summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/nouveau/nouveau_calc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/nouveau/nouveau_calc.c')
-rw-r--r--drivers/gpu/drm/nouveau/nouveau_calc.c478
1 files changed, 478 insertions, 0 deletions
diff --git a/drivers/gpu/drm/nouveau/nouveau_calc.c b/drivers/gpu/drm/nouveau/nouveau_calc.c
new file mode 100644
index 00000000..dad96cce
--- /dev/null
+++ b/drivers/gpu/drm/nouveau/nouveau_calc.c
@@ -0,0 +1,478 @@
+/*
+ * Copyright 1993-2003 NVIDIA, Corporation
+ * Copyright 2007-2009 Stuart Bennett
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
+ * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "drmP.h"
+#include "nouveau_drv.h"
+#include "nouveau_hw.h"
+
+/****************************************************************************\
+* *
+* The video arbitration routines calculate some "magic" numbers. Fixes *
+* the snow seen when accessing the framebuffer without it. *
+* It just works (I hope). *
+* *
+\****************************************************************************/
+
+struct nv_fifo_info {
+ int lwm;
+ int burst;
+};
+
+struct nv_sim_state {
+ int pclk_khz;
+ int mclk_khz;
+ int nvclk_khz;
+ int bpp;
+ int mem_page_miss;
+ int mem_latency;
+ int memory_type;
+ int memory_width;
+ int two_heads;
+};
+
+static void
+nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
+{
+ int pagemiss, cas, width, bpp;
+ int nvclks, mclks, pclks, crtpagemiss;
+ int found, mclk_extra, mclk_loop, cbs, m1, p1;
+ int mclk_freq, pclk_freq, nvclk_freq;
+ int us_m, us_n, us_p, crtc_drain_rate;
+ int cpm_us, us_crt, clwm;
+
+ pclk_freq = arb->pclk_khz;
+ mclk_freq = arb->mclk_khz;
+ nvclk_freq = arb->nvclk_khz;
+ pagemiss = arb->mem_page_miss;
+ cas = arb->mem_latency;
+ width = arb->memory_width >> 6;
+ bpp = arb->bpp;
+ cbs = 128;
+
+ pclks = 2;
+ nvclks = 10;
+ mclks = 13 + cas;
+ mclk_extra = 3;
+ found = 0;
+
+ while (!found) {
+ found = 1;
+
+ mclk_loop = mclks + mclk_extra;
+ us_m = mclk_loop * 1000 * 1000 / mclk_freq;
+ us_n = nvclks * 1000 * 1000 / nvclk_freq;
+ us_p = nvclks * 1000 * 1000 / pclk_freq;
+
+ crtc_drain_rate = pclk_freq * bpp / 8;
+ crtpagemiss = 2;
+ crtpagemiss += 1;
+ cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
+ us_crt = cpm_us + us_m + us_n + us_p;
+ clwm = us_crt * crtc_drain_rate / (1000 * 1000);
+ clwm++;
+
+ m1 = clwm + cbs - 512;
+ p1 = m1 * pclk_freq / mclk_freq;
+ p1 = p1 * bpp / 8;
+ if ((p1 < m1 && m1 > 0) || clwm > 519) {
+ found = !mclk_extra;
+ mclk_extra--;
+ }
+ if (clwm < 384)
+ clwm = 384;
+
+ fifo->lwm = clwm;
+ fifo->burst = cbs;
+ }
+}
+
+static void
+nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
+{
+ int fill_rate, drain_rate;
+ int pclks, nvclks, mclks, xclks;
+ int pclk_freq, nvclk_freq, mclk_freq;
+ int fill_lat, extra_lat;
+ int max_burst_o, max_burst_l;
+ int fifo_len, min_lwm, max_lwm;
+ const int burst_lat = 80; /* Maximum allowable latency due
+ * to the CRTC FIFO burst. (ns) */
+
+ pclk_freq = arb->pclk_khz;
+ nvclk_freq = arb->nvclk_khz;
+ mclk_freq = arb->mclk_khz;
+
+ fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */
+ drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */
+
+ fifo_len = arb->two_heads ? 1536 : 1024; /* B */
+
+ /* Fixed FIFO refill latency. */
+
+ pclks = 4; /* lwm detect. */
+
+ nvclks = 3 /* lwm -> sync. */
+ + 2 /* fbi bus cycles (1 req + 1 busy) */
+ + 1 /* 2 edge sync. may be very close to edge so
+ * just put one. */
+ + 1 /* fbi_d_rdv_n */
+ + 1 /* Fbi_d_rdata */
+ + 1; /* crtfifo load */
+
+ mclks = 1 /* 2 edge sync. may be very close to edge so
+ * just put one. */
+ + 1 /* arb_hp_req */
+ + 5 /* tiling pipeline */
+ + 2 /* latency fifo */
+ + 2 /* memory request to fbio block */
+ + 7; /* data returned from fbio block */
+
+ /* Need to accumulate 256 bits for read */
+ mclks += (arb->memory_type == 0 ? 2 : 1)
+ * arb->memory_width / 32;
+
+ fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */
+ + nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */
+ + pclks * 1000 * 1000 / pclk_freq; /* pclk latency */
+
+ /* Conditional FIFO refill latency. */
+
+ xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to
+ * the overlay. */
+ + 2 * arb->mem_page_miss /* Extra pagemiss latency. */
+ + (arb->bpp == 32 ? 8 : 4); /* Margin of error. */
+
+ extra_lat = xclks * 1000 * 1000 / mclk_freq;
+
+ if (arb->two_heads)
+ /* Account for another CRTC. */
+ extra_lat += fill_lat + extra_lat + burst_lat;
+
+ /* FIFO burst */
+
+ /* Max burst not leading to overflows. */
+ max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000))
+ * (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000);
+ fifo->burst = min(max_burst_o, 1024);
+
+ /* Max burst value with an acceptable latency. */
+ max_burst_l = burst_lat * fill_rate / (1000 * 1000);
+ fifo->burst = min(max_burst_l, fifo->burst);
+
+ fifo->burst = rounddown_pow_of_two(fifo->burst);
+
+ /* FIFO low watermark */
+
+ min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1;
+ max_lwm = fifo_len - fifo->burst
+ + fill_lat * drain_rate / (1000 * 1000)
+ + fifo->burst * drain_rate / fill_rate;
+
+ fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */
+}
+
+static void
+nv04_update_arb(struct drm_device *dev, int VClk, int bpp,
+ int *burst, int *lwm)
+{
+ struct drm_nouveau_private *dev_priv = dev->dev_private;
+ struct nv_fifo_info fifo_data;
+ struct nv_sim_state sim_data;
+ int MClk = nouveau_hw_get_clock(dev, PLL_MEMORY);
+ int NVClk = nouveau_hw_get_clock(dev, PLL_CORE);
+ uint32_t cfg1 = nvReadFB(dev, NV04_PFB_CFG1);
+
+ sim_data.pclk_khz = VClk;
+ sim_data.mclk_khz = MClk;
+ sim_data.nvclk_khz = NVClk;
+ sim_data.bpp = bpp;
+ sim_data.two_heads = nv_two_heads(dev);
+ if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ ||
+ (dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) {
+ uint32_t type;
+
+ pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type);
+
+ sim_data.memory_type = (type >> 12) & 1;
+ sim_data.memory_width = 64;
+ sim_data.mem_latency = 3;
+ sim_data.mem_page_miss = 10;
+ } else {
+ sim_data.memory_type = nvReadFB(dev, NV04_PFB_CFG0) & 0x1;
+ sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64;
+ sim_data.mem_latency = cfg1 & 0xf;
+ sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1);
