diff options
Diffstat (limited to 'ANDROID_3.4.5/arch/m68k/fpsp040/bindec.S')
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/fpsp040/bindec.S | 919 |
1 files changed, 0 insertions, 919 deletions
diff --git a/ANDROID_3.4.5/arch/m68k/fpsp040/bindec.S b/ANDROID_3.4.5/arch/m68k/fpsp040/bindec.S deleted file mode 100644 index f2e79523..00000000 --- a/ANDROID_3.4.5/arch/m68k/fpsp040/bindec.S +++ /dev/null @@ -1,919 +0,0 @@ -| -| bindec.sa 3.4 1/3/91 -| -| bindec -| -| Description: -| Converts an input in extended precision format -| to bcd format. -| -| Input: -| a0 points to the input extended precision value -| value in memory; d0 contains the k-factor sign-extended -| to 32-bits. The input may be either normalized, -| unnormalized, or denormalized. -| -| Output: result in the FP_SCR1 space on the stack. -| -| Saves and Modifies: D2-D7,A2,FP2 -| -| Algorithm: -| -| A1. Set RM and size ext; Set SIGMA = sign of input. -| The k-factor is saved for use in d7. Clear the -| BINDEC_FLG for separating normalized/denormalized -| input. If input is unnormalized or denormalized, -| normalize it. -| -| A2. Set X = abs(input). -| -| A3. Compute ILOG. -| ILOG is the log base 10 of the input value. It is -| approximated by adding e + 0.f when the original -| value is viewed as 2^^e * 1.f in extended precision. -| This value is stored in d6. -| -| A4. Clr INEX bit. -| The operation in A3 above may have set INEX2. -| -| A5. Set ICTR = 0; -| ICTR is a flag used in A13. It must be set before the -| loop entry A6. -| -| A6. Calculate LEN. -| LEN is the number of digits to be displayed. The -| k-factor can dictate either the total number of digits, -| if it is a positive number, or the number of digits -| after the decimal point which are to be included as -| significant. See the 68882 manual for examples. -| If LEN is computed to be greater than 17, set OPERR in -| USER_FPSR. LEN is stored in d4. -| -| A7. Calculate SCALE. -| SCALE is equal to 10^ISCALE, where ISCALE is the number -| of decimal places needed to insure LEN integer digits -| in the output before conversion to bcd. LAMBDA is the -| sign of ISCALE, used in A9. Fp1 contains -| 10^^(abs(ISCALE)) using a rounding mode which is a -| function of the original rounding mode and the signs -| of ISCALE and X. A table is given in the code. -| -| A8. Clr INEX; Force RZ. -| The operation in A3 above may have set INEX2. -| RZ mode is forced for the scaling operation to insure -| only one rounding error. The grs bits are collected in -| the INEX flag for use in A10. -| -| A9. Scale X -> Y. -| The mantissa is scaled to the desired number of -| significant digits. The excess digits are collected -| in INEX2. -| -| A10. Or in INEX. -| If INEX is set, round error occurred. This is -| compensated for by 'or-ing' in the INEX2 flag to -| the lsb of Y. -| -| A11. Restore original FPCR; set size ext. -| Perform FINT operation in the user's rounding mode. -| Keep the size to extended. -| -| A12. Calculate YINT = FINT(Y) according to user's rounding -| mode. The FPSP routine sintd0 is used. The output -| is in fp0. -| -| A13. Check for LEN digits. -| If the int operation results in more than LEN digits, -| or less than LEN -1 digits, adjust ILOG and repeat from -| A6. This test occurs only on the first pass. If the -| result is exactly 10^LEN, decrement ILOG and divide -| the mantissa by 10. -| -| A14. Convert the mantissa to bcd. -| The binstr routine is used to convert the LEN digit -| mantissa to bcd in memory. The input to binstr is -| to be a fraction; i.e. (mantissa)/10^LEN and adjusted -| such that the decimal point is to the left of bit 63. -| The bcd digits are stored in the correct position in -| the final string area in memory. -| -| A15. Convert the exponent to bcd. -| As in A14 above, the exp is converted to bcd and the -| digits are stored in the final string. -| Test the length of the final exponent string. If the -| length is 4, set operr. -| -| A16. Write sign bits to final string. -| -| Implementation Notes: -| -| The registers are used as follows: -| -| d0: scratch; LEN input to binstr -| d1: scratch -| d2: upper 32-bits of mantissa for binstr -| d3: scratch;lower 32-bits of mantissa for binstr -| d4: LEN -| d5: LAMBDA/ICTR -| d6: ILOG -| d7: k-factor -| a0: ptr for original operand/final result -| a1: scratch pointer -| a2: pointer to FP_X; abs(original value) in ext -| fp0: scratch -| fp1: scratch -| fp2: scratch -| F_SCR1: -| F_SCR2: -| L_SCR1: -| L_SCR2: - -| Copyright (C) Motorola, Inc. 1990 -| All Rights Reserved -| -| For details on the license for this file, please see the -| file, README, in this same directory. - -|BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package - -#include "fpsp.h" - - |section 8 - -| Constants in extended precision -LOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 -LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 - -| Constants in single precision -FONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 -FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 -FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 -F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 - -RBDTBL: .byte 0,0,0,0 - .byte 3,3,2,2 - .byte 3,2,2,3 - .byte 2,3,3,2 - - |xref binstr - |xref sintdo - |xref ptenrn,ptenrm,ptenrp - - .global bindec - .global sc_mul -bindec: - moveml %d2-%d7/%a2,-(%a7) - fmovemx %fp0-%fp2,-(%a7) - -| A1. Set RM and size ext. Set SIGMA = sign input; -| The k-factor is saved for use in d7. Clear BINDEC_FLG for -| separating normalized/denormalized input. If the input -| is a denormalized number, set the BINDEC_FLG memory word -| to signal denorm. If the input is unnormalized, normalize -| the input and test for denormalized result. -| - fmovel #rm_mode,%FPCR |set RM and ext - movel (%a0),L_SCR2(%a6) |save exponent for sign check - movel %d0,%d7 |move k-factor to d7 - clrb BINDEC_FLG(%a6) |clr norm/denorm flag - movew STAG(%a6),%d0 |get stag - andiw #0xe000,%d0 |isolate stag bits - beq A2_str |if zero, input is norm -| -| Normalize the denorm -| -un_de_norm: - movew (%a0),%d0 - andiw #0x7fff,%d0 |strip sign of normalized exp - movel 4(%a0),%d1 - movel 8(%a0),%d2 -norm_loop: - subw #1,%d0 - lsll #1,%d2 - roxll #1,%d1 - tstl %d1 - bges norm_loop -| -| Test if the normalized input is denormalized -| - tstw %d0 - bgts pos_exp |if greater than zero, it is a norm - st BINDEC_FLG(%a6) |set flag for denorm -pos_exp: - andiw #0x7fff,%d0 |strip sign of normalized exp - movew %d0,(%a0) - movel %d1,4(%a0) - movel %d2,8(%a0) - -| A2. Set X = abs(input). -| -A2_str: - movel (%a0),FP_SCR2(%a6) | move input to work space - movel 4(%a0),FP_SCR2+4(%a6) | move input to work space - movel 8(%a0),FP_SCR2+8(%a6) | move input to work space - andil #0x7fffffff,FP_SCR2(%a6) |create abs(X) - -| A3. Compute ILOG. -| ILOG is the log base 10 of the input value. It is approx- -| imated by adding e + 0.f when the original value is viewed -| as 2^^e * 1.f in extended precision. This value is stored -| in d6. -| -| Register usage: -| Input/Output -| d0: k-factor/exponent -| d2: x/x -| d3: x/x -| d4: x/x -| d5: x/x -| d6: x/ILOG -| d7: k-factor/Unchanged -| a0: ptr for original operand/final result -| a1: x/x -| a2: x/x -| fp0: x/float(ILOG) -| fp1: x/x -| fp2: x/x -| F_SCR1:x/x -| F_SCR2:Abs(X)/Abs(X) with $3fff exponent -| L_SCR1:x/x -| L_SCR2:first word of X packed/Unchanged - - tstb BINDEC_FLG(%a6) |check for denorm - beqs A3_cont |if clr, continue with norm - movel #-4933,%d6 |force ILOG = -4933 - bras A4_str -A3_cont: - movew FP_SCR2(%a6),%d0 |move exp to d0 - movew #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff - fmovex FP_SCR2(%a6),%fp0 |now fp0 has 1.f - subw #0x3fff,%d0 |strip off bias - faddw %d0,%fp0 |add in exp - fsubs FONE,%fp0 |subtract off 1.0 - fbge pos_res |if pos, branch - fmulx LOG2UP1,%fp0 |if neg, mul by LOG2UP1 - fmovel %fp0,%d6 |put ILOG in d6 as a lword - bras A4_str |go move out ILOG -pos_res: - fmulx LOG2,%fp0 |if pos, mul by LOG2 - fmovel %fp0,%d6 |put ILOG in d6 as a lword - - -| A4. Clr INEX bit. -| The operation in A3 above may have set INEX2. - -A4_str: - fmovel #0,%FPSR |zero all of fpsr - nothing needed - - -| A5. Set ICTR = 0; -| ICTR is a flag used in A13. It must be set before the -| loop entry A6. The lower word of d5 is used for ICTR. - - clrw %d5 |clear ICTR - - -| A6. Calculate LEN. -| LEN is the number of digits to be displayed. The k-factor -| can dictate either the total number of digits, if it is -| a positive number, or the number of digits after the -| original decimal point which are to be included as -| significant. See the 68882 manual for examples. -| If LEN is computed to be greater than 17