summaryrefslogtreecommitdiff
path: root/drivers/mmc/core/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mmc/core/core.c')
-rw-r--r--drivers/mmc/core/core.c2958
1 files changed, 2958 insertions, 0 deletions
diff --git a/drivers/mmc/core/core.c b/drivers/mmc/core/core.c
new file mode 100644
index 00000000..7dc7edd5
--- /dev/null
+++ b/drivers/mmc/core/core.c
@@ -0,0 +1,2958 @@
+/*
+ * linux/drivers/mmc/core/core.c
+ *
+ * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
+ * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
+ * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
+ * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/completion.h>
+#include <linux/device.h>
+#include <linux/delay.h>
+#include <linux/pagemap.h>
+#include <linux/err.h>
+#include <linux/leds.h>
+#include <linux/scatterlist.h>
+#include <linux/log2.h>
+#include <linux/regulator/consumer.h>
+#include <linux/pm_runtime.h>
+#include <linux/suspend.h>
+#include <linux/fault-inject.h>
+#include <linux/random.h>
+#include <linux/wakelock.h>
+
+#include <linux/mmc/card.h>
+#include <linux/mmc/host.h>
+#include <linux/mmc/mmc.h>
+#include <linux/mmc/sd.h>
+
+#include "core.h"
+#include "bus.h"
+#include "host.h"
+#include "sdio_bus.h"
+
+#include "mmc_ops.h"
+#include "sd_ops.h"
+#include "sdio_ops.h"
+#include "../host/mmc_atsmb.h"
+#include <mach/hardware.h>
+
+
+static struct workqueue_struct *workqueue;
+
+#if 0
+#define DBG(x...) printk(KERN_ALERT x)
+#else
+#define DBG(x...) do { } while (0)
+#endif
+
+/*
+ * Enabling software CRCs on the data blocks can be a significant (30%)
+ * performance cost, and for other reasons may not always be desired.
+ * So we allow it it to be disabled.
+ */
+bool use_spi_crc = 1;
+module_param(use_spi_crc, bool, 0);
+
+/*
+ * We normally treat cards as removed during suspend if they are not
+ * known to be on a non-removable bus, to avoid the risk of writing
+ * back data to a different card after resume. Allow this to be
+ * overridden if necessary.
+ */
+#ifdef CONFIG_MMC_UNSAFE_RESUME
+bool mmc_assume_removable;
+#else
+bool mmc_assume_removable = 1;
+#endif
+EXPORT_SYMBOL(mmc_assume_removable);
+module_param_named(removable, mmc_assume_removable, bool, 0644);
+MODULE_PARM_DESC(
+ removable,
+ "MMC/SD cards are removable and may be removed during suspend");
+
+/*
+ * Internal function. Schedule delayed work in the MMC work queue.
+ */
+static int mmc_schedule_delayed_work(struct delayed_work *work,
+ unsigned long delay)
+{
+ int ret;
+ DBG("[%s] s\n",__func__);
+
+ ret = queue_delayed_work(workqueue, work, delay);
+
+ DBG("[%s] e\n",__func__);
+ return ret;
+ /*return queue_delayed_work(workqueue, work, delay);*/
+}
+
+/*
+ * Internal function. Flush all scheduled work from the MMC work queue.
+ */
+static void mmc_flush_scheduled_work(void)
+{
+ DBG("[%s] s\n",__func__);
+
+ flush_workqueue(workqueue);
+
+ DBG("[%s] e\n",__func__);
+}
+
+#ifdef CONFIG_FAIL_MMC_REQUEST
+
+/*
+ * Internal function. Inject random data errors.
+ * If mmc_data is NULL no errors are injected.
+ */
+static void mmc_should_fail_request(struct mmc_host *host,
+ struct mmc_request *mrq)
+{
+ struct mmc_command *cmd = mrq->cmd;
+ struct mmc_data *data = mrq->data;
+ static const int data_errors[] = {
+ -ETIMEDOUT,
+ -EILSEQ,
+ -EIO,
+ };
+
+ if (!data)
+ return;
+
+ if (cmd->error || data->error ||
+ !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
+ return;
+
+ data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
+ data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
+}
+
+#else /* CONFIG_FAIL_MMC_REQUEST */
+
+static inline void mmc_should_fail_request(struct mmc_host *host,
+ struct mmc_request *mrq)
+{
+}
+
+#endif /* CONFIG_FAIL_MMC_REQUEST */
+
+/**
+ * mmc_request_done - finish processing an MMC request
+ * @host: MMC host which completed request
+ * @mrq: MMC request which request
+ *
+ * MMC drivers should call this function when they have completed
+ * their processing of a request.
+ */
+void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
+{
+ struct mmc_command *cmd = mrq->cmd;
+ int err = cmd->error;
+ DBG("[%s] s\n",__func__);
+
+ if (err && cmd->retries && mmc_host_is_spi(host)) {
+ if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
+ cmd->retries = 0;
+ }
+
+ if (err && cmd->retries && !mmc_card_removed(host->card)) {
+ /*
+ * Request starter must handle retries - see
+ * mmc_wait_for_req_done().
+ */
+ if (mrq->done)
+ mrq->done(mrq);
+ } else {
+ mmc_should_fail_request(host, mrq);
+
+ led_trigger_event(host->led, LED_OFF);
+
+ pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
+ mmc_hostname(host), cmd->opcode, err,
+ cmd->resp[0], cmd->resp[1],
+ cmd->resp[2], cmd->resp[3]);
+
+ if (mrq->data) {
+ pr_debug("%s: %d bytes transferred: %d\n",
+ mmc_hostname(host),
+ mrq->data->bytes_xfered, mrq->data->error);
+ }
+
+ if (mrq->stop) {
+ pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
+ mmc_hostname(host), mrq->stop->opcode,
+ mrq->stop->error,
+ mrq->stop->resp[0], mrq->stop->resp[1],
+ mrq->stop->resp[2], mrq->stop->resp[3]);
+ }
+
+ if (mrq->done)
+ mrq->done(mrq);
+
+ mmc_host_clk_release(host);
+ }
+ DBG("[%s] e\n",__func__);
+}
+
+EXPORT_SYMBOL(mmc_request_done);
+
+static void
+mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
+{
+#ifdef CONFIG_MMC_DEBUG
+ unsigned int i, sz;
+ struct scatterlist *sg;
+#endif
+ DBG("[%s] s\n",__func__);
+
+ if (mrq->sbc) {
+ pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
+ mmc_hostname(host), mrq->sbc->opcode,
+ mrq->sbc->arg, mrq->sbc->flags);
+ }
+
+ pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
+ mmc_hostname(host), mrq->cmd->opcode,
+ mrq->cmd->arg, mrq->cmd->flags);
+
+ if (mrq->data) {
+ pr_debug("%s: blksz %d blocks %d flags %08x "
+ "tsac %d ms nsac %d\n",
+ mmc_hostname(host), mrq->data->blksz,
+ mrq->data->blocks, mrq->data->flags,
+ mrq->data->timeout_ns / 1000000,
+ mrq->data->timeout_clks);
+ }
+
+ if (mrq->stop) {
+ pr_debug("%s: CMD%u arg %08x flags %08x\n",
+ mmc_hostname(host), mrq->stop->opcode,
+ mrq->stop->arg, mrq->stop->flags);
+ }
+
+ WARN_ON(!host->claimed);
+
+ mrq->cmd->error = 0;
+ mrq->cmd->mrq = mrq;
+ if (mrq->data) {
+ BUG_ON(mrq->data->blksz > host->max_blk_size);
+ BUG_ON(mrq->data->blocks > host->max_blk_count);
+ BUG_ON(mrq->data->blocks * mrq->data->blksz >
+ host->max_req_size);
+
+#ifdef CONFIG_MMC_DEBUG
+ sz = 0;
+ for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
+ sz += sg->length;
+ BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
+#endif
+
+ mrq->cmd->data = mrq->data;
+ mrq->data->error = 0;
+ mrq->data->mrq = mrq;
+ if (mrq->stop) {
+ mrq->data->stop = mrq->stop;
+ mrq->stop->error = 0;
+ mrq->stop->mrq = mrq;
+ }
+ }
+ mmc_host_clk_hold(host);
+ led_trigger_event(host->led, LED_FULL);
+ host->ops->request(host, mrq);
+
+ DBG("[%s] e\n",__func__);
+}
+
+static void mmc_wait_done(struct mmc_request *mrq)
+{
+ DBG("[%s] s\n",__func__);
+
+ complete(&mrq->completion);
+
+ DBG("[%s] e\n",__func__);
+}
+
+static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
+{
+ DBG("[%s] s\n",__func__);
+ init_completion(&mrq->completion);
+ mrq->done = mmc_wait_done;
+ if (mmc_card_removed(host->card)) {
+ mrq->cmd->error = -ENOMEDIUM;
+ complete(&mrq->completion);
+ DBG("[%s] e1\n",__func__);
+ return -ENOMEDIUM;
+ }
+ mmc_start_request(host, mrq);
+ DBG("[%s] e2\n",__func__);
+ return 0;
+}
+
+static void mmc_wait_for_req_done(struct mmc_host *host,
+ struct mmc_request *mrq)
+{
+ struct mmc_command *cmd;
+ DBG("[%s] s\n",__func__);
+ while (1) {
+ wait_for_completion(&mrq->completion);
+
+ cmd = mrq->cmd;
+ if (!cmd->error || !cmd->retries ||
+ mmc_card_removed(host->card))
+ break;
+
+ pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
+ mmc_hostname(host), cmd->opcode, cmd->error);
+ cmd->retries--;
+ cmd->error = 0;
+ host->ops->request(host, mrq);
+ }
+ DBG("[%s] e\n",__func__);
+}
+
+/**
+ * mmc_pre_req - Prepare for a new request
+ * @host: MMC host to prepare command
+ * @mrq: MMC request to prepare for
+ * @is_first_req: true if there is no previous started request
+ * that may run in parellel to this call, otherwise false
+ *
+ * mmc_pre_req() is called in prior to mmc_start_req() to let
+ * host prepare for the new request. Preparation of a request may be
+ * performed while another request is running on the host.
+ */
+static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
+ bool is_first_req)
+{
+ DBG("[%s] s\n",__func__);
+ if (host->ops->pre_req) {
+ mmc_host_clk_hold(host);
+ host->ops->pre_req(host, mrq, is_first_req);
+ mmc_host_clk_release(host);
+ }
+ DBG("[%s] e\n",__func__);
+}
+
+/**
+ * mmc_post_req - Post process a completed request
+ * @host: MMC host to post process command
+ * @mrq: MMC request to post process for
+ * @err: Error, if non zero, clean up any resources made in pre_req
+ *
+ * Let the host post process a completed request. Post processing of
+ * a request may be performed while another reuqest is running.