+ }
+
+ if (dev_priv->card_type == NV_04)
+ nv04_calc_arb(&fifo_data, &sim_data);
+ else
+ nv10_calc_arb(&fifo_data, &sim_data);
+
+ *burst = ilog2(fifo_data.burst >> 4);
+ *lwm = fifo_data.lwm >> 3;
+}
+
+static void
+nv20_update_arb(int *burst, int *lwm)
+{
+ unsigned int fifo_size, burst_size, graphics_lwm;
+
+ fifo_size = 2048;
+ burst_size = 512;
+ graphics_lwm = fifo_size - burst_size;
+
+ *burst = ilog2(burst_size >> 5);
+ *lwm = graphics_lwm >> 3;
+}
+
+void
+nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm)
+{
+ struct drm_nouveau_private *dev_priv = dev->dev_private;
+
+ if (dev_priv->card_type < NV_20)
+ nv04_update_arb(dev, vclk, bpp, burst, lwm);
+ else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ ||
+ (dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) {
+ *burst = 128;
+ *lwm = 0x0480;
+ } else
+ nv20_update_arb(burst, lwm);
+}
+
+static int
+getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
+ struct nouveau_pll_vals *bestpv)
+{
+ /* Find M, N and P for a single stage PLL
+ *
+ * Note that some bioses (NV3x) have lookup tables of precomputed MNP
+ * values, but we're too lazy to use those atm
+ *
+ * "clk" parameter in kHz
+ * returns calculated clock
+ */
+ struct drm_nouveau_private *dev_priv = dev->dev_private;
+ int cv = dev_priv->vbios.chip_version;
+ int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq;
+ int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m;
+ int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n;
+ int minU = pll_lim->vco1.min_inputfreq;
+ int maxU = pll_lim->vco1.max_inputfreq;
+ int minP = pll_lim->max_p ? pll_lim->min_p : 0;
+ int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p;
+ int crystal = pll_lim->refclk;
+ int M, N, thisP, P;
+ int clkP, calcclk;
+ int delta, bestdelta = INT_MAX;
+ int bestclk = 0;
+
+ /* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */
+ /* possibly correlated with introduction of 27MHz crystal */
+ if (dev_priv->card_type < NV_50) {
+ if (cv < 0x17 || cv == 0x1a || cv == 0x20) {
+ if (clk > 250000)
+ maxM = 6;
+ if (clk > 340000)
+ maxM = 2;
+ } else if (cv < 0x40) {
+ if (clk > 150000)
+ maxM = 6;
+ if (clk > 200000)
+ maxM = 4;
+ if (clk > 340000)
+ maxM = 2;
+ }
+ }
+
+ P = pll_lim->max_p ? maxP : (1 << maxP);
+ if ((clk * P) < minvco) {
+ minvco = clk * maxP;
+ maxvco = minvco * 2;
+ }
+
+ if (clk + clk/200 > maxvco) /* +0.5% */
+ maxvco = clk + clk/200;
+
+ /* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */
+ for (thisP = minP; thisP <= maxP; thisP++) {
+ P = pll_lim->max_p ? thisP : (1 << thisP);
+ clkP = clk * P;
+
+ if (clkP < minvco)
+ continue;
+ if (clkP > maxvco)
+ return bestclk;
+
+ for (M = minM; M <= maxM; M++) {
+ if (crystal/M < minU)
+ return bestclk;
+ if (crystal/M > maxU)
+ continue;
+
+ /* add crystal/2 to round better */
+ N = (clkP * M + crystal/2) / crystal;
+
+ if (N < minN)
+ continue;
+ if (N > maxN)
+ break;
+
+ /* more rounding additions */
+ calcclk = ((N * crystal + P/2) / P + M/2) / M;
+ delta = abs(calcclk - clk);
+ /* we do an exhaustive search rather than terminating
+ * on an optimality condition...
