summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/run.c
diff options
context:
space:
mode:
Diffstat (limited to 'ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/run.c')
-rw-r--r--ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/run.c454
1 files changed, 454 insertions, 0 deletions
diff --git a/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/run.c b/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/run.c
new file mode 100644
index 00000000..4ddf769a
--- /dev/null
+++ b/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/run.c
@@ -0,0 +1,454 @@
+#define DEBUG
+
+#include <linux/wait.h>
+#include <linux/ptrace.h>
+
+#include <asm/spu.h>
+#include <asm/spu_priv1.h>
+#include <asm/io.h>
+#include <asm/unistd.h>
+
+#include "spufs.h"
+
+/* interrupt-level stop callback function. */
+void spufs_stop_callback(struct spu *spu, int irq)
+{
+ struct spu_context *ctx = spu->ctx;
+
+ /*
+ * It should be impossible to preempt a context while an exception
+ * is being processed, since the context switch code is specially
+ * coded to deal with interrupts ... But, just in case, sanity check
+ * the context pointer. It is OK to return doing nothing since
+ * the exception will be regenerated when the context is resumed.
+ */
+ if (ctx) {
+ /* Copy exception arguments into module specific structure */
+ switch(irq) {
+ case 0 :
+ ctx->csa.class_0_pending = spu->class_0_pending;
+ ctx->csa.class_0_dar = spu->class_0_dar;
+ break;
+ case 1 :
+ ctx->csa.class_1_dsisr = spu->class_1_dsisr;
+ ctx->csa.class_1_dar = spu->class_1_dar;
+ break;
+ case 2 :
+ break;
+ }
+
+ /* ensure that the exception status has hit memory before a
+ * thread waiting on the context's stop queue is woken */
+ smp_wmb();
+
+ wake_up_all(&ctx->stop_wq);
+ }
+}
+
+int spu_stopped(struct spu_context *ctx, u32 *stat)
+{
+ u64 dsisr;
+ u32 stopped;
+
+ stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
+ SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
+
+top:
+ *stat = ctx->ops->status_read(ctx);
+ if (*stat & stopped) {
+ /*
+ * If the spu hasn't finished stopping, we need to
+ * re-read the register to get the stopped value.
+ */
+ if (*stat & SPU_STATUS_RUNNING)
+ goto top;
+ return 1;
+ }
+
+ if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
+ return 1;
+
+ dsisr = ctx->csa.class_1_dsisr;
+ if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
+ return 1;
+
+ if (ctx->csa.class_0_pending)
+ return 1;
+
+ return 0;
+}
+
+static int spu_setup_isolated(struct spu_context *ctx)
+{
+ int ret;
+ u64 __iomem *mfc_cntl;
+ u64 sr1;
+ u32 status;
+ unsigned long timeout;
+ const u32 status_loading = SPU_STATUS_RUNNING
+ | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
+
+ ret = -ENODEV;
+ if (!isolated_loader)
+ goto out;
+
+ /*
+ * We need to exclude userspace access to the context.
+ *
+ * To protect against memory access we invalidate all ptes
+ * and make sure the pagefault handlers block on the mutex.
+ */
+ spu_unmap_mappings(ctx);
+
+ mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
+
+ /* purge the MFC DMA queue to ensure no spurious accesses before we
+ * enter kernel mode */
+ timeout = jiffies + HZ;
+ out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
+ while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
+ != MFC_CNTL_PURGE_DMA_COMPLETE) {
+ if (time_after(jiffies, timeout)) {
+ printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
+ __func__);
+ ret = -EIO;
+ goto out;
+ }
+ cond_resched();
+ }
+
+ /* clear purge status */
+ out_be64(mfc_cntl, 0);
+
+ /* put the SPE in kernel mode to allow access to the loader */
+ sr1 = spu_mfc_sr1_get(ctx->spu);
+ sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
+ spu_mfc_sr1_set(ctx->spu, sr1);
+
+ /* start the loader */
+ ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
+ ctx->ops->signal2_write(ctx,
+ (unsigned long)isolated_loader & 0xffffffff);
+
+ ctx->ops->runcntl_write(ctx,
+ SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
+
+ ret = 0;
+ timeout = jiffies + HZ;
+ while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
+ status_loading) {
+ if (time_after(jiffies, timeout)) {
+ printk(KERN_ERR "%s: timeout waiting for loader\n",
+ __func__);
+ ret = -EIO;
+ goto out_drop_priv;
+ }
+ cond_resched();
+ }
+
+ if (!(status & SPU_STATUS_RUNNING)) {
+ /* If isolated LOAD has failed: run SPU, we will get a stop-and
+ * signal later. */
+ pr_debug("%s: isolated LOAD failed\n", __func__);
+ ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
+ ret = -EACCES;
+ goto out_drop_priv;
+ }
+
+ if (!(status & SPU_STATUS_ISOLATED_STATE)) {
+ /* This isn't allowed by the CBEA, but check anyway */
+ pr_debug("%s: SPU fell out of isolated mode?\n", __func__);
+ ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
+ ret = -EINVAL;
+ goto out_drop_priv;
+ }
+
+out_drop_priv:
+ /* Finished accessing the loader. Drop kernel mode */
+ sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
+ spu_mfc_sr1_set(ctx->spu, sr1);
+
+out:
+ return ret;
+}
+
+static int spu_run_init(struct spu_context *ctx, u32 *npc)
+{
+ unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
+ int ret;
+
+ spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
+
+ /*
+ * NOSCHED is synchronous scheduling with respect to the caller.