+ */
+static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
+ int err)
+{
+ DBG("[%s] s\n",__func__);
+ if (host->ops->post_req) {
+ mmc_host_clk_hold(host);
+ host->ops->post_req(host, mrq, err);
+ mmc_host_clk_release(host);
+ }
+ DBG("[%s] e\n",__func__);
+}
+
+/**
+ * mmc_start_req - start a non-blocking request
+ * @host: MMC host to start command
+ * @areq: async request to start
+ * @error: out parameter returns 0 for success, otherwise non zero
+ *
+ * Start a new MMC custom command request for a host.
+ * If there is on ongoing async request wait for completion
+ * of that request and start the new one and return.
+ * Does not wait for the new request to complete.
+ *
+ * Returns the completed request, NULL in case of none completed.
+ * Wait for the an ongoing request (previoulsy started) to complete and
+ * return the completed request. If there is no ongoing request, NULL
+ * is returned without waiting. NULL is not an error condition.
+ */
+struct mmc_async_req *mmc_start_req(struct mmc_host *host,
+ struct mmc_async_req *areq, int *error)
+{
+ int err = 0;
+ int start_err = 0;
+ struct mmc_async_req *data = host->areq;
+ DBG("[%s] s\n",__func__);
+ /* Prepare a new request */
+ if (areq)
+ mmc_pre_req(host, areq->mrq, !host->areq);
+
+ if (host->areq) {
+ mmc_wait_for_req_done(host, host->areq->mrq);
+ err = host->areq->err_check(host->card, host->areq);
+ }
+
+ if (!err && areq)
+ start_err = __mmc_start_req(host, areq->mrq);
+
+ if (host->areq)
+ mmc_post_req(host, host->areq->mrq, 0);
+
+ /* Cancel a prepared request if it was not started. */
+ if ((err || start_err) && areq)
+ mmc_post_req(host, areq->mrq, -EINVAL);
+
+ if (err)
+ host->areq = NULL;
+ else
+ host->areq = areq;
+
+ if (error)
+ *error = err;
+ DBG("[%s] e\n",__func__);
+ return data;
+}
+EXPORT_SYMBOL(mmc_start_req);
+
+/**
+ * mmc_wait_for_req - start a request and wait for completion
+ * @host: MMC host to start command
+ * @mrq: MMC request to start
+ *
+ * Start a new MMC custom command request for a host, and wait
+ * for the command to complete. Does not attempt to parse the
+ * response.
+ */
+void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
+{
+ DBG("[%s] s\n",__func__);
+ __mmc_start_req(host, mrq);
+ mmc_wait_for_req_done(host, mrq);
+ DBG("[%s] e\n",__func__);
+}
+EXPORT_SYMBOL(mmc_wait_for_req);
+
+/**
+ * mmc_interrupt_hpi - Issue for High priority Interrupt
+ * @card: the MMC card associated with the HPI transfer
+ *
+ * Issued High Priority Interrupt, and check for card status
+ * util out-of prg-state.
+ */
+int mmc_interrupt_hpi(struct mmc_card *card)
+{
+ int err;
+ u32 status;
+ DBG("[%s] s\n",__func__);
+ BUG_ON(!card);
+
+ if (!card->ext_csd.hpi_en) {
+ pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
+ return 1;
+ }
+
+ mmc_claim_host(card->host);
+ err = mmc_send_status(card, &status);
+ if (err) {
+ pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
+ goto out;
+ }
+
+ /*
+ * If the card status is in PRG-state, we can send the HPI command.
+ */
+ if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
+ do {
+ /*
+ * We don't know when the HPI command will finish
+ * processing, so we need to resend HPI until out
+ * of prg-state, and keep checking the card status
+ * with SEND_STATUS. If a timeout error occurs when
+ * sending the HPI command, we are already out of
+ * prg-state.
+ */
+ err = mmc_send_hpi_cmd(card, &status);
+ if (err)
+ pr_debug("%s: abort HPI (%d error)\n",
+ mmc_hostname(card->host), err);
+
+ err = mmc_send_status(card, &status);
+ if (err)
+ break;
+ } while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
+ } else
+ pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
+
+out:
+ mmc_release_host(card->host);
+ DBG("[%s] e\n",__func__);
+ return err;
+}
+EXPORT_SYMBOL(mmc_interrupt_hpi);
+
+/**
+ * mmc_wait_for_cmd - start a command and wait for completion
+ * @host: MMC host to start command
+ * @cmd: MMC command to start
+ * @retries: maximum number of retries
+ *
+ * Start a new MMC command for a host, and wait for the command
+ * to complete. Return any error that occurred while the command
+ * was executing. Do not attempt to parse the response.
+ */
+int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
+{
+ struct mmc_request mrq = {NULL};
+
+ DBG("[%s] s\n",__func__);
+
+ WARN_ON(!host->claimed);
+
+ memset(cmd->resp, 0, sizeof(cmd->resp));
+ cmd->retries = retries;
+
+ mrq.cmd = cmd;
+ cmd->data = NULL;
+
+ mmc_wait_for_req(host, &mrq);
+
+ DBG("[%s] e\n",__func__);
+ return cmd->error;
+}
+
+EXPORT_SYMBOL(mmc_wait_for_cmd);
+
+/**
+ * mmc_set_data_timeout - set the timeout for a data command
+ * @data: data phase for command
+ * @card: the MMC card associated with the data transfer
+ *
+ * Computes the data timeout parameters according to the
+ * correct algorithm given the card type.
+ */
+void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
+{
+ unsigned int mult;
+ DBG("[%s] s\n",__func__);
+ /*
+ * SDIO cards only define an upper 1 s limit on access.
+ */
+ if (mmc_card_sdio(card)) {
+ data->timeout_ns = 1000000000;
+ data->timeout_clks = 0;
+ DBG("[%s] e1\n",__func__);
+ return;
+ }
+
+ /*
+ * SD cards use a 100 multiplier rather than 10
+ */
+ mult = mmc_card_sd(card) ? 100 : 10;
+
+ /*
+ * Scale up the multiplier (and therefore the timeout) by
+ * the r2w factor for writes.
+ */
+ if (data->flags & MMC_DATA_WRITE)
+ mult <<= card->csd.r2w_factor;
+
+ data->timeout_ns = card->csd.tacc_ns * mult;
+ data->timeout_clks = card->csd.tacc_clks * mult;
+
+ /*
+ * SD cards also have an upper limit on the timeout.
+ */
+ if (mmc_card_sd(card)) {
+ unsigned int timeout_us, limit_us;
+
+ timeout_us = data->timeout_ns / 1000;
+ if (mmc_host_clk_rate(card->host))
+ timeout_us += data->timeout_clks * 1000 /
+ (mmc_host_clk_rate(card->host) / 1000);
+
+ if (data->flags & MMC_DATA_WRITE)
+ /*
+ * The MMC spec "It is strongly recommended
+ * for hosts to implement more than 500ms
+ * timeout value even if the card indicates
+ * the 250ms maximum busy length." Even the
+ * previous value of 300ms is known to be
+ * insufficient for some cards.
+ */
+ limit_us = 3000000;
+ else
+ limit_us = 100000;
+
+ /*
+ * SDHC cards always use these fixed values.
+ */
+ if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
+ data->timeout_ns = limit_us * 1000;
+ data->timeout_clks = 0;
+ }
+ }
+
+ /*
+ * Some cards require longer data read timeout than indicated in CSD.
+ * Address this by setting the read timeout to a "reasonably high"
+ * value. For the cards tested, 300ms has proven enough. If necessary,
+ * this value can be increased if other problematic cards require this.
+ */
+ if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
+ data->timeout_ns = 300000000;
+ data->timeout_clks = 0;
+ }
+
+ /*
+ * Some cards need very high timeouts if driven in SPI mode.
+ * The worst observed timeout was 900ms after writing a
+ * continuous stream of data until the internal logic
+ * overflowed.
+ */
+ if (mmc_host_is_spi(card->host)) {
+ if (data->flags & MMC_DATA_WRITE) {
+ if (data->timeout_ns < 1000000000)
+ data->timeout_ns = 1000000000; /* 1s */
+ } else {
+ if (data->timeout_ns < 100000000)
+ data->timeout_ns = 100000000; /* 100ms */
+ }
+ }
+
+ DBG("[%s] e2\n",__func__);
+}
+EXPORT_SYMBOL(mmc_set_data_timeout);
+
+/**
+ * mmc_align_data_size - pads a transfer size to a more optimal value
+ * @card: the MMC card associated with the data transfer
+ * @sz: original transfer size
+ *
+ * Pads the original data size with a number of extra bytes in
+ * order to avoid controller bugs and/or performance hits
+ * (e.g. some controllers revert to PIO for certain sizes).
+ *
+ * Returns the improved size, which might be unmodified.
+ *
+ * Note that this function is only relevant when issuing a
+ * single scatter gather entry.
+ */
+unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
+{
+ /*
+ * FIXME: We don't have a system for the controller to tell
+ * the core about its problems yet, so for now we just 32-bit
+ * align the size.
+ */
+ sz = ((sz + 3) / 4) * 4;
+
+ return sz;
+}
+EXPORT_SYMBOL(mmc_align_data_size);
+
+/**
+ * __mmc_claim_host - exclusively claim a host
+ * @host: mmc host to claim
+ * @abort: whether or not the operation should be aborted
+ *
+ * Claim a host for a set of operations. If @abort is non null and
+ * dereference a non-zero value then this will return prematurely with
+ * that non-zero value without acquiring the lock. Returns zero
+ * with the lock held otherwise.
+ */
+int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
+{
+ DECLARE_WAITQUEUE(wait, current);
+ unsigned long flags;
+ int stop;
+
+ DBG("[%s] s\n",__func__);
+
+ might_sleep();
+
+ add_wait_queue(&host->wq, &wait);
+ spin_lock_irqsave(&host->lock, flags);
+ while (1) {
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ stop = abort ? atomic_read(abort) : 0;
+ if (stop || !host->claimed || host->claimer == current)
+ break;
+ spin_unlock_irqrestore(&host->lock, flags);
+ schedule();
+ spin_lock_irqsave(&host->lock, flags);
+ }
+ set_current_state(TASK_RUNNING);
+ if (!stop) {
+ host->claimed = 1;
+ host->claimer = current;
+ host->claim_cnt += 1;
+ } else
+ wake_up(&host->wq);
+ spin_unlock_irqrestore(&host->lock, flags);
+ remove_wait_queue(&host->wq, &wait);
+ if (host->ops->enable && !stop && host->claim_cnt == 1)
+ host->ops->enable(host);
+
+ DBG("[%s] e\n",__func__);
+ return stop;
+}
+
+EXPORT_SYMBOL(__mmc_claim_host);
+
+/**
+ * mmc_try_claim_host - try exclusively to claim a host
+ * @host: mmc host to claim
+ *
+ * Returns %1 if the host is claimed, %0 otherwise.
