRUE;
			else {
					if (br == TRUE) {
						break;
					}
					else if ((addrh != 0) || (sizeh != 0) ||
						(sizel != SI_CORE_SIZE)) {
						SI_ERROR(("addrh = 0x%x\t sizeh = 0x%x\t size1 ="
							"0x%x\n", addrh, sizeh, sizel));
						SI_ERROR(("First Slave ASD for"
							"core 0x%04x malformed "
					          "(0x%08x)\n", cid, asd));
					goto error;
				}
		}
			} while (1);
		}
		sii->coresba[idx] = addrl;
		sii->coresba_size[idx] = sizel;
		/* Get any more ASDs in port 0 */
		j = 1;
		do {
			asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
			              &sizel, &sizeh);
			if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) {
				sii->coresba2[idx] = addrl;
				sii->coresba2_size[idx] = sizel;
			}
			j++;
		} while (asd != 0);

		/* Go through the ASDs for other slave ports */
		for (i = 1; i < nsp; i++) {
			j = 0;
			do {
				asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
				              &sizel, &sizeh);

				if (asd == 0)
					break;
				j++;
			} while (1);
			if (j == 0) {
				SI_ERROR((" SP %d has no address descriptors\n", i));
				goto error;
			}
		}

		/* Now get master wrappers */
		for (i = 0; i < nmw; i++) {
			asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh,
			              &sizel, &sizeh);
			if (asd == 0) {
				SI_ERROR(("Missing descriptor for MW %d\n", i));
				goto error;
			}
			if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
				SI_ERROR(("Master wrapper %d is not 4KB\n", i));
				goto error;
			}
			if (i == 0)
				sii->wrapba[idx] = addrl;
		}

		/* And finally slave wrappers */
		for (i = 0; i < nsw; i++) {
			uint fwp = (nsp == 1) ? 0 : 1;
			asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh,
			              &sizel, &sizeh);
			if (asd == 0) {
				SI_ERROR(("Missing descriptor for SW %d\n", i));
				goto error;
			}
			if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
				SI_ERROR(("Slave wrapper %d is not 4KB\n", i));
				goto error;
			}
			if ((nmw == 0) && (i == 0))
				sii->wrapba[idx] = addrl;
		}


		/* Don't record bridges */
		if (br)
			continue;

		/* Done with core */
		sii->numcores++;
	}

	SI_ERROR(("Reached end of erom without finding END"));

error:
	sii->numcores = 0;
	return;
}

/* This function changes the logical "focus" to the indicated core.
 * Return the current core's virtual address.
 */
void *
ai_setcoreidx(si_t *sih, uint coreidx)
{
	si_info_t *sii = SI_INFO(sih);
	uint32 addr, wrap;
	void *regs;

	if (coreidx >= MIN(sii->numcores, SI_MAXCORES))
		return (NULL);

	addr = sii->coresba[coreidx];
	wrap = sii->wrapba[coreidx];

	/*
	 * If the user has provided an interrupt mask enabled function,
	 * then assert interrupts are disabled before switching the core.
	 */
	ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg));

	switch (BUSTYPE(sih->bustype)) {
	case SI_BUS:
		/* map new one */
		if (!sii->regs[coreidx]) {
			sii->regs[coreidx] = REG_MAP(addr, SI_CORE_SIZE);
			ASSERT(GOODREGS(sii->regs[coreidx]));
		}
		sii->curmap = regs = sii->regs[coreidx];
		if (!sii->wrappers[coreidx]) {
			sii->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE);
			ASSERT(GOODREGS(sii->wrappers[coreidx]));
		}
		sii->curwrap = sii->wrappers[coreidx];
		break;


	case SPI_BUS:
	case SDIO_BUS:
		sii->curmap = regs = (void *)((uintptr)addr);
		sii->curwrap = (void *)((uintptr)wrap);
		break;

	case PCMCIA_BUS:
	default:
		ASSERT(0);
		regs = NULL;
		break;
	}

	sii->curmap = regs;
	sii->curidx = coreidx;