+ */
+ if (delta < bestdelta) {
+ bestdelta = delta;
+ bestclk = calcclk;
+ bestpv->N1 = N;
+ bestpv->M1 = M;
+ bestpv->log2P = thisP;
+ if (delta == 0) /* except this one */
+ return bestclk;
+ }
+ }
+ }
+
+ return bestclk;
+}
+
+static int
+getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
+ struct nouveau_pll_vals *bestpv)
+{
+ /* Find M, N and P for a two stage PLL
+ *
+ * Note that some bioses (NV30+) have lookup tables of precomputed MNP
+ * values, but we're too lazy to use those atm
+ *
+ * "clk" parameter in kHz
+ * returns calculated clock
+ */
+ struct drm_nouveau_private *dev_priv = dev->dev_private;
+ int chip_version = dev_priv->vbios.chip_version;
+ int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq;
+ int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq;
+ int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq;
+ int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq;
+ int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m;
+ int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n;
+ int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m;
+ int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n;
+ int maxlog2P = pll_lim->max_usable_log2p;
+ int crystal = pll_lim->refclk;
+ bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2);
+ int M1, N1, M2, N2, log2P;
+ int clkP, calcclk1, calcclk2, calcclkout;
+ int delta, bestdelta = INT_MAX;
+ int bestclk = 0;
+
+ int vco2 = (maxvco2 - maxvco2/200) / 2;
+ for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++)
+ ;
+ clkP = clk << log2P;
+
+ if (maxvco2 < clk + clk/200) /* +0.5% */
+ maxvco2 = clk + clk/200;
+
+ for (M1 = minM1; M1 <= maxM1; M1++) {
+ if (crystal/M1 < minU1)
+ return bestclk;
+ if (crystal/M1 > maxU1)
+ continue;
+
+ for (N1 = minN1; N1 <= maxN1; N1++) {
+ calcclk1 = crystal * N1 / M1;
+ if (calcclk1 < minvco1)
+ continue;
+ if (calcclk1 > maxvco1)
+ break;
+
+ for (M2 = minM2; M2 <= maxM2; M2++) {
+ if (calcclk1/M2 < minU2)
+ break;
+ if (calcclk1/M2 > maxU2)
+ continue;
+
+ /* add calcclk1/2 to round better */
+ N2 = (clkP * M2 + calcclk1/2) / calcclk1;
+ if (N2 < minN2)
+ continue;
+ if (N2 > maxN2)
+ break;
+
+ if (!fixedgain2) {
+ if (chip_version < 0x60)
+ if (N2/M2 < 4 || N2/M2 > 10)
+ continue;
+
+ calcclk2 = calcclk1 * N2 / M2;
+ if (calcclk2 < minvco2)
+ break;
+ if (calcclk2 > maxvco2)
+ continue;
+ } else
+ calcclk2 = calcclk1;
+
+ calcclkout = calcclk2 >> log2P;
+ delta = abs(calcclkout - clk);
+ /* we do an exhaustive search rather than terminating
+ * on an optimality condition...
+ */
+ if (delta < bestdelta) {
+ bestdelta = delta;
+ bestclk = calcclkout;
+ bestpv->N1 = N1;
+ bestpv->M1 = M1;
+ bestpv->N2 = N2;
+ bestpv->M2 = M2;
+ bestpv->log2P = log2P;
+ if (delta == 0) /* except this one */
+ return bestclk;
+ }
+ }
+ }
+ }
+
+ return bestclk;
+}
+
+int
+nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
+ struct nouveau_pll_vals *pv)
+{
+ int outclk;
+
+ if (!pll_lim->vco2.maxfreq)
+ outclk = getMNP_single(dev, pll_lim, clk, pv);
+ else
+ outclk = getMNP_double(dev, pll_lim, clk, pv);
+
+ if (!outclk)
+ NV_ERROR(dev, "Could not find a compatible set of PLL values\n");
+
+ return outclk;
+}