summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/arch/x86/mm/pat_rbtree.c
blob: 8acaddd0fb21173bd46f7aceddfab8d3d0051ba8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
 * Handle caching attributes in page tables (PAT)
 *
 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 *          Suresh B Siddha <suresh.b.siddha@intel.com>
 *
 * Interval tree (augmented rbtree) used to store the PAT memory type
 * reservations.
 */

#include <linux/seq_file.h>
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/gfp.h>

#include <asm/pgtable.h>
#include <asm/pat.h>

#include "pat_internal.h"

/*
 * The memtype tree keeps track of memory type for specific
 * physical memory areas. Without proper tracking, conflicting memory
 * types in different mappings can cause CPU cache corruption.
 *
 * The tree is an interval tree (augmented rbtree) with tree ordered
 * on starting address. Tree can contain multiple entries for
 * different regions which overlap. All the aliases have the same
 * cache attributes of course.
 *
 * memtype_lock protects the rbtree.
 */

static struct rb_root memtype_rbroot = RB_ROOT;

static int is_node_overlap(struct memtype *node, u64 start, u64 end)
{
	if (node->start >= end || node->end <= start)
		return 0;

	return 1;
}

static u64 get_subtree_max_end(struct rb_node *node)
{
	u64 ret = 0;
	if (node) {
		struct memtype *data = container_of(node, struct memtype, rb);
		ret = data->subtree_max_end;
	}
	return ret;
}

/* Update 'subtree_max_end' for a node, based on node and its children */
static void memtype_rb_augment_cb(struct rb_node *node, void *__unused)
{
	struct memtype *data;
	u64 max_end, child_max_end;

	if (!node)
		return;

	data = container_of(node, struct memtype, rb);
	max_end = data->end;

	child_max_end = get_subtree_max_end(node->rb_right);
	if (child_max_end > max_end)
		max_end = child_max_end;

	child_max_end = get_subtree_max_end(node->rb_left);
	if (child_max_end > max_end)
		max_end = child_max_end;

	data->subtree_max_end = max_end;
}

/* Find the first (lowest start addr) overlapping range from rb tree */
static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
				u64 start, u64 end)
{
	struct rb_node *node = root->rb_node;
	struct memtype *last_lower = NULL;

	while (node) {
		struct memtype *data = container_of(node, struct memtype, rb);

		if (get_subtree_max_end(node->rb_left) > start) {
			/* Lowest overlap if any must be on left side */
			node = node->rb_left;
		} else if (is_node_overlap(data, start, end)) {
			last_lower = data;
			break;
		} else if (start >= data->start) {
			/* Lowest overlap if any must be on right side */
			node = node->rb_right;
		} else {
			break;
		}
	}
	return last_lower; /* Returns NULL if there is no overlap */
}

static struct memtype *memtype_rb_exact_match(struct rb_root *root,
				u64 start, u64 end)
{
	struct memtype *match;

	match = memtype_rb_lowest_match(root, start, end);
	while (match != NULL && match->start < end) {
		struct rb_node *node;

		if (match->start == start && match->end == end)
			return match;

		node = rb_next(&match->rb);
		if (node)
			match = container_of(node, struct memtype, rb);
		else
			match = NULL;
	}

	return NULL; /* Returns NULL if there is no exact match */
}

static int memtype_rb_check_conflict(struct rb_root *root,
				u64 start, u64 end,
				unsigned long reqtype, unsigned long *newtype)
{
	struct rb_node *node;
	struct memtype *match;
	int found_type = reqtype;

	match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
	if (match == NULL)
		goto success;

	if (match->type != found_type && newtype == NULL)
		goto failure;

	dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
	found_type = match->type;

	node = rb_next(&match->rb);
	while (node) {
		match = container_of(node, struct memtype, rb);

		if (match->start >= end) /* Checked all possible matches */
			goto success;

		if (is_node_overlap(match, start, end) &&
		    match->type != found_type) {
			goto failure;
		}

		node = rb_next(&match->rb);
	}
success:
	if (newtype)
		*newtype = found_type;

	return 0;

failure:
	printk(KERN_INFO "%s:%d conflicting memory types "
		"%Lx-%Lx %s<->%s\n", current->comm, current->pid, start,
		end, cattr_name(found_type), cattr_name(match->type));
	return -EBUSY;
}

static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
{
	struct rb_node **node = &(root->rb_node);
	struct rb_node *parent = NULL;

	while (*node) {
		struct memtype *data = container_of(*node, struct memtype, rb);

		parent = *node;
		if (newdata->start <= data->start)
			node = &((*node)->rb_left);
		else if (newdata->start > data->start)
			node = &((*node)->rb_right);
	}

	rb_link_node(&newdata->rb, parent, node);
	rb_insert_color(&newdata->rb, root);
	rb_augment_insert(&newdata->rb, memtype_rb_augment_cb, NULL);
}

int rbt_memtype_check_insert(struct memtype *new, unsigned long *ret_type)
{
	int err = 0;

	err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
						new->type, ret_type);

	if (!err) {
		if (ret_type)
			new->type = *ret_type;

		new->subtree_max_end = new->end;
		memtype_rb_insert(&memtype_rbroot, new);
	}
	return err;
}

struct memtype *rbt_memtype_erase(u64 start, u64 end)
{
	struct rb_node *deepest;
	struct memtype *data;

	data = memtype_rb_exact_match(&memtype_rbroot, start, end);
	if (!data)
		goto out;

	deepest = rb_augment_erase_begin(&data->rb);
	rb_erase(&data->rb, &memtype_rbroot);
	rb_augment_erase_end(deepest, memtype_rb_augment_cb, NULL);
out:
	return data;
}

struct memtype *rbt_memtype_lookup(u64 addr)
{
	struct memtype *data;
	data = memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
	return data;
}

#if defined(CONFIG_DEBUG_FS)
int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
{
	struct rb_node *node;
	int i = 1;

	node = rb_first(&memtype_rbroot);
	while (node && pos != i) {
		node = rb_next(node);
		i++;
	}

	if (node) { /* pos == i */
		struct memtype *this = container_of(node, struct memtype, rb);
		*out = *this;
		return 0;
	} else {
		return 1;
	}
}
#endif