+ */
+int mmc_try_claim_host(struct mmc_host *host)
+{
+ int claimed_host = 0;
+ unsigned long flags;
+ DBG("[%s] s\n",__func__);
+
+ spin_lock_irqsave(&host->lock, flags);
+ if (!host->claimed || host->claimer == current) {
+ host->claimed = 1;
+ host->claimer = current;
+ host->claim_cnt += 1;
+ claimed_host = 1;
+ }
+ spin_unlock_irqrestore(&host->lock, flags);
+ if (host->ops->enable && claimed_host && host->claim_cnt == 1)
+ host->ops->enable(host);
+
+ DBG("[%s] e\n",__func__);
+ return claimed_host;
+}
+EXPORT_SYMBOL(mmc_try_claim_host);
+
+/**
+ * mmc_release_host - release a host
+ * @host: mmc host to release
+ *
+ * Release a MMC host, allowing others to claim the host
+ * for their operations.
+ */
+void mmc_release_host(struct mmc_host *host)
+{
+ unsigned long flags;
+ DBG("[%s] s\n",__func__);
+
+ WARN_ON(!host->claimed);
+
+ if (host->ops->disable && host->claim_cnt == 1)
+ host->ops->disable(host);
+
+ spin_lock_irqsave(&host->lock, flags);
+ if (--host->claim_cnt) {
+ /* Release for nested claim */
+ spin_unlock_irqrestore(&host->lock, flags);
+ } else {
+ host->claimed = 0;
+ host->claimer = NULL;
+ spin_unlock_irqrestore(&host->lock, flags);
+ wake_up(&host->wq);
+ }
+ DBG("[%s] e\n",__func__);
+}
+EXPORT_SYMBOL(mmc_release_host);
+
+/*
+ * Internal function that does the actual ios call to the host driver,
+ * optionally printing some debug output.
+ */
+static inline void mmc_set_ios(struct mmc_host *host)
+{
+ struct mmc_ios *ios = &host->ios;
+
+ DBG("[%s] s\n",__func__);
+
+ pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
+ "width %u timing %u\n",
+ mmc_hostname(host), ios->clock, ios->bus_mode,
+ ios->power_mode, ios->chip_select, ios->vdd,
+ ios->bus_width, ios->timing);
+
+ if (ios->clock > 0)
+ mmc_set_ungated(host);
+ host->ops->set_ios(host, ios);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * Control chip select pin on a host.
+ */
+void mmc_set_chip_select(struct mmc_host *host, int mode)
+{
+ DBG("[%s] s\n",__func__);
+
+ mmc_host_clk_hold(host);
+ host->ios.chip_select = mode;
+ mmc_set_ios(host);
+ mmc_host_clk_release(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * Sets the host clock to the highest possible frequency that
+ * is below "hz".
+ */
+static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
+{
+ DBG("[%s] s\n",__func__);
+
+ WARN_ON(hz < host->f_min);
+
+ if (hz > host->f_max)
+ hz = host->f_max;
+
+ host->ios.clock = hz;
+ mmc_set_ios(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+void mmc_set_clock(struct mmc_host *host, unsigned int hz)
+{
+ DBG("[%s] s\n",__func__);
+ mmc_host_clk_hold(host);
+ __mmc_set_clock(host, hz);
+ mmc_host_clk_release(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+#ifdef CONFIG_MMC_CLKGATE
+/*
+ * This gates the clock by setting it to 0 Hz.
+ */
+void mmc_gate_clock(struct mmc_host *host)
+{
+ unsigned long flags;
+ DBG("[%s] s\n",__func__);
+
+ spin_lock_irqsave(&host->clk_lock, flags);
+ host->clk_old = host->ios.clock;
+ host->ios.clock = 0;
+ host->clk_gated = true;
+ spin_unlock_irqrestore(&host->clk_lock, flags);
+ mmc_set_ios(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * This restores the clock from gating by using the cached
+ * clock value.
+ */
+void mmc_ungate_clock(struct mmc_host *host)
+{
+ DBG("[%s] s\n",__func__);
+ /*
+ * We should previously have gated the clock, so the clock shall
+ * be 0 here! The clock may however be 0 during initialization,
+ * when some request operations are performed before setting
+ * the frequency. When ungate is requested in that situation
+ * we just ignore the call.
+ */
+ if (host->clk_old) {
+ BUG_ON(host->ios.clock);
+ /* This call will also set host->clk_gated to false */
+ __mmc_set_clock(host, host->clk_old);
+ }
+
+ DBG("[%s] e\n",__func__);
+}
+
+void mmc_set_ungated(struct mmc_host *host)
+{
+ unsigned long flags;
+ DBG("[%s] s\n",__func__);
+ /*
+ * We've been given a new frequency while the clock is gated,
+ * so make sure we regard this as ungating it.
+ */
+ spin_lock_irqsave(&host->clk_lock, flags);
+ host->clk_gated = false;
+ spin_unlock_irqrestore(&host->clk_lock, flags);
+
+ DBG("[%s] e\n",__func__);
+}
+
+#else
+void mmc_set_ungated(struct mmc_host *host)
+{
+}
+#endif
+
+/*
+ * Change the bus mode (open drain/push-pull) of a host.
+ */
+void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
+{
+ DBG("[%s] s\n",__func__);
+
+ mmc_host_clk_hold(host);
+ host->ios.bus_mode = mode;
+ mmc_set_ios(host);
+ mmc_host_clk_release(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * Change data bus width of a host.
+ */
+void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
+{
+ DBG("[%s] s\n",__func__);
+
+ mmc_host_clk_hold(host);
+ host->ios.bus_width = width;
+ mmc_set_ios(host);
+ mmc_host_clk_release(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/**
+ * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
+ * @vdd: voltage (mV)
+ * @low_bits: prefer low bits in boundary cases
+ *
+ * This function returns the OCR bit number according to the provided @vdd
+ * value. If conversion is not possible a negative errno value returned.
+ *
+ * Depending on the @low_bits flag the function prefers low or high OCR bits
+ * on boundary voltages. For example,
+ * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
+ * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
+ *
+ * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
+ */
+static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
+{
+ const int max_bit = ilog2(MMC_VDD_35_36);
+ int bit;
+
+ DBG("[%s] s\n",__func__);
+
+ if (vdd < 1650 || vdd > 3600) {
+ DBG("[%s] e1\n",__func__);
+ return -EINVAL;
+ }
+
+ if (vdd >= 1650 && vdd <= 1950) {
+ DBG("[%s] e2\n",__func__);
+ return ilog2(MMC_VDD_165_195);
+ }
+
+ if (low_bits)
+ vdd -= 1;
+
+ /* Base 2000 mV, step 100 mV, bit's base 8. */
+ bit = (vdd - 2000) / 100 + 8;
+ if (bit > max_bit) {
+ DBG("[%s] e3\n",__func__);
+ return max_bit;
+ }
+ DBG("[%s] e4\n",__func__);
+ return bit;
+}
+
+/**
+ * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
+ * @vdd_min: minimum voltage value (mV)
+ * @vdd_max: maximum voltage value (mV)
+ *
+ * This function returns the OCR mask bits according to the provided @vdd_min
+ * and @vdd_max values. If conversion is not possible the function returns 0.
+ *
+ * Notes wrt boundary cases:
+ * This function sets the OCR bits for all boundary voltages, for example
+ * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
+ * MMC_VDD_34_35 mask.
+ */
+u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
+{
+ u32 mask = 0;
+
+ DBG("[%s] s\n",__func__);
+
+ if (vdd_max < vdd_min) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+
+ /* Prefer high bits for the boundary vdd_max values. */
+ vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
+ if (vdd_max < 0) {
+ DBG("[%s] e2\n",__func__);
+ return 0;
+ }
+
+ /* Prefer low bits for the boundary vdd_min values. */
+ vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
+ if (vdd_min < 0) {
+ DBG("[%s] e3\n",__func__);
+ return 0;
+ }
+
+ /* Fill the mask, from max bit to min bit. */
+ while (vdd_max >= vdd_min)
+ mask |= 1 << vdd_max--;
+
+ DBG("[%s] e4\n",__func__);
+ return mask;
+}
+EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
+
+#ifdef CONFIG_REGULATOR
+
+/**
+ * mmc_regulator_get_ocrmask - return mask of supported voltages
+ * @supply: regulator to use
+ *
+ * This returns either a negative errno, or a mask of voltages that
+ * can be provided to MMC/SD/SDIO devices using the specified voltage
+ * regulator. This would normally be called before registering the
+ * MMC host adapter.
+ */
+int mmc_regulator_get_ocrmask(struct regulator *supply)
+{
+ int result = 0;
+ int count;
+ int i;
+
+ DBG("[%s] s\n",__func__);
+
+ count = regulator_count_voltages(supply);
+ if (count < 0) {
+ DBG("[%s] e1\n",__func__);
+ return count;
+ }
+
+ for (i = 0; i < count; i++) {
+ int vdd_uV;
+ int vdd_mV;
+
+ vdd_uV = regulator_list_voltage(supply, i);
+ if (vdd_uV <= 0)
+ continue;
+
+ vdd_mV = vdd_uV / 1000;
+ result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
+ }
+
+ DBG("[%s] e2\n",__func__);
+ return result;
+}
+EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
+
+/**
+ * mmc_regulator_set_ocr - set regulator to match host->ios voltage
+ * @mmc: the host to regulate
+ * @supply: regulator to use
+ * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
+ *
+ * Returns zero on success, else negative errno.
+ *
+ * MMC host drivers may use this to enable or disable a regulator using
+ * a particular supply voltage. This would normally be called from the
+ * set_ios() method.
+ */
+int mmc_regulator_set_ocr(struct mmc_host *mmc,
+ struct regulator *supply,
+ unsigned short vdd_bit)
+{
+ int result = 0;
+ int min_uV, max_uV;
+
+ DBG("[%s] s\n",__func__);
+
+ if (vdd_bit) {
+ int tmp;
+ int voltage;
+
+ /* REVISIT mmc_vddrange_to_ocrmask() may have set some
+ * bits this regulator doesn't quite support ... don't
+ * be too picky, most cards and regulators are OK with
+ * a 0.1V range goof (it's a small error percentage).
