diff options
Diffstat (limited to 'drivers/clocksource/tcb_clksrc.c')
-rw-r--r-- | drivers/clocksource/tcb_clksrc.c | 334 |
1 files changed, 334 insertions, 0 deletions
diff --git a/drivers/clocksource/tcb_clksrc.c b/drivers/clocksource/tcb_clksrc.c new file mode 100644 index 00000000..32cb929b --- /dev/null +++ b/drivers/clocksource/tcb_clksrc.c @@ -0,0 +1,334 @@ +#include <linux/init.h> +#include <linux/clocksource.h> +#include <linux/clockchips.h> +#include <linux/interrupt.h> +#include <linux/irq.h> + +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/ioport.h> +#include <linux/io.h> +#include <linux/platform_device.h> +#include <linux/atmel_tc.h> + + +/* + * We're configured to use a specific TC block, one that's not hooked + * up to external hardware, to provide a time solution: + * + * - Two channels combine to create a free-running 32 bit counter + * with a base rate of 5+ MHz, packaged as a clocksource (with + * resolution better than 200 nsec). + * - Some chips support 32 bit counter. A single channel is used for + * this 32 bit free-running counter. the second channel is not used. + * + * - The third channel may be used to provide a 16-bit clockevent + * source, used in either periodic or oneshot mode. This runs + * at 32 KiHZ, and can handle delays of up to two seconds. + * + * A boot clocksource and clockevent source are also currently needed, + * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so + * this code can be used when init_timers() is called, well before most + * devices are set up. (Some low end AT91 parts, which can run uClinux, + * have only the timers in one TC block... they currently don't support + * the tclib code, because of that initialization issue.) + * + * REVISIT behavior during system suspend states... we should disable + * all clocks and save the power. Easily done for clockevent devices, + * but clocksources won't necessarily get the needed notifications. + * For deeper system sleep states, this will be mandatory... + */ + +static void __iomem *tcaddr; + +static cycle_t tc_get_cycles(struct clocksource *cs) +{ + unsigned long flags; + u32 lower, upper; + + raw_local_irq_save(flags); + do { + upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)); + lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV)); + } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV))); + + raw_local_irq_restore(flags); + return (upper << 16) | lower; +} + +static cycle_t tc_get_cycles32(struct clocksource *cs) +{ + return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV)); +} + +static struct clocksource clksrc = { + .name = "tcb_clksrc", + .rating = 200, + .read = tc_get_cycles, + .mask = CLOCKSOURCE_MASK(32), + .flags = CLOCK_SOURCE_IS_CONTINUOUS, +}; + +#ifdef CONFIG_GENERIC_CLOCKEVENTS + +struct tc_clkevt_device { + struct clock_event_device clkevt; + struct clk *clk; + void __iomem *regs; +}; + +static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt) +{ + return container_of(clkevt, struct tc_clkevt_device, clkevt); +} + +/* For now, we always use the 32K clock ... this optimizes for NO_HZ, + * because using one of the divided clocks would usually mean the + * tick rate can never be less than several dozen Hz (vs 0.5 Hz). + * + * A divided clock could be good for high resolution timers, since + * 30.5 usec resolution can seem "low". + */ +static u32 timer_clock; + +static void tc_mode(enum clock_event_mode m, struct clock_event_device *d) +{ + struct tc_clkevt_device *tcd = to_tc_clkevt(d); + void __iomem *regs = tcd->regs; + + if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC + || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) { + __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR)); + __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR)); + clk_disable(tcd->clk); + } + + switch (m) { + + /* By not making the gentime core emulate periodic mode on top + * of oneshot, we get lower overhead and improved accuracy. + */ + case CLOCK_EVT_MODE_PERIODIC: + clk_enable(tcd->clk); + + /* slow clock, count up to RC, then irq and restart */ + __raw_writel(timer_clock + | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, + regs + ATMEL_TC_REG(2, CMR)); + __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC)); + + /* Enable clock and interrupts on RC compare */ + __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); + + /* go go gadget! */ + __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, + regs + ATMEL_TC_REG(2, CCR)); + break; + + case CLOCK_EVT_MODE_ONESHOT: + clk_enable(tcd->clk); + + /* slow clock, count up to RC, then irq and stop */ + __raw_writel(timer_clock | ATMEL_TC_CPCSTOP + | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, + regs + ATMEL_TC_REG(2, CMR)); + __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); + + /* set_next_event() configures and starts the timer */ + break; + + default: + break; + } +} + +static int tc_next_event(unsigned long delta, struct clock_event_device *d) +{ + __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC)); + + /* go go gadget! */ + __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, + tcaddr + ATMEL_TC_REG(2, CCR)); + return 0; +} + +static struct tc_clkevt_device clkevt = { + .clkevt = { + .name = "tc_clkevt", + .features = CLOCK_EVT_FEAT_PERIODIC + | CLOCK_EVT_FEAT_ONESHOT, + .shift = 32, + /* Should be lower than at91rm9200's system timer */ + .rating = 125, + .set_next_event = tc_next_event, + .set_mode = tc_mode, + }, +}; + +static irqreturn_t ch2_irq(int irq, void *handle) +{ + struct tc_clkevt_device *dev = handle; + unsigned int sr; + + sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR)); + if (sr & ATMEL_TC_CPCS) { + dev->clkevt.event_handler(&dev->clkevt); + return IRQ_HANDLED; + } + + return IRQ_NONE; +} + +static struct irqaction tc_irqaction = { + .name = "tc_clkevt", + .flags = IRQF_TIMER | IRQF_DISABLED, + .handler = ch2_irq, +}; + +static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx) +{ + struct clk *t2_clk = tc->clk[2]; + int irq = tc->irq[2]; + + clkevt.regs = tc->regs; + clkevt.clk = t2_clk; + tc_irqaction.dev_id = &clkevt; + + timer_clock = clk32k_divisor_idx; + + clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift); + clkevt.clkevt.max_delta_ns + = clockevent_delta2ns(0xffff, &clkevt.clkevt); + clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1; + clkevt.clkevt.cpumask = cpumask_of(0); + + clockevents_register_device(&clkevt.clkevt); + + setup_irq(irq, &tc_irqaction); +} + +#else /* !CONFIG_GENERIC_CLOCKEVENTS */ + +static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx) +{ + /* NOTHING */ +} + +#endif + +static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx) +{ + /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */ + __raw_writel(mck_divisor_idx /* likely divide-by-8 */ + | ATMEL_TC_WAVE + | ATMEL_TC_WAVESEL_UP /* free-run */ + | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */ + | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */ + tcaddr + ATMEL_TC_REG(0, CMR)); + __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA)); + __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC)); + __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */ + __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); + + /* channel 1: waveform mode, input TIOA0 */ + __raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */ + | ATMEL_TC_WAVE + | ATMEL_TC_WAVESEL_UP, /* free-run */ + tcaddr + ATMEL_TC_REG(1, CMR)); + __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */ + __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR)); + + /* chain channel 0 to channel 1*/ + __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR); + /* then reset all the timers */ + __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); +} + +static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx) +{ + /* channel 0: waveform mode, input mclk/8 */ + __raw_writel(mck_divisor_idx /* likely divide-by-8 */ + | ATMEL_TC_WAVE + | ATMEL_TC_WAVESEL_UP, /* free-run */ + tcaddr + ATMEL_TC_REG(0, CMR)); + __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */ + __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); + + /* then reset all the timers */ + __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); +} + +static int __init tcb_clksrc_init(void) +{ + static char bootinfo[] __initdata + = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n"; + + struct platform_device *pdev; + struct atmel_tc *tc; + struct clk *t0_clk; + u32 rate, divided_rate = 0; + int best_divisor_idx = -1; + int clk32k_divisor_idx = -1; + int i; + + tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name); + if (!tc) { + pr_debug("can't alloc TC for clocksource\n"); + return -ENODEV; + } + tcaddr = tc->regs; + pdev = tc->pdev; + + t0_clk = tc->clk[0]; + clk_enable(t0_clk); + + /* How fast will we be counting? Pick something over 5 MHz. */ + rate = (u32) clk_get_rate(t0_clk); + for (i = 0; i < 5; i++) { + unsigned divisor = atmel_tc_divisors[i]; + unsigned tmp; + + /* remember 32 KiHz clock for later */ + if (!divisor) { + clk32k_divisor_idx = i; + continue; + } + + tmp = rate / divisor; + pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp); + if (best_divisor_idx > 0) { + if (tmp < 5 * 1000 * 1000) + continue; + } + divided_rate = tmp; + best_divisor_idx = i; + } + + + printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK, + divided_rate / 1000000, + ((divided_rate + 500000) % 1000000) / 1000); + + if (tc->tcb_config && tc->tcb_config->counter_width == 32) { + /* use apropriate function to read 32 bit counter */ + clksrc.read = tc_get_cycles32; + /* setup ony channel 0 */ + tcb_setup_single_chan(tc, best_divisor_idx); + } else { + /* tclib will give us three clocks no matter what the + * underlying platform supports. + */ + clk_enable(tc->clk[1]); + /* setup both channel 0 & 1 */ + tcb_setup_dual_chan(tc, best_divisor_idx); + } + + /* and away we go! */ + clocksource_register_hz(&clksrc, divided_rate); + + /* channel 2: periodic and oneshot timer support */ + setup_clkevents(tc, clk32k_divisor_idx); + + return 0; +} +arch_initcall(tcb_clksrc_init); |