	return regs;
}

void
ai_coreaddrspaceX(si_t *sih, uint asidx, uint32 *addr, uint32 *size)
{
	si_info_t *sii = SI_INFO(sih);
	chipcregs_t *cc = NULL;
	uint32 erombase, *eromptr, *eromlim;
	uint i, j, cidx;
	uint32 cia, cib, nmp, nsp;
	uint32 asd, addrl, addrh, sizel, sizeh;

	for (i = 0; i < sii->numcores; i++) {
		if (sii->coreid[i] == CC_CORE_ID) {
			cc = (chipcregs_t *)sii->regs[i];
			break;
		}
	}
	if (cc == NULL)
		goto error;

	erombase = R_REG(sii->osh, &cc->eromptr);
	eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
	eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));

	cidx = sii->curidx;
	cia = sii->cia[cidx];
	cib = sii->cib[cidx];

	nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
	nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;

	/* scan for cores */
	while (eromptr < eromlim) {
		if ((get_erom_ent(sih, &eromptr, ER_TAG, ER_CI) == cia) &&
			(get_erom_ent(sih, &eromptr, 0, 0) == cib)) {
			break;
		}
	}

	/* skip master ports */
	for (i = 0; i < nmp; i++)
		get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);

	/* Skip ASDs in port 0 */
	asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
	if (asd == 0) {
		/* Try again to see if it is a bridge */
		asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
		              &sizel, &sizeh);
	}

	j = 1;
	do {
		asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
		              &sizel, &sizeh);
		j++;
	} while (asd != 0);

	/* Go through the ASDs for other slave ports */
	for (i = 1; i < nsp; i++) {
		j = 0;
		do {
			asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
				&sizel, &sizeh);
			if (asd == 0)
				break;

			if (!asidx--) {
				*addr = addrl;
				*size = sizel;
				return;
			}
			j++;
		} while (1);

		if (j == 0) {
			SI_ERROR((" SP %d has no address descriptors\n", i));
			break;
		}
	}

error:
	*size = 0;
	return;
}

/* Return the number of address spaces in current core */
int
ai_numaddrspaces(si_t *sih)
{
	return 2;
}

/* Return the address of the nth address space in the current core */
uint32
ai_addrspace(si_t *sih, uint asidx)
{
	si_info_t *sii;
	uint cidx;

	sii = SI_INFO(sih);
	cidx = sii->curidx;

	if (asidx == 0)
		return sii->coresba[cidx];
	else if (asidx == 1)
		return sii->coresba2[cidx];
	else {
		SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n",
		          __FUNCTION__, asidx));
		return 0;
	}
}

/* Return the size of the nth address space in the current core */
uint32
ai_addrspacesize(si_t *sih, uint asidx)
{
	si_info_t *sii;
	uint cidx;

	sii = SI_INFO(sih);
	cidx = sii->curidx;

	if (asidx == 0)
		return sii->coresba_size[cidx];
	else if (asidx == 1)
		return sii->coresba2_size[cidx];
	else {
		SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n",
		          __FUNCTION__, asidx));
		return 0;
	}
}

uint
ai_flag(si_t *sih)
{
	si_info_t *sii;
	aidmp_t *ai;

	sii = SI_INFO(sih);
	if (BCM47162_DMP()) {
		SI_ERROR(("%s: Attempting to read MIPS DMP registers on 47162a0", __FUNCTION__));
		return sii->curidx;
	}
	if (BCM5357_DMP()) {
		SI_ERROR(("%s: Attempting to read USB20H DMP registers on 5357b0\n", __FUNCTION__));
		return sii->curidx;
	}
	ai = sii->curwrap;

	return (R_REG(sii->osh, &ai->oobselouta30) & 0x1f);
}

void
ai_setint(si_t *sih, int siflag)
{
}

uint
ai_wrap_reg(si_t *sih, uint32 offset, uint32 mask, uint32 val)
{
	si_info_t *sii = SI_INFO(sih);
	uint32 *map = (uint32 *) sii->curwrap;

	if (mask || val) {
		uint32 w = R_REG(sii->osh, map+(offset/4));
		w &= ~mask;
		w |= val;
		W_REG(sii->osh, map+(offset/4), val);
	}

	return (R_REG(sii->osh, map+(offset/4)));
}

uint
ai_corevendor(si_t *sih)
{
	si_info_t *sii;
	uint32 cia;