+ */
+ tmp = vdd_bit - ilog2(MMC_VDD_165_195);
+ if (tmp == 0) {
+ min_uV = 1650 * 1000;
+ max_uV = 1950 * 1000;
+ } else {
+ min_uV = 1900 * 1000 + tmp * 100 * 1000;
+ max_uV = min_uV + 100 * 1000;
+ }
+
+ /* avoid needless changes to this voltage; the regulator
+ * might not allow this operation
+ */
+ voltage = regulator_get_voltage(supply);
+
+ if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
+ min_uV = max_uV = voltage;
+
+ if (voltage < 0)
+ result = voltage;
+ else if (voltage < min_uV || voltage > max_uV)
+ result = regulator_set_voltage(supply, min_uV, max_uV);
+ else
+ result = 0;
+
+ if (result == 0 && !mmc->regulator_enabled) {
+ result = regulator_enable(supply);
+ if (!result)
+ mmc->regulator_enabled = true;
+ }
+ } else if (mmc->regulator_enabled) {
+ result = regulator_disable(supply);
+ if (result == 0)
+ mmc->regulator_enabled = false;
+ }
+
+ if (result)
+ dev_err(mmc_dev(mmc),
+ "could not set regulator OCR (%d)\n", result);
+
+ DBG("[%s] e\n",__func__);
+ return result;
+}
+EXPORT_SYMBOL(mmc_regulator_set_ocr);
+
+#endif /* CONFIG_REGULATOR */
+
+/*
+ * Mask off any voltages we don't support and select
+ * the lowest voltage
+ */
+u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
+{
+ int bit;
+
+ DBG("[%s] s\n",__func__);
+
+ ocr &= host->ocr_avail;
+
+ bit = ffs(ocr);
+ if (bit) {
+ bit -= 1;
+
+ ocr &= 3 << bit;
+
+ mmc_host_clk_hold(host);
+ host->ios.vdd = bit;
+ mmc_set_ios(host);
+ mmc_host_clk_release(host);
+ } else {
+ pr_warning("%s: host doesn't support card's voltages\n",
+ mmc_hostname(host));
+ ocr = 0;
+ }
+
+ DBG("[%s] e\n",__func__);
+ return ocr;
+}
+
+int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
+{
+ struct mmc_command cmd = {0};
+ int err = 0;
+
+ DBG("[%s] s\n",__func__);
+
+ BUG_ON(!host);
+
+ /*
+ * Send CMD11 only if the request is to switch the card to
+ * 1.8V signalling.
+ */
+ if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
+ cmd.opcode = SD_SWITCH_VOLTAGE;
+ cmd.arg = 0;
+ cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
+
+ err = mmc_wait_for_cmd(host, &cmd, 0);
+ if (err) {
+ DBG("[%s] e1\n",__func__);
+ return err;
+ }
+
+ if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
+ DBG("[%s] e2\n",__func__);
+ return -EIO;
+ }
+ }
+
+ host->ios.signal_voltage = signal_voltage;
+
+ if (host->ops->start_signal_voltage_switch) {
+ mmc_host_clk_hold(host);
+ err = host->ops->start_signal_voltage_switch(host, &host->ios);
+ mmc_host_clk_release(host);
+ }
+ DBG("[%s] e3\n",__func__);
+ return err;
+}
+
+/*
+ * Select timing parameters for host.
+ */
+void mmc_set_timing(struct mmc_host *host, unsigned int timing)
+{
+ DBG("[%s] s\n",__func__);
+
+ mmc_host_clk_hold(host);
+ host->ios.timing = timing;
+ mmc_set_ios(host);
+ mmc_host_clk_release(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * Select appropriate driver type for host.
+ */
+void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
+{
+ DBG("[%s] s\n",__func__);
+
+ mmc_host_clk_hold(host);
+ host->ios.drv_type = drv_type;
+ mmc_set_ios(host);
+ mmc_host_clk_release(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+static void mmc_poweroff_notify(struct mmc_host *host)
+{
+ struct mmc_card *card;
+ unsigned int timeout;
+ unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
+ int err = 0;
+
+ DBG("[%s] s\n",__func__);
+
+ card = host->card;
+ mmc_claim_host(host);
+
+ /*
+ * Send power notify command only if card
+ * is mmc and notify state is powered ON
+ */
+ if (card && mmc_card_mmc(card) &&
+ (card->poweroff_notify_state == MMC_POWERED_ON)) {
+
+ if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
+ notify_type = EXT_CSD_POWER_OFF_SHORT;
+ timeout = card->ext_csd.generic_cmd6_time;
+ card->poweroff_notify_state = MMC_POWEROFF_SHORT;
+ } else {
+ notify_type = EXT_CSD_POWER_OFF_LONG;
+ timeout = card->ext_csd.power_off_longtime;
+ card->poweroff_notify_state = MMC_POWEROFF_LONG;
+ }
+
+ err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
+ EXT_CSD_POWER_OFF_NOTIFICATION,
+ notify_type, timeout);
+
+ if (err && err != -EBADMSG)
+ pr_err("Device failed to respond within %d poweroff "
+ "time. Forcefully powering down the device\n",
+ timeout);
+
+ /* Set the card state to no notification after the poweroff */
+ card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
+ }
+ mmc_release_host(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * Apply power to the MMC stack. This is a two-stage process.
+ * First, we enable power to the card without the clock running.
+ * We then wait a bit for the power to stabilise. Finally,
+ * enable the bus drivers and clock to the card.
+ *
+ * We must _NOT_ enable the clock prior to power stablising.
+ *
+ * If a host does all the power sequencing itself, ignore the
+ * initial MMC_POWER_UP stage.
+ */
+static void mmc_power_up(struct mmc_host *host)
+{
+ int bit;
+
+ DBG("[%s] s\n",__func__);
+
+ mmc_host_clk_hold(host);
+
+ /* If ocr is set, we use it */
+ if (host->ocr)
+ bit = ffs(host->ocr) - 1;
+ else
+ bit = fls(host->ocr_avail) - 1;
+
+ host->ios.vdd = bit;
+ if (mmc_host_is_spi(host))
+ host->ios.chip_select = MMC_CS_HIGH;
+ else
+ host->ios.chip_select = MMC_CS_DONTCARE;
+ host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
+ host->ios.power_mode = MMC_POWER_UP;
+ host->ios.bus_width = MMC_BUS_WIDTH_1;
+ host->ios.timing = MMC_TIMING_LEGACY;
+ mmc_set_ios(host);
+
+ /*
+ * This delay should be sufficient to allow the power supply
+ * to reach the minimum voltage.
+ */
+ mmc_delay(10);
+
+ host->ios.clock = host->f_init;
+
+ host->ios.power_mode = MMC_POWER_ON;
+ mmc_set_ios(host);
+
+ /*
+ * This delay must be at least 74 clock sizes, or 1 ms, or the
+ * time required to reach a stable voltage.
+ */
+ mmc_delay(10);
+
+ mmc_host_clk_release(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+void mmc_power_off(struct mmc_host *host)
+{
+ int err = 0;
+ DBG("[%s] s\n",__func__);
+ mmc_host_clk_hold(host);
+
+ host->ios.clock = 0;
+ host->ios.vdd = 0;
+
+ /*
+ * For eMMC 4.5 device send AWAKE command before
+ * POWER_OFF_NOTIFY command, because in sleep state
+ * eMMC 4.5 devices respond to only RESET and AWAKE cmd
+ */
+ if (host->card && mmc_card_is_sleep(host->card) &&
+ host->bus_ops->resume) {
+ err = host->bus_ops->resume(host);
+
+ if (!err)
+ mmc_poweroff_notify(host);
+ else
+ pr_warning("%s: error %d during resume "
+ "(continue with poweroff sequence)\n",
+ mmc_hostname(host), err);
+ }
+
+ /*
+ * Reset ocr mask to be the highest possible voltage supported for
+ * this mmc host. This value will be used at next power up.
+ */
+ host->ocr = 1 << (fls(host->ocr_avail) - 1);
+
+ if (!mmc_host_is_spi(host)) {
+ host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
+ host->ios.chip_select = MMC_CS_DONTCARE;
+ }
+ host->ios.power_mode = MMC_POWER_OFF;
+ host->ios.bus_width = MMC_BUS_WIDTH_1;
+ host->ios.timing = MMC_TIMING_LEGACY;
+ mmc_set_ios(host);
+
+ /*
+ * Some configurations, such as the 802.11 SDIO card in the OLPC
+ * XO-1.5, require a short delay after poweroff before the card
+ * can be successfully turned on again.
+ */
+ mmc_delay(1);
+
+ mmc_host_clk_release(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * Cleanup when the last reference to the bus operator is dropped.
+ */
+static void __mmc_release_bus(struct mmc_host *host)
+{
+ DBG("[%s] s\n",__func__);
+ BUG_ON(!host);
+ BUG_ON(host->bus_refs);
+ BUG_ON(!host->bus_dead);
+
+ host->bus_ops = NULL;
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * Increase reference count of bus operator
+ */
+static inline void mmc_bus_get(struct mmc_host *host)
+{
+ unsigned long flags;
+ DBG("[%s] s\n",__func__);
+
+ spin_lock_irqsave(&host->lock, flags);
+ host->bus_refs++;
+ spin_unlock_irqrestore(&host->lock, flags);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * Decrease reference count of bus operator and free it if
+ * it is the last reference.
+ */
+static inline void mmc_bus_put(struct mmc_host *host)
+{
+ unsigned long flags;
+ DBG("[%s] s\n",__func__);
+
+ spin_lock_irqsave(&host->lock, flags);
+ host->bus_refs--;
+ if ((host->bus_refs == 0) && host->bus_ops)
+ __mmc_release_bus(host);
+ spin_unlock_irqrestore(&host->lock, flags);
+
+ DBG("[%s] e\n",__func__);
+}
+
+int mmc_resume_bus(struct mmc_host *host)
+{
+ unsigned long flags;
+ DBG("[%s] s\n",__func__);
+
+ if (!mmc_bus_needs_resume(host)) {
+ DBG("[%s] e1\n",__func__);
+ return -EINVAL;
+ }
+
+ printk("%s: Starting deferred resume\n", mmc_hostname(host));
+ spin_lock_irqsave(&host->lock, flags);
+ host->bus_resume_flags &= ~MMC_BUSRESUME_NEEDS_RESUME;
+ host->rescan_disable = 0;
+ spin_unlock_irqrestore(&host->lock, flags);
+
+ mmc_bus_get(host);
+ if (host->bus_ops && !host->bus_dead) {
+ mmc_power_up(host);
+ BUG_ON(!host->bus_ops->resume);
+ host->bus_ops->resume(host);
+ }
+
+ if (host->bus_ops->detect && !host->bus_dead)
+ host->bus_ops->detect(host);
+
+ mmc_bus_put(host);
+ printk("%s: Deferred resume completed\n", mmc_hostname(host));
+ DBG("[%s] e2\n",__func__);
+ return 0;
+}
+
+EXPORT_SYMBOL(mmc_resume_bus);
+
+/*
+ * Assign a mmc bus handler to a host. Only one bus handler may control a
+ * host at any given time.