+ * The caller waits for the context to be loaded.
+ */
+ if (ctx->flags & SPU_CREATE_NOSCHED) {
+ if (ctx->state == SPU_STATE_SAVED) {
+ ret = spu_activate(ctx, 0);
+ if (ret)
+ return ret;
+ }
+ }
+
+ /*
+ * Apply special setup as required.
+ */
+ if (ctx->flags & SPU_CREATE_ISOLATE) {
+ if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
+ ret = spu_setup_isolated(ctx);
+ if (ret)
+ return ret;
+ }
+
+ /*
+ * If userspace has set the runcntrl register (eg, to
+ * issue an isolated exit), we need to re-set it here
+ */
+ runcntl = ctx->ops->runcntl_read(ctx) &
+ (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
+ if (runcntl == 0)
+ runcntl = SPU_RUNCNTL_RUNNABLE;
+ } else {
+ unsigned long privcntl;
+
+ if (test_thread_flag(TIF_SINGLESTEP))
+ privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP;
+ else
+ privcntl = SPU_PRIVCNTL_MODE_NORMAL;
+
+ ctx->ops->privcntl_write(ctx, privcntl);
+ ctx->ops->npc_write(ctx, *npc);
+ }
+
+ ctx->ops->runcntl_write(ctx, runcntl);
+
+ if (ctx->flags & SPU_CREATE_NOSCHED) {
+ spuctx_switch_state(ctx, SPU_UTIL_USER);
+ } else {
+
+ if (ctx->state == SPU_STATE_SAVED) {
+ ret = spu_activate(ctx, 0);
+ if (ret)
+ return ret;
+ } else {
+ spuctx_switch_state(ctx, SPU_UTIL_USER);
+ }
+ }
+
+ set_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
+ return 0;
+}
+
+static int spu_run_fini(struct spu_context *ctx, u32 *npc,
+ u32 *status)
+{
+ int ret = 0;
+
+ spu_del_from_rq(ctx);
+
+ *status = ctx->ops->status_read(ctx);
+ *npc = ctx->ops->npc_read(ctx);
+
+ spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
+ clear_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
+ spu_switch_log_notify(NULL, ctx, SWITCH_LOG_EXIT, *status);
+ spu_release(ctx);
+
+ if (signal_pending(current))
+ ret = -ERESTARTSYS;
+
+ return ret;
+}
+
+/*
+ * SPU syscall restarting is tricky because we violate the basic
+ * assumption that the signal handler is running on the interrupted
+ * thread. Here instead, the handler runs on PowerPC user space code,
+ * while the syscall was called from the SPU.
+ * This means we can only do a very rough approximation of POSIX
+ * signal semantics.
+ */
+static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
+ unsigned int *npc)
+{
+ int ret;
+
+ switch (*spu_ret) {
+ case -ERESTARTSYS:
+ case -ERESTARTNOINTR:
+ /*
+ * Enter the regular syscall restarting for
+ * sys_spu_run, then restart the SPU syscall
+ * callback.
+ */
+ *npc -= 8;
+ ret = -ERESTARTSYS;
+ break;
+ case -ERESTARTNOHAND:
+ case -ERESTART_RESTARTBLOCK:
+ /*
+ * Restart block is too hard for now, just return -EINTR
+ * to the SPU.
+ * ERESTARTNOHAND comes from sys_pause, we also return
+ * -EINTR from there.
+ * Assume that we need to be restarted ourselves though.