	sii = SI_INFO(sih);
	cia = sii->cia[sii->curidx];
	return ((cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT);
}

uint
ai_corerev(si_t *sih)
{
	si_info_t *sii;
	uint32 cib;

	sii = SI_INFO(sih);
	cib = sii->cib[sii->curidx];
	return remap_corerev(sih, (cib & CIB_REV_MASK) >> CIB_REV_SHIFT);
}

bool
ai_iscoreup(si_t *sih)
{
	si_info_t *sii;
	aidmp_t *ai;

	sii = SI_INFO(sih);
	ai = sii->curwrap;

	return (((R_REG(sii->osh, &ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) &&
	        ((R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) == 0));
}

/*
 * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
 * switch back to the original core, and return the new value.
 *
 * When using the silicon backplane, no fiddling with interrupts or core switches is needed.
 *
 * Also, when using pci/pcie, we can optimize away the core switching for pci registers
 * and (on newer pci cores) chipcommon registers.
 */
uint
ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
	uint origidx = 0;
	uint32 *r = NULL;
	uint w;
	uint intr_val = 0;
	bool fast = FALSE;
	si_info_t *sii;

	sii = SI_INFO(sih);

	ASSERT(GOODIDX(coreidx));
	ASSERT(regoff < SI_CORE_SIZE);
	ASSERT((val & ~mask) == 0);

	if (coreidx >= SI_MAXCORES)
		return 0;

	if (BUSTYPE(sih->bustype) == SI_BUS) {
		/* If internal bus, we can always get at everything */
		fast = TRUE;
		/* map if does not exist */
		if (!sii->regs[coreidx]) {
			sii->regs[coreidx] = REG_MAP(sii->coresba[coreidx],
			                            SI_CORE_SIZE);
			ASSERT(GOODREGS(sii->regs[coreidx]));
		}
		r = (uint32 *)((uchar *)sii->regs[coreidx] + regoff);
	} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
		/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */

		if ((sii->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
			/* Chipc registers are mapped at 12KB */

			fast = TRUE;
			r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff);
		} else if (sii->pub.buscoreidx == coreidx) {
			/* pci registers are at either in the last 2KB of an 8KB window
			 * or, in pcie and pci rev 13 at 8KB
			 */
			fast = TRUE;
			if (SI_FAST(sii))
				r = (uint32 *)((char *)sii->curmap +
				               PCI_16KB0_PCIREGS_OFFSET + regoff);
			else
				r = (uint32 *)((char *)sii->curmap +
				               ((regoff >= SBCONFIGOFF) ?
				                PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
				               regoff);
		}
	}

	if (!fast) {
		INTR_OFF(sii, intr_val);

		/* save current core index */
		origidx = si_coreidx(&sii->pub);

		/* switch core */
		r = (uint32*) ((uchar*) ai_setcoreidx(&sii->pub, coreidx) + regoff);
	}
	ASSERT(r != NULL);

	/* mask and set */
	if (mask || val) {
		w = (R_REG(sii->osh, r) & ~mask) | val;
		W_REG(sii->osh, r, w);
	}

	/* readback */
	w = R_REG(sii->osh, r);

	if (!fast) {
		/* restore core index */
		if (origidx != coreidx)
			ai_setcoreidx(&sii->pub, origidx);

		INTR_RESTORE(sii, intr_val);
	}

	return (w);
}

void
ai_core_disable(si_t *sih, uint32 bits)
{
	si_info_t *sii;
	volatile uint32 dummy;
	uint32 status;
	aidmp_t *ai;

	sii = SI_INFO(sih);

	ASSERT(GOODREGS(sii->curwrap));
	ai = sii->curwrap;

	/* if core is already in reset, just return */
	if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET)
		return;

	/* ensure there are no pending backplane operations */
	SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);

	/* if pending backplane ops still, try waiting longer */
	if (status != 0) {
		/* 300usecs was sufficient to allow backplane ops to clear for big hammer */
		/* during driver load we may need more time */
		SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 10000);
		/* if still pending ops, continue on and try disable anyway */
		/* this is in big hammer path, so don't call wl_reinit in this case... */
	}