+ */
+void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
+{
+ unsigned long flags;
+
+ DBG("[%s] s\n",__func__);
+
+ BUG_ON(!host);
+ BUG_ON(!ops);
+
+ WARN_ON(!host->claimed);
+
+ spin_lock_irqsave(&host->lock, flags);
+
+ BUG_ON(host->bus_ops);
+ BUG_ON(host->bus_refs);
+
+ host->bus_ops = ops;
+ host->bus_refs = 1;
+ host->bus_dead = 0;
+
+ spin_unlock_irqrestore(&host->lock, flags);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/*
+ * Remove the current bus handler from a host.
+ */
+void mmc_detach_bus(struct mmc_host *host)
+{
+ unsigned long flags;
+
+ DBG("[%s] s\n",__func__);
+
+ BUG_ON(!host);
+
+ WARN_ON(!host->claimed);
+ WARN_ON(!host->bus_ops);
+
+ spin_lock_irqsave(&host->lock, flags);
+
+ host->bus_dead = 1;
+
+ spin_unlock_irqrestore(&host->lock, flags);
+
+ mmc_bus_put(host);
+
+ DBG("[%s] e\n",__func__);
+}
+
+/**
+ * mmc_detect_change - process change of state on a MMC socket
+ * @host: host which changed state.
+ * @delay: optional delay to wait before detection (jiffies)
+ *
+ * MMC drivers should call this when they detect a card has been
+ * inserted or removed. The MMC layer will confirm that any
+ * present card is still functional, and initialize any newly
+ * inserted.
+ */
+void mmc_detect_change(struct mmc_host *host, unsigned long delay)
+{
+ DBG("[%s] s\n",__func__);
+
+#ifdef CONFIG_MMC_DEBUG
+ unsigned long flags;
+ spin_lock_irqsave(&host->lock, flags);
+ WARN_ON(host->removed);
+ spin_unlock_irqrestore(&host->lock, flags);
+#endif
+ host->detect_change = 1;
+
+ wake_lock(&host->detect_wake_lock);
+ mmc_schedule_delayed_work(&host->detect, delay);
+
+ DBG("[%s] e\n",__func__);
+}
+
+EXPORT_SYMBOL(mmc_detect_change);
+
+void mmc_init_erase(struct mmc_card *card)
+{
+ unsigned int sz;
+
+ DBG("[%s] s\n",__func__);
+
+ if (is_power_of_2(card->erase_size))
+ card->erase_shift = ffs(card->erase_size) - 1;
+ else
+ card->erase_shift = 0;
+
+ /*
+ * It is possible to erase an arbitrarily large area of an SD or MMC
+ * card. That is not desirable because it can take a long time
+ * (minutes) potentially delaying more important I/O, and also the
+ * timeout calculations become increasingly hugely over-estimated.
+ * Consequently, 'pref_erase' is defined as a guide to limit erases
+ * to that size and alignment.
+ *
+ * For SD cards that define Allocation Unit size, limit erases to one
+ * Allocation Unit at a time. For MMC cards that define High Capacity
+ * Erase Size, whether it is switched on or not, limit to that size.
+ * Otherwise just have a stab at a good value. For modern cards it
+ * will end up being 4MiB. Note that if the value is too small, it
+ * can end up taking longer to erase.
+ */
+ if (mmc_card_sd(card) && card->ssr.au) {
+ card->pref_erase = card->ssr.au;
+ card->erase_shift = ffs(card->ssr.au) - 1;
+ } else if (card->ext_csd.hc_erase_size) {
+ card->pref_erase = card->ext_csd.hc_erase_size;
+ } else {
+ sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
+ if (sz < 128)
+ card->pref_erase = 512 * 1024 / 512;
+ else if (sz < 512)
+ card->pref_erase = 1024 * 1024 / 512;
+ else if (sz < 1024)
+ card->pref_erase = 2 * 1024 * 1024 / 512;
+ else
+ card->pref_erase = 4 * 1024 * 1024 / 512;
+ if (card->pref_erase < card->erase_size)
+ card->pref_erase = card->erase_size;
+ else {
+ sz = card->pref_erase % card->erase_size;
+ if (sz)
+ card->pref_erase += card->erase_size - sz;
+ }
+ }
+
+ DBG("[%s] e\n",__func__);
+}
+
+static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
+ unsigned int arg, unsigned int qty)
+{
+ unsigned int erase_timeout;
+
+ DBG("[%s] s\n",__func__);
+
+ if (arg == MMC_DISCARD_ARG ||
+ (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
+ erase_timeout = card->ext_csd.trim_timeout;
+ } else if (card->ext_csd.erase_group_def & 1) {
+ /* High Capacity Erase Group Size uses HC timeouts */
+ if (arg == MMC_TRIM_ARG)
+ erase_timeout = card->ext_csd.trim_timeout;
+ else
+ erase_timeout = card->ext_csd.hc_erase_timeout;
+ } else {
+ /* CSD Erase Group Size uses write timeout */
+ unsigned int mult = (10 << card->csd.r2w_factor);
+ unsigned int timeout_clks = card->csd.tacc_clks * mult;
+ unsigned int timeout_us;
+
+ /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
+ if (card->csd.tacc_ns < 1000000)
+ timeout_us = (card->csd.tacc_ns * mult) / 1000;
+ else
+ timeout_us = (card->csd.tacc_ns / 1000) * mult;
+
+ /*
+ * ios.clock is only a target. The real clock rate might be
+ * less but not that much less, so fudge it by multiplying by 2.
+ */
+ timeout_clks <<= 1;
+ timeout_us += (timeout_clks * 1000) /
+ (mmc_host_clk_rate(card->host) / 1000);
+
+ erase_timeout = timeout_us / 1000;
+
+ /*
+ * Theoretically, the calculation could underflow so round up
+ * to 1ms in that case.
+ */
+ if (!erase_timeout)
+ erase_timeout = 1;
+ }
+
+ /* Multiplier for secure operations */
+ if (arg & MMC_SECURE_ARGS) {
+ if (arg == MMC_SECURE_ERASE_ARG)
+ erase_timeout *= card->ext_csd.sec_erase_mult;
+ else
+ erase_timeout *= card->ext_csd.sec_trim_mult;
+ }
+
+ erase_timeout *= qty;
+
+ /*
+ * Ensure at least a 1 second timeout for SPI as per
+ * 'mmc_set_data_timeout()'
+ */
+ if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
+ erase_timeout = 1000;
+
+ DBG("[%s] e\n",__func__);
+ return erase_timeout;
+}
+
+static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
+ unsigned int arg,
+ unsigned int qty)
+{
+ unsigned int erase_timeout;
+
+ DBG("[%s] s\n",__func__);
+
+ if (card->ssr.erase_timeout) {
+ /* Erase timeout specified in SD Status Register (SSR) */
+ erase_timeout = card->ssr.erase_timeout * qty +
+ card->ssr.erase_offset;
+ } else {
+ /*
+ * Erase timeout not specified in SD Status Register (SSR) so
+ * use 250ms per write block.
+ */
+ erase_timeout = 250 * qty;
+ }
+
+ /* Must not be less than 1 second */
+ if (erase_timeout < 1000)
+ erase_timeout = 1000;
+
+ DBG("[%s] e\n",__func__);
+ return erase_timeout;
+}
+
+static unsigned int mmc_erase_timeout(struct mmc_card *card,
+ unsigned int arg,
+ unsigned int qty)
+{
+ unsigned int ret;
+
+ DBG("[%s] s\n",__func__);
+
+ if (mmc_card_sd(card)) {
+ ret = mmc_sd_erase_timeout(card, arg, qty);
+ /*return mmc_sd_erase_timeout(card, arg, qty);*/
+ DBG("[%s] e1\n",__func__);
+ return ret;
+ } else {
+ ret = mmc_mmc_erase_timeout(card, arg, qty);
+ /*return mmc_mmc_erase_timeout(card, arg, qty);*/
+ DBG("[%s] e2\n",__func__);
+ return ret;
+ }
+
+}
+
+static int mmc_do_erase(struct mmc_card *card, unsigned int from,
+ unsigned int to, unsigned int arg)
+{
+ struct mmc_command cmd = {0};
+ unsigned int qty = 0;
+ int err;
+
+ DBG("[%s] s\n",__func__);
+ /*
+ * qty is used to calculate the erase timeout which depends on how many
+ * erase groups (or allocation units in SD terminology) are affected.
+ * We count erasing part of an erase group as one erase group.
+ * For SD, the allocation units are always a power of 2. For MMC, the
+ * erase group size is almost certainly also power of 2, but it does not
+ * seem to insist on that in the JEDEC standard, so we fall back to
+ * division in that case. SD may not specify an allocation unit size,
+ * in which case the timeout is based on the number of write blocks.
+ *
+ * Note that the timeout for secure trim 2 will only be correct if the
+ * number of erase groups specified is the same as the total of all
+ * preceding secure trim 1 commands. Since the power may have been
+ * lost since the secure trim 1 commands occurred, it is generally
+ * impossible to calculate the secure trim 2 timeout correctly.
+ */
+ if (card->erase_shift)
+ qty += ((to >> card->erase_shift) -
+ (from >> card->erase_shift)) + 1;
+ else if (mmc_card_sd(card))
+ qty += to - from + 1;
+ else
+ qty += ((to / card->erase_size) -
+ (from / card->erase_size)) + 1;
+
+ if (!mmc_card_blockaddr(card)) {
+ from <<= 9;
+ to <<= 9;
+ }
+
+ if (mmc_card_sd(card))
+ cmd.opcode = SD_ERASE_WR_BLK_START;
+ else
+ cmd.opcode = MMC_ERASE_GROUP_START;
+ cmd.arg = from;
+ //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
+ cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
+ err = mmc_wait_for_cmd(card->host, &cmd, 0);
+ if (err) {
+ pr_err("mmc_erase: group start error %d, "
+ "status %#x\n", err, cmd.resp[0]);
+ err = -EIO;
+ goto out;
+ }
+
+ memset(&cmd, 0, sizeof(struct mmc_command));
+ if (mmc_card_sd(card))
+ cmd.opcode = SD_ERASE_WR_BLK_END;
+ else
+ cmd.opcode = MMC_ERASE_GROUP_END;
+ cmd.arg = to;
+ //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
+ cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
+ err = mmc_wait_for_cmd(card->host, &cmd, 0);
+ if (err) {
+ pr_err("mmc_erase: group end error %d, status %#x\n",
+ err, cmd.resp[0]);
+ err = -EIO;
+ goto out;
+ }
+
+ memset(&cmd, 0, sizeof(struct mmc_command));
+ cmd.opcode = MMC_ERASE;
+ cmd.arg = arg;
+ //cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
+ cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
+ cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
+ err = mmc_wait_for_cmd(card->host, &cmd, 0);
+ if (err) {
+ pr_err("mmc_erase: erase error %d, status %#x\n",
+ err, cmd.resp[0]);
+ err = -EIO;
+ goto out;
+ }
+
+ if (mmc_host_is_spi(card->host))
+ goto out;
+
+ do {
+ memset(&cmd, 0, sizeof(struct mmc_command));
+ cmd.opcode = MMC_SEND_STATUS;
+ cmd.arg = card->rca << 16;
+ cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
+ /* Do not retry else we can't see errors */
+ err = mmc_wait_for_cmd(card->host, &cmd, 0);
+ if (err || (cmd.resp[0] & 0xFDF92000)) {
+ pr_err("error %d requesting status %#x\n",
+ err, cmd.resp[0]);
+ err = -EIO;
+ goto out;
+ }
+ } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
+ R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
+out:
+ return err;
+}
+
+/**
+ * mmc_erase - erase sectors.