+ */
+ *spu_ret = -EINTR;
+ ret = -ERESTARTSYS;
+ break;
+ default:
+ printk(KERN_WARNING "%s: unexpected return code %ld\n",
+ __func__, *spu_ret);
+ ret = 0;
+ }
+ return ret;
+}
+
+static int spu_process_callback(struct spu_context *ctx)
+{
+ struct spu_syscall_block s;
+ u32 ls_pointer, npc;
+ void __iomem *ls;
+ long spu_ret;
+ int ret;
+
+ /* get syscall block from local store */
+ npc = ctx->ops->npc_read(ctx) & ~3;
+ ls = (void __iomem *)ctx->ops->get_ls(ctx);
+ ls_pointer = in_be32(ls + npc);
+ if (ls_pointer > (LS_SIZE - sizeof(s)))
+ return -EFAULT;
+ memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
+
+ /* do actual syscall without pinning the spu */
+ ret = 0;
+ spu_ret = -ENOSYS;
+ npc += 4;
+
+ if (s.nr_ret < __NR_syscalls) {
+ spu_release(ctx);
+ /* do actual system call from here */
+ spu_ret = spu_sys_callback(&s);
+ if (spu_ret <= -ERESTARTSYS) {
+ ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
+ }
+ mutex_lock(&ctx->state_mutex);
+ if (ret == -ERESTARTSYS)
+ return ret;
+ }
+
+ /* need to re-get the ls, as it may have changed when we released the
+ * spu */
+ ls = (void __iomem *)ctx->ops->get_ls(ctx);
+
+ /* write result, jump over indirect pointer */
+ memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
+ ctx->ops->npc_write(ctx, npc);
+ ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
+ return ret;
+}
+
+long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
+{
+ int ret;
+ struct spu *spu;
+ u32 status;
+
+ if (mutex_lock_interruptible(&ctx->run_mutex))
+ return -ERESTARTSYS;
+
+ ctx->event_return = 0;
+
+ ret = spu_acquire(ctx);
+ if (ret)
+ goto out_unlock;
+
+ spu_enable_spu(ctx);
+
+ spu_update_sched_info(ctx);
+
+ ret = spu_run_init(ctx, npc);
+ if (ret) {
+ spu_release(ctx);
+ goto out;
+ }
+
+ do {
+ ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
+ if (unlikely(ret)) {
+ /*
+ * This is nasty: we need the state_mutex for all the
+ * bookkeeping even if the syscall was interrupted by
+ * a signal. ewww.
+ */
+ mutex_lock(&ctx->state_mutex);
+ break;
+ }
+ spu = ctx->spu;
+ if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
+ &ctx->sched_flags))) {
+ if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
+ spu_switch_notify(spu, ctx);
+ continue;
+ }
+ }
+
+ spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
+
+ if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
+ (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
+ ret = spu_process_callback(ctx);
+ if (ret)
+ break;
+ status &= ~SPU_STATUS_STOPPED_BY_STOP;
+ }
+ ret = spufs_handle_class1(ctx);
+ if (ret)
+ break;
+
+ ret = spufs_handle_class0(ctx);
+ if (ret)
+ break;
+
+ if (signal_pending(current))
+ ret = -ERESTARTSYS;
+ } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
+ SPU_STATUS_STOPPED_BY_HALT |
+ SPU_STATUS_SINGLE_STEP)));
+
+ spu_disable_spu(ctx);
+ ret = spu_run_fini(ctx, npc, &status);
+ spu_yield(ctx);
+
+ if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
+ (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100))
+ ctx->stats.libassist++;
+
+ if ((ret == 0) ||
+ ((ret == -ERESTARTSYS) &&
+ ((status & SPU_STATUS_STOPPED_BY_HALT) ||
+ (status & SPU_STATUS_SINGLE_STEP) ||
+ ((status & SPU_STATUS_STOPPED_BY_STOP) &&
+ (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
+ ret = status;
+
+ /* Note: we don't need to force_sig SIGTRAP on single-step
+ * since we have TIF_SINGLESTEP set, thus the kernel will do
+ * it upon return from the syscall anyawy
+ */
+ if (unlikely(status & SPU_STATUS_SINGLE_STEP))
+ ret = -ERESTARTSYS;
+
+ else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP)
+ && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) {
+ force_sig(SIGTRAP, current);
+ ret = -ERESTARTSYS;
+ }
+
+out:
+ *event = ctx->event_return;
+out_unlock:
+ mutex_unlock(&ctx->run_mutex);
+ return ret;
+}