	W_REG(sii->osh, &ai->ioctrl, bits);
	dummy = R_REG(sii->osh, &ai->ioctrl);
	BCM_REFERENCE(dummy);
	OSL_DELAY(10);

	W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
	dummy = R_REG(sii->osh, &ai->resetctrl);
	BCM_REFERENCE(dummy);
	OSL_DELAY(1);
}

/* reset and re-enable a core
 * inputs:
 * bits - core specific bits that are set during and after reset sequence
 * resetbits - core specific bits that are set only during reset sequence
 */
void
ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
{
	si_info_t *sii;
	aidmp_t *ai;
	volatile uint32 dummy;

	sii = SI_INFO(sih);
	ASSERT(GOODREGS(sii->curwrap));
	ai = sii->curwrap;

	/*
	 * Must do the disable sequence first to work for arbitrary current core state.
	 */
	ai_core_disable(sih, (bits | resetbits));

	/*
	 * Now do the initialization sequence.
	 */
	W_REG(sii->osh, &ai->ioctrl, (bits | SICF_FGC | SICF_CLOCK_EN));
	dummy = R_REG(sii->osh, &ai->ioctrl);
	BCM_REFERENCE(dummy);

	W_REG(sii->osh, &ai->resetctrl, 0);
	dummy = R_REG(sii->osh, &ai->resetctrl);
	BCM_REFERENCE(dummy);
	OSL_DELAY(1);

	W_REG(sii->osh, &ai->ioctrl, (bits | SICF_CLOCK_EN));
	dummy = R_REG(sii->osh, &ai->ioctrl);
	BCM_REFERENCE(dummy);
	OSL_DELAY(1);
}

void
ai_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
{
	si_info_t *sii;
	aidmp_t *ai;
	uint32 w;

	sii = SI_INFO(sih);

	if (BCM47162_DMP()) {
		SI_ERROR(("%s: Accessing MIPS DMP register (ioctrl) on 47162a0",
		          __FUNCTION__));
		return;
	}
	if (BCM5357_DMP()) {
		SI_ERROR(("%s: Accessing USB20H DMP register (ioctrl) on 5357\n",
		          __FUNCTION__));
		return;
	}

	ASSERT(GOODREGS(sii->curwrap));
	ai = sii->curwrap;

	ASSERT((val & ~mask) == 0);

	if (mask || val) {
		w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
		W_REG(sii->osh, &ai->ioctrl, w);
	}
}

uint32
ai_core_cflags(si_t *sih, uint32 mask, uint32 val)
{
	si_info_t *sii;
	aidmp_t *ai;
	uint32 w;

	sii = SI_INFO(sih);
	if (BCM47162_DMP()) {
		SI_ERROR(("%s: Accessing MIPS DMP register (ioctrl) on 47162a0",
		          __FUNCTION__));
		return 0;
	}
	if (BCM5357_DMP()) {
		SI_ERROR(("%s: Accessing USB20H DMP register (ioctrl) on 5357\n",
		          __FUNCTION__));
		return 0;
	}

	ASSERT(GOODREGS(sii->curwrap));
	ai = sii->curwrap;

	ASSERT((val & ~mask) == 0);

	if (mask || val) {
		w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
		W_REG(sii->osh, &ai->ioctrl, w);
	}

	return R_REG(sii->osh, &ai->ioctrl);
}

uint32
ai_core_sflags(si_t *sih, uint32 mask, uint32 val)
{
	si_info_t *sii;
	aidmp_t *ai;
	uint32 w;

	sii = SI_INFO(sih);
	if (BCM47162_DMP()) {
		SI_ERROR(("%s: Accessing MIPS DMP register (iostatus) on 47162a0",
		          __FUNCTION__));
		return 0;
	}
	if (BCM5357_DMP()) {
		SI_ERROR(("%s: Accessing USB20H DMP register (iostatus) on 5357\n",
		          __FUNCTION__));
		return 0;
	}

	ASSERT(GOODREGS(sii->curwrap));
	ai = sii->curwrap;

	ASSERT((val & ~mask) == 0);
	ASSERT((mask & ~SISF_CORE_BITS) == 0);

	if (mask || val) {
		w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val);
		W_REG(sii->osh, &ai->iostatus, w);
	}

	return R_REG(sii->osh, &ai->iostatus);
}