+ * @card: card to erase
+ * @from: first sector to erase
+ * @nr: number of sectors to erase
+ * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
+ *
+ * Caller must claim host before calling this function.
+ */
+int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
+ unsigned int arg)
+{
+ unsigned int rem, to = from + nr;
+ int ret;
+
+ DBG("[%s] s\n",__func__);
+
+ if (!(card->host->caps & MMC_CAP_ERASE) ||
+ !(card->csd.cmdclass & CCC_ERASE)) {
+ DBG("[%s] e1\n",__func__);
+ return -EOPNOTSUPP;
+ }
+
+ if (!card->erase_size) {
+ DBG("[%s] e2\n",__func__);
+ return -EOPNOTSUPP;
+ }
+
+ if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) {
+ DBG("[%s] e3\n",__func__);
+ return -EOPNOTSUPP;
+ }
+
+ if ((arg & MMC_SECURE_ARGS) &&
+ !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) {
+ DBG("[%s] e4\n",__func__);
+ return -EOPNOTSUPP;
+ }
+
+ if ((arg & MMC_TRIM_ARGS) &&
+ !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) {
+ DBG("[%s] e5\n",__func__);
+ return -EOPNOTSUPP;
+ }
+
+ if (arg == MMC_SECURE_ERASE_ARG) {
+ if (from % card->erase_size || nr % card->erase_size) {
+ DBG("[%s] e6\n",__func__);
+ return -EINVAL;
+ }
+ }
+
+ if (arg == MMC_ERASE_ARG) {
+ rem = from % card->erase_size;
+ if (rem) {
+ rem = card->erase_size - rem;
+ from += rem;
+ if (nr > rem)
+ nr -= rem;
+ else {
+ DBG("[%s] e7\n",__func__);
+ return 0;
+ }
+ }
+ rem = nr % card->erase_size;
+ if (rem)
+ nr -= rem;
+ }
+
+ if (nr == 0) {
+ DBG("[%s] e8\n",__func__);
+ return 0;
+ }
+
+ to = from + nr;
+
+ if (to <= from) {
+ DBG("[%s] e9\n",__func__);
+ return -EINVAL;
+ }
+
+ /* 'from' and 'to' are inclusive */
+ to -= 1;
+
+ ret = mmc_do_erase(card, from, to, arg);
+ DBG("[%s] e10\n",__func__);
+ /*return mmc_do_erase(card, from, to, arg);*/
+ return ret;
+}
+EXPORT_SYMBOL(mmc_erase);
+
+int mmc_can_erase(struct mmc_card *card)
+{
+ DBG("[%s] s\n",__func__);
+
+ if ((card->host->caps & MMC_CAP_ERASE) &&
+ (card->csd.cmdclass & CCC_ERASE) && card->erase_size) {
+ DBG("[%s] e1\n",__func__);
+ return 1;
+ }
+ DBG("[%s] e2\n",__func__);
+ return 0;
+}
+EXPORT_SYMBOL(mmc_can_erase);
+
+int mmc_can_trim(struct mmc_card *card)
+{
+ DBG("[%s] s\n",__func__);
+
+ if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) {
+ DBG("[%s] e1\n",__func__);
+ return 1;
+ }
+
+ DBG("[%s] e2\n",__func__);
+ return 0;
+}
+EXPORT_SYMBOL(mmc_can_trim);
+
+int mmc_can_discard(struct mmc_card *card)
+{
+ DBG("[%s] s\n",__func__);
+ /*
+ * As there's no way to detect the discard support bit at v4.5
+ * use the s/w feature support filed.
+ */
+ if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) {
+ DBG("[%s] e1\n",__func__);
+ return 1;
+ }
+ DBG("[%s] e2\n",__func__);
+ return 0;
+}
+EXPORT_SYMBOL(mmc_can_discard);
+
+int mmc_can_sanitize(struct mmc_card *card)
+{
+ DBG("[%s] s\n",__func__);
+ if (!mmc_can_trim(card) && !mmc_can_erase(card)) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+ if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) {
+ DBG("[%s] e2\n",__func__);
+ return 1;
+ }
+ DBG("[%s] e3\n",__func__);
+ return 0;
+}
+EXPORT_SYMBOL(mmc_can_sanitize);
+
+int mmc_can_secure_erase_trim(struct mmc_card *card)
+{
+ DBG("[%s] s\n",__func__);
+
+ if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) {
+ DBG("[%s] e1\n",__func__);
+ return 1;
+ }
+ DBG("[%s] e2\n",__func__);
+ return 0;
+}
+EXPORT_SYMBOL(mmc_can_secure_erase_trim);
+
+int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
+ unsigned int nr)
+{
+ DBG("[%s] s\n",__func__);
+ if (!card->erase_size) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+ if (from % card->erase_size || nr % card->erase_size) {
+ DBG("[%s] e2\n",__func__);
+ return 0;
+ }
+ DBG("[%s] e3\n",__func__);
+ return 1;
+}
+EXPORT_SYMBOL(mmc_erase_group_aligned);
+
+static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
+ unsigned int arg)
+{
+ struct mmc_host *host = card->host;
+ unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
+ unsigned int last_timeout = 0;
+
+ DBG("[%s] s\n",__func__);
+
+ if (card->erase_shift)
+ max_qty = UINT_MAX >> card->erase_shift;
+ else if (mmc_card_sd(card))
+ max_qty = UINT_MAX;
+ else
+ max_qty = UINT_MAX / card->erase_size;
+
+ /* Find the largest qty with an OK timeout */
+ do {
+ y = 0;
+ for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
+ timeout = mmc_erase_timeout(card, arg, qty + x);
+ if (timeout > host->max_discard_to)
+ break;
+ if (timeout < last_timeout)
+ break;
+ last_timeout = timeout;
+ y = x;
+ }
+ qty += y;
+ } while (y);
+
+ if (!qty) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+
+ if (qty == 1) {
+ DBG("[%s] e2\n",__func__);
+ return 1;
+ }
+
+ /* Convert qty to sectors */
+ if (card->erase_shift)
+ max_discard = --qty << card->erase_shift;
+ else if (mmc_card_sd(card))
+ max_discard = qty;
+ else
+ max_discard = --qty * card->erase_size;
+
+ DBG("[%s] e3\n",__func__);
+ return max_discard;
+}
+
+unsigned int mmc_calc_max_discard(struct mmc_card *card)
+{
+ struct mmc_host *host = card->host;
+ unsigned int max_discard, max_trim;
+ DBG("[%s] s\n",__func__);
+ if (!host->max_discard_to) {
+ DBG("[%s] e1\n",__func__);
+ return UINT_MAX;
+ }
+
+ /*
+ * Without erase_group_def set, MMC erase timeout depends on clock
+ * frequence which can change. In that case, the best choice is
+ * just the preferred erase size.
+ */
+ if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) {
+ DBG("[%s] e2\n",__func__);
+ return card->pref_erase;
+ }
+
+ max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
+ if (mmc_can_trim(card)) {
+ max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
+ if (max_trim < max_discard)
+ max_discard = max_trim;
+ } else if (max_discard < card->erase_size) {
+ max_discard = 0;
+ }
+ pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
+ mmc_hostname(host), max_discard, host->max_discard_to);
+ DBG("[%s] e3\n",__func__);
+ return max_discard;
+}
+EXPORT_SYMBOL(mmc_calc_max_discard);
+
+int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
+{
+ struct mmc_command cmd = {0};
+ int ret;
+
+ DBG("[%s] s\n",__func__);
+
+ if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+
+ cmd.opcode = MMC_SET_BLOCKLEN;
+ cmd.arg = blocklen;
+ //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
+ cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
+ ret = mmc_wait_for_cmd(card->host, &cmd, 5);
+
+ /*return mmc_wait_for_cmd(card->host, &cmd, 5);*/
+ DBG("[%s] e1\n",__func__);
+ return ret;
+}
+EXPORT_SYMBOL(mmc_set_blocklen);
+
+static void mmc_hw_reset_for_init(struct mmc_host *host)
+{
+ DBG("[%s] s\n",__func__);
+
+ if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) {
+ DBG("[%s] e1\n",__func__);
+ return;
+ }
+ mmc_host_clk_hold(host);
+ host->ops->hw_reset(host);
+ mmc_host_clk_release(host);
+ DBG("[%s] e2\n",__func__);
+}
+
+int mmc_can_reset(struct mmc_card *card)
+{
+ u8 rst_n_function;
+
+ DBG("[%s] s\n",__func__);
+
+ if (!mmc_card_mmc(card)) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+ rst_n_function = card->ext_csd.rst_n_function;
+ if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) {
+ DBG("[%s] e2\n",__func__);
+ return 0;
+ }
+ DBG("[%s] e3\n",__func__);
+ return 1;
+}
+EXPORT_SYMBOL(mmc_can_reset);
+
+static int mmc_do_hw_reset(struct mmc_host *host, int check)
+{
+ struct mmc_card *card = host->card;
+ DBG("[%s] s\n",__func__);
+ if (!host->bus_ops->power_restore) {
+ DBG("[%s] e1\n",__func__);
+ return -EOPNOTSUPP;
+ }
+
+ if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) {
+ DBG("[%s] e2\n",__func__);
+ return -EOPNOTSUPP;
+ }
+
+ if (!card) {
+ DBG("[%s] e3\n",__func__);
+ return -EINVAL;
+ }
+
+ if (!mmc_can_reset(card)) {
+ DBG("[%s] e4\n",__func__);
+ return -EOPNOTSUPP;
+ }
+
+ mmc_host_clk_hold(host);
+ mmc_set_clock(host, host->f_init);
+
+ host->ops->hw_reset(host);
+
+ /* If the reset has happened, then a status command will fail */
+ if (check) {
+ struct mmc_command cmd = {0};
+ int err;
+
+ cmd.opcode = MMC_SEND_STATUS;
+ if (!mmc_host_is_spi(card->host))
+ cmd.arg = card->rca << 16;
+ //cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
+ cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
+ err = mmc_wait_for_cmd(card->host, &cmd, 0);
+ if (!err) {
+ mmc_host_clk_release(host);
+ DBG("[%s] e5\n",__func__);
+ return -ENOSYS;
+ }
+ }
+
+ host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
+ if (mmc_host_is_spi(host)) {
+ host->ios.chip_select = MMC_CS_HIGH;
+ host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
+ } else {
+ host->ios.chip_select = MMC_CS_DONTCARE;
+ host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
+ }
+ host->ios.bus_width = MMC_BUS_WIDTH_1;
+ host->ios.timing = MMC_TIMING_LEGACY;
+ mmc_set_ios(host);
+
+ mmc_host_clk_release(host);
+ DBG("[%s] e6\n",__func__);
+ return host->bus_ops->power_restore(host);
+}
+
+int mmc_hw_reset(struct mmc_host *host)
+{
+ DBG("[%s] s\n",__func__);
+ return mmc_do_hw_reset(host, 0);
+}
+EXPORT_SYMBOL(mmc_hw_reset);
+
+int mmc_hw_reset_check(struct mmc_host *host)
+{
+ DBG("[%s] s\n",__func__);
+ return mmc_do_hw_reset(host, 1);
+}
+EXPORT_SYMBOL(mmc_hw_reset_check);
+
+static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
+{
+ DBG("[%s] s\n",__func__);
+
+ host->f_init = freq;
+
+#ifdef CONFIG_MMC_DEBUG
+ pr_info("%s: %s: trying to init card at %u Hz\n",
+ mmc_hostname(host), __func__, host->f_init);
+#endif
+ mmc_power_up(host);
+
+ /*
+ * Some eMMCs (with VCCQ always on) may not be reset after power up, so
+ * do a hardware reset if possible.
+ */
+ mmc_hw_reset_for_init(host);
+
+ /* Initialization should be done at 3.3 V I/O voltage. */
+ mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
+
+ /*
+ * sdio_reset sends CMD52 to reset card. Since we do not know
+ * if the card is being re-initialized, just send it. CMD52
+ * should be ignored by SD/eMMC cards.
+ */
+ sdio_reset(host);
+ mmc_go_idle(host);
+
+ mmc_send_if_cond(host, host->ocr_avail);
+
+ /* Order's important: probe SDIO, then SD, then MMC */
+ if (!mmc_attach_sdio(host)) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+ if (!mmc_attach_sd(host)) {
+ DBG("[%s] e2\n",__func__);
+ return 0;
+ }
+ if (!mmc_attach_mmc(host)) {
+ DBG("[%s] e3\n",__func__);
+ return 0;
+ }
+
+ mmc_power_off(host);
+ DBG("[%s] e4\n",__func__);
+ return -EIO;
+}
+
+int _mmc_detect_card_removed(struct mmc_host *host)
+{
+ int ret;
+
+ DBG("[%s] s\n",__func__);
+ if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+
+ if (!host->card || mmc_card_removed(host->card)) {
+ DBG("[%s] e2\n",__func__);
+ return 1;
+ }
+
+ ret = host->bus_ops->alive(host);
+ if (ret) {
+ mmc_card_set_removed(host->card);
+ pr_debug("%s: card remove detected\n", mmc_hostname(host));
+ }
+ DBG("[%s] e3\n",__func__);
+ return ret;
+}
+
+int mmc_detect_card_removed(struct mmc_host *host)
+{
+ struct mmc_card *card = host->card;
+ int ret;
+
+ DBG("[%s] s\n",__func__);
+
+ WARN_ON(!host->claimed);
+
+ if (!card) {
+ DBG("[%s] e1\n",__func__);
+ return 1;
+ }
+ ret = mmc_card_removed(card);
+ /*
+ * The card will be considered unchanged unless we have been asked to
+ * detect a change or host requires polling to provide card detection.
+ */
+ if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
+ !(host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
+ DBG("[%s] e2\n",__func__);
+ return ret;
+ }
+
+ host->detect_change = 0;
+ if (!ret) {
+ ret = _mmc_detect_card_removed(host);
+ if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
+ /*
+ * Schedule a detect work as soon as possible to let a
+ * rescan handle the card removal.
+ */
+ cancel_delayed_work(&host->detect);
+ mmc_detect_change(host, 0);
+ }
+ }
+ DBG("[%s] e3\n",__func__);
+ return ret;
+}
+EXPORT_SYMBOL(mmc_detect_card_removed);
+
+void mmc_rescan(struct work_struct *work)
+{
+ static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
+ struct mmc_host *host =
+ container_of(work, struct mmc_host, detect.work);
+ int i;
+ bool extend_wakelock = false;
+ struct atsmb_host *atsmb_host = mmc_priv(host);
+ int retry = 5;
+
+ DBG("[%s] s\n",__func__);
+ host->card_scan_status = false;
+
+ if (host->rescan_disable)
+ return;
+
+ while(retry > 0) {
+ retry--;
+ mmc_bus_get(host);
+
+ /*
+ * if there is a _removable_ card registered, check whether it is
+ * still present
+ */
+ if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
+ && !(host->caps & MMC_CAP_NONREMOVABLE))
+ host->bus_ops->detect(host);
+
+ host->detect_change = 0;
+
+ /* If the card was removed the bus will be marked
+ * as dead - extend the wakelock so userspace
+ * can respond */
+ if (host->bus_dead)
+ extend_wakelock = 1;
+
+ /*
+ * Let mmc_bus_put() free the bus/bus_ops if we've found that
+ * the card is no longer present.
+ */
+ mmc_bus_put(host);
+ mmc_bus_get(host);
+
+ /* if there still is a card present, stop here */
+ if (host->bus_ops != NULL) {
+ mmc_bus_put(host);
+ goto out;
+ }
+
+ /*
+ * Only we can add a new handler, so it's safe to
+ * release the lock here.
+ */
+ mmc_bus_put(host);
+
+ if (host->ops->get_cd && host->ops->get_cd(host) == 0)
+ goto out;
+
+ mmc_claim_host(host);
+ for (i = 0; i < ARRAY_SIZE(freqs); i++) {
+ if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) {
+ extend_wakelock = true;
+ break;
+ }
+ if (freqs[i] <= host->f_min)
+ break;
+ }
+ mmc_release_host(host);
+
+ out:
+ if (extend_wakelock)
+ wake_lock_timeout(&host->detect_wake_lock, HZ / 2);
+ else
+ wake_unlock(&host->detect_wake_lock);
+ if (host->caps & MMC_CAP_NEEDS_POLL) {
+ wake_lock(&host->detect_wake_lock);
+ mmc_schedule_delayed_work(&host->detect, HZ);
+ }
+
+ DBG("[%s]retry = %d slot = %x power = %x\n",
+ __func__,retry,host->ops->get_slot_status(host),
+ host->ios.power_mode);
+
+ if((host->ops->get_slot_status(host) == 0) ||
+ (host->ios.power_mode != MMC_POWER_OFF))
+ break;
+
+ msleep(1000);
+
+ }
+ if (host->ios.power_mode != MMC_POWER_OFF)
+ host->card_scan_status = true;
+ printk("SD%d Host Clock %dHz\n",host->wmt_host_index, atsmb_host->current_clock);
+
+ DBG("[%s] e\n",__func__);
+}
+
+void mmc_start_host(struct mmc_host *host,bool detect)
+{
+ DBG("[%s] s\n",__func__);
+
+ mmc_power_off(host);
+ if (detect == true)
+ mmc_detect_change(host, 0);
+
+ DBG("[%s] e\n",__func__);
+}
+
+void mmc_stop_host(struct mmc_host *host)
+{
+ DBG("[%s] s\n",__func__);
+#ifdef CONFIG_MMC_DEBUG
+ unsigned long flags;
+ spin_lock_irqsave(&host->lock, flags);
+ host->removed = 1;
+ spin_unlock_irqrestore(&host->lock, flags);
+#endif
+
+ if (cancel_delayed_work_sync(&host->detect))
+ wake_unlock(&host->detect_wake_lock);
+ mmc_flush_scheduled_work();
+
+ /* clear pm flags now and let card drivers set them as needed */
+ host->pm_flags = 0;
+
+ mmc_bus_get(host);
+ if (host->bus_ops && !host->bus_dead) {
+ /* Calling bus_ops->remove() with a claimed host can deadlock */
+ if (host->bus_ops->remove)
+ host->bus_ops->remove(host);
+
+ mmc_claim_host(host);
+ mmc_detach_bus(host);
+ mmc_power_off(host);
+ mmc_release_host(host);
+ mmc_bus_put(host);
+ DBG("[%s] e1\n",__func__);
+ return;
+ }
+ mmc_bus_put(host);
+
+ BUG_ON(host->card);
+
+ mmc_power_off(host);
+
+ DBG("[%s] e2\n",__func__);
+}
+
+int mmc_power_save_host(struct mmc_host *host)
+{
+ int ret = 0;
+
+ DBG("[%s] s\n",__func__);
+
+#ifdef CONFIG_MMC_DEBUG
+ pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
+#endif
+
+ mmc_bus_get(host);
+
+ if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
+ mmc_bus_put(host);
+ DBG("[%s] e1\n",__func__);
+ return -EINVAL;
+ }
+
+ if (host->bus_ops->power_save)
+ ret = host->bus_ops->power_save(host);
+
+ mmc_bus_put(host);
+
+ mmc_power_off(host);
+
+ DBG("[%s] e2\n",__func__);
+ return ret;
+}
+EXPORT_SYMBOL(mmc_power_save_host);
+
+int mmc_power_restore_host(struct mmc_host *host)
+{
+ int ret;
+
+ DBG("[%s] s\n",__func__);
+
+#ifdef CONFIG_MMC_DEBUG
+ pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
+#endif
+
+ mmc_bus_get(host);
+
+ if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
+ mmc_bus_put(host);
+ DBG("[%s] e1\n",__func__);
+ return -EINVAL;
+ }
+
+ mmc_power_up(host);
+ ret = host->bus_ops->power_restore(host);
+
+ mmc_bus_put(host);
+ DBG("[%s] e2\n",__func__);
+ return ret;
+}
+EXPORT_SYMBOL(mmc_power_restore_host);
+
+int mmc_card_awake(struct mmc_host *host)
+{
+ int err = -ENOSYS;
+
+ DBG("[%s] s\n",__func__);
+
+ if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+
+ mmc_bus_get(host);
+
+ if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
+ err = host->bus_ops->awake(host);
+
+ mmc_bus_put(host);
+
+ DBG("[%s] e2\n",__func__);
+ return err;
+}
+EXPORT_SYMBOL(mmc_card_awake);
+
+int mmc_card_sleep(struct mmc_host *host)
+{
+ int err = -ENOSYS;
+
+ DBG("[%s] s\n",__func__);
+
+ if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+
+ mmc_bus_get(host);
+
+ if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
+ err = host->bus_ops->sleep(host);
+
+ mmc_bus_put(host);
+
+ DBG("[%s] e2\n",__func__);
+ return err;
+}
+EXPORT_SYMBOL(mmc_card_sleep);
+
+int mmc_card_can_sleep(struct mmc_host *host)
+{
+ struct mmc_card *card = host->card;
+
+ DBG("[%s] s\n",__func__);
+ if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3) {
+ DBG("[%s] e1\n",__func__);
+ return 1;
+ }
+
+ DBG("[%s] e2\n",__func__);
+ return 0;
+}
+EXPORT_SYMBOL(mmc_card_can_sleep);
+
+/*
+ * Flush the cache to the non-volatile storage.
