diff options
Diffstat (limited to 'Documentation/block/cfq-iosched.txt')
-rw-r--r-- | Documentation/block/cfq-iosched.txt | 116 |
1 files changed, 116 insertions, 0 deletions
diff --git a/Documentation/block/cfq-iosched.txt b/Documentation/block/cfq-iosched.txt new file mode 100644 index 00000000..6d670f57 --- /dev/null +++ b/Documentation/block/cfq-iosched.txt @@ -0,0 +1,116 @@ +CFQ ioscheduler tunables +======================== + +slice_idle +---------- +This specifies how long CFQ should idle for next request on certain cfq queues +(for sequential workloads) and service trees (for random workloads) before +queue is expired and CFQ selects next queue to dispatch from. + +By default slice_idle is a non-zero value. That means by default we idle on +queues/service trees. This can be very helpful on highly seeky media like +single spindle SATA/SAS disks where we can cut down on overall number of +seeks and see improved throughput. + +Setting slice_idle to 0 will remove all the idling on queues/service tree +level and one should see an overall improved throughput on faster storage +devices like multiple SATA/SAS disks in hardware RAID configuration. The down +side is that isolation provided from WRITES also goes down and notion of +IO priority becomes weaker. + +So depending on storage and workload, it might be useful to set slice_idle=0. +In general I think for SATA/SAS disks and software RAID of SATA/SAS disks +keeping slice_idle enabled should be useful. For any configurations where +there are multiple spindles behind single LUN (Host based hardware RAID +controller or for storage arrays), setting slice_idle=0 might end up in better +throughput and acceptable latencies. + +CFQ IOPS Mode for group scheduling +=================================== +Basic CFQ design is to provide priority based time slices. Higher priority +process gets bigger time slice and lower priority process gets smaller time +slice. Measuring time becomes harder if storage is fast and supports NCQ and +it would be better to dispatch multiple requests from multiple cfq queues in +request queue at a time. In such scenario, it is not possible to measure time +consumed by single queue accurately. + +What is possible though is to measure number of requests dispatched from a +single queue and also allow dispatch from multiple cfq queue at the same time. +This effectively becomes the fairness in terms of IOPS (IO operations per +second). + +If one sets slice_idle=0 and if storage supports NCQ, CFQ internally switches +to IOPS mode and starts providing fairness in terms of number of requests +dispatched. Note that this mode switching takes effect only for group +scheduling. For non-cgroup users nothing should change. + +CFQ IO scheduler Idling Theory +=============================== +Idling on a queue is primarily about waiting for the next request to come +on same queue after completion of a request. In this process CFQ will not +dispatch requests from other cfq queues even if requests are pending there. + +The rationale behind idling is that it can cut down on number of seeks +on rotational media. For example, if a process is doing dependent +sequential reads (next read will come on only after completion of previous +one), then not dispatching request from other queue should help as we +did not move the disk head and kept on dispatching sequential IO from +one queue. + +CFQ has following service trees and various queues are put on these trees. + + sync-idle sync-noidle async + +All cfq queues doing synchronous sequential IO go on to sync-idle tree. +On this tree we idle on each queue individually. + +All synchronous non-sequential queues go on sync-noidle tree. Also any +request which are marked with REQ_NOIDLE go on this service tree. On this +tree we do not idle on individual queues instead idle on the whole group +of queues or the tree. So if there are 4 queues waiting for IO to dispatch +we will idle only once last queue has dispatched the IO and there is +no more IO on this service tree. + +All async writes go on async service tree. There is no idling on async +queues. + +CFQ has some optimizations for SSDs and if it detects a non-rotational +media which can support higher queue depth (multiple requests at in +flight at a time), then it cuts down on idling of individual queues and +all the queues move to sync-noidle tree and only tree idle remains. This +tree idling provides isolation with buffered write queues on async tree. + +FAQ +=== +Q1. Why to idle at all on queues marked with REQ_NOIDLE. + +A1. We only do tree idle (all queues on sync-noidle tree) on queues marked + with REQ_NOIDLE. This helps in providing isolation with all the sync-idle + queues. Otherwise in presence of many sequential readers, other + synchronous IO might not get fair share of disk. + + For example, if there are 10 sequential readers doing IO and they get + 100ms each. If a REQ_NOIDLE request comes in, it will be scheduled + roughly after 1 second. If after completion of REQ_NOIDLE request we + do not idle, and after a couple of milli seconds a another REQ_NOIDLE + request comes in, again it will be scheduled after 1second. Repeat it + and notice how a workload can lose its disk share and suffer due to + multiple sequential readers. + + fsync can generate dependent IO where bunch of data is written in the + context of fsync, and later some journaling data is written. Journaling + data comes in only after fsync has finished its IO (atleast for ext4 + that seemed to be the case). Now if one decides not to idle on fsync + thread due to REQ_NOIDLE, then next journaling write will not get + scheduled for another second. A process doing small fsync, will suffer + badly in presence of multiple sequential readers. + + Hence doing tree idling on threads using REQ_NOIDLE flag on requests + provides isolation from multiple sequential readers and at the same + time we do not idle on individual threads. + +Q2. When to specify REQ_NOIDLE +A2. I would think whenever one is doing synchronous write and not expecting + more writes to be dispatched from same context soon, should be able + to specify REQ_NOIDLE on writes and that probably should work well for + most of the cases. |