+ */
+int mmc_flush_cache(struct mmc_card *card)
+{
+ struct mmc_host *host = card->host;
+ int err = 0;
+ DBG("[%s] s\n",__func__);
+
+ if (!(host->caps2 & MMC_CAP2_CACHE_CTRL)) {
+ DBG("[%s] e1\n",__func__);
+ return err;
+ }
+
+ if (mmc_card_mmc(card) &&
+ (card->ext_csd.cache_size > 0) &&
+ (card->ext_csd.cache_ctrl & 1)) {
+ err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
+ EXT_CSD_FLUSH_CACHE, 1, 0);
+ if (err)
+ pr_err("%s: cache flush error %d\n",
+ mmc_hostname(card->host), err);
+ }
+ DBG("[%s] e2\n",__func__);
+ return err;
+}
+EXPORT_SYMBOL(mmc_flush_cache);
+
+/*
+ * Turn the cache ON/OFF.
+ * Turning the cache OFF shall trigger flushing of the data
+ * to the non-volatile storage.
+ */
+int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
+{
+ struct mmc_card *card = host->card;
+ unsigned int timeout;
+ int err = 0;
+
+ DBG("[%s] s\n",__func__);
+
+ if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
+ mmc_card_is_removable(host)) {
+ DBG("[%s] e1\n",__func__);
+ return err;
+ }
+
+ mmc_claim_host(host);
+ if (card && mmc_card_mmc(card) &&
+ (card->ext_csd.cache_size > 0)) {
+ enable = !!enable;
+
+ if (card->ext_csd.cache_ctrl ^ enable) {
+ timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
+ err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
+ EXT_CSD_CACHE_CTRL, enable, timeout);
+ if (err)
+ pr_err("%s: cache %s error %d\n",
+ mmc_hostname(card->host),
+ enable ? "on" : "off",
+ err);
+ else
+ card->ext_csd.cache_ctrl = enable;
+ }
+ }
+ mmc_release_host(host);
+ DBG("[%s] e2\n",__func__);
+ return err;
+}
+EXPORT_SYMBOL(mmc_cache_ctrl);
+
+#ifdef CONFIG_PM
+
+/**
+ * mmc_suspend_host - suspend a host
+ * @host: mmc host
+ */
+int mmc_suspend_host(struct mmc_host *host)
+{
+ int err = 0;
+
+ DBG("[%s] s\n",__func__);
+
+ if (mmc_bus_needs_resume(host)) {
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+
+ if (cancel_delayed_work(&host->detect))
+ wake_unlock(&host->detect_wake_lock);
+ mmc_flush_scheduled_work();
+
+ err = mmc_cache_ctrl(host, 0);
+ if (err)
+ goto out;
+
+ mmc_bus_get(host);
+ if (host->bus_ops && !host->bus_dead) {
+
+ if (host->bus_ops->suspend)
+ err = host->bus_ops->suspend(host);
+
+ if (err == -ENOSYS || !host->bus_ops->resume) {
+ /*
+ * We simply "remove" the card in this case.
+ * It will be redetected on resume. (Calling
+ * bus_ops->remove() with a claimed host can
+ * deadlock.)
+ */
+ if (host->bus_ops->remove)
+ host->bus_ops->remove(host);
+ mmc_claim_host(host);
+ mmc_detach_bus(host);
+ mmc_power_off(host);
+ mmc_release_host(host);
+ host->pm_flags = 0;
+ err = 0;
+ }
+ }
+ mmc_bus_put(host);
+
+ if (!err && !mmc_card_keep_power(host))
+ mmc_power_off(host);
+
+out:
+ DBG("[%s] e2\n",__func__);
+ return err;
+}
+
+EXPORT_SYMBOL(mmc_suspend_host);
+
+/**
+ * mmc_resume_host - resume a previously suspended host
+ * @host: mmc host
+ */
+int mmc_resume_host(struct mmc_host *host)
+{
+ int err = 0;
+
+ DBG("[%s] s\n",__func__);
+
+ mmc_bus_get(host);
+ if (mmc_bus_manual_resume(host)) {
+ host->bus_resume_flags |= MMC_BUSRESUME_NEEDS_RESUME;
+ mmc_bus_put(host);
+ DBG("[%s] e1\n",__func__);
+ return 0;
+ }
+
+ if (host->bus_ops && !host->bus_dead) {
+ if (!mmc_card_keep_power(host)) {
+ mmc_power_up(host);
+ mmc_select_voltage(host, host->ocr);
+ /*
+ * Tell runtime PM core we just powered up the card,
+ * since it still believes the card is powered off.
+ * Note that currently runtime PM is only enabled
+ * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
+ */
+ if (mmc_card_sdio(host->card) &&
+ (host->caps & MMC_CAP_POWER_OFF_CARD)) {
+ pm_runtime_disable(&host->card->dev);
+ pm_runtime_set_active(&host->card->dev);
+ pm_runtime_enable(&host->card->dev);
+ }
+ }
+ //kevin add for suspend&resume
+ mmc_set_ios(host);
+
+ BUG_ON(!host->bus_ops->resume);
+ err = host->bus_ops->resume(host);
+ if (err) {
+ pr_warning("%s: error %d during resume "
+ "(card was removed?)\n",
+ mmc_hostname(host), err);
+ err = 0;
+ }
+ }
+ host->pm_flags &= ~MMC_PM_KEEP_POWER;
+ mmc_bus_put(host);
+ DBG("[%s] e2\n",__func__);
+ return err;
+}
+EXPORT_SYMBOL(mmc_resume_host);
+
+/* Do the card removal on suspend if card is assumed removeable
+ * Do that in pm notifier while userspace isn't yet frozen, so we will be able
+ to sync the card.
+*/
+int mmc_pm_notify(struct notifier_block *notify_block,
+ unsigned long mode, void *unused)
+{
+ struct mmc_host *host = container_of(
+ notify_block, struct mmc_host, pm_notify);
+ unsigned long flags;
+
+ DBG("[%s] s\n",__func__);
+
+ switch (mode) {
+ case PM_HIBERNATION_PREPARE:
+ case PM_SUSPEND_PREPARE:
+
+ spin_lock_irqsave(&host->lock, flags);
+ if (mmc_bus_needs_resume(host)) {
+ spin_unlock_irqrestore(&host->lock, flags);
+ break;
+ }
+ host->rescan_disable = 1;
+ host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
+ spin_unlock_irqrestore(&host->lock, flags);
+ if (cancel_delayed_work_sync(&host->detect))
+ wake_unlock(&host->detect_wake_lock);
+
+ if (!host->bus_ops || host->bus_ops->suspend)
+ break;
+
+ /* Calling bus_ops->remove() with a claimed host can deadlock */
+ if (host->bus_ops->remove)
+ host->bus_ops->remove(host);
+
+ mmc_claim_host(host);
+ mmc_detach_bus(host);
+ mmc_power_off(host);
+ mmc_release_host(host);
+ host->pm_flags = 0;
+ break;
+
+ case PM_POST_SUSPEND:
+ case PM_POST_HIBERNATION:
+ case PM_POST_RESTORE:
+
+ spin_lock_irqsave(&host->lock, flags);
+ if (mmc_bus_manual_resume(host)) {
+ spin_unlock_irqrestore(&host->lock, flags);
+ break;
+ }
+ host->rescan_disable = 0;
+ host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
+ spin_unlock_irqrestore(&host->lock, flags);
+ if(!(host->bus_dead))
+ mmc_detect_change(host, 0);
+
+ }
+ DBG("[%s] e\n",__func__);
+ return 0;
+}
+#endif
+
+void mmc_force_remove_card(struct mmc_host *host)
+{
+ DBG("[%s] s\n",__func__);
+ mmc_bus_get(host);
+
+ if (host->bus_ops && !host->bus_dead) {
+
+ if (host->bus_ops->remove)
+ host->bus_ops->remove(host);
+ mmc_claim_host(host);
+ mmc_detach_bus(host);
+ mmc_release_host(host);
+
+ }
+ mmc_bus_put(host);
+ mmc_power_off(host);
+ DBG("[%s] e\n",__func__);
+ return ;
+}
+EXPORT_SYMBOL(mmc_force_remove_card);
+
+
+#ifdef CONFIG_MMC_EMBEDDED_SDIO
+void mmc_set_embedded_sdio_data(struct mmc_host *host,
+ struct sdio_cis *cis,
+ struct sdio_cccr *cccr,
+ struct sdio_embedded_func *funcs,
+ int num_funcs)
+{
+ DBG("[%s] s\n",__func__);
+ host->embedded_sdio_data.cis = cis;
+ host->embedded_sdio_data.cccr = cccr;
+ host->embedded_sdio_data.funcs = funcs;
+ host->embedded_sdio_data.num_funcs = num_funcs;
+ DBG("[%s] e\n",__func__);
+}
+
+EXPORT_SYMBOL(mmc_set_embedded_sdio_data);
+#endif
+
+static int __init mmc_init(void)
+{
+ int ret;
+
+ DBG("[%s] s\n",__func__);
+
+ workqueue = alloc_ordered_workqueue("kmmcd", 0);
+ if (!workqueue) {
+ DBG("[%s] e1\n",__func__);
+ return -ENOMEM;
+ }
+
+ ret = mmc_register_bus();
+ if (ret)
+ goto destroy_workqueue;
+
+ ret = mmc_register_host_class();
+ if (ret)
+ goto unregister_bus;
+
+ ret = sdio_register_bus();
+ if (ret)
+ goto unregister_host_class;
+
+ DBG("[%s] e2\n",__func__);
+ return 0;
+
+unregister_host_class:
+ mmc_unregister_host_class();
+unregister_bus:
+ mmc_unregister_bus();
+destroy_workqueue:
+ destroy_workqueue(workqueue);
+
+ DBG("[%s] e3\n",__func__);
+ return ret;
+}
+
+static void __exit mmc_exit(void)
+{
+ DBG("[%s] s\n",__func__);
+ sdio_unregister_bus();
+ mmc_unregister_host_class();
+ mmc_unregister_bus();
+ destroy_workqueue(workqueue);
+ DBG("[%s] e\n",__func__);
+}
+
+subsys_initcall(mmc_init);
+module_exit(mmc_exit);
+
+MODULE_LICENSE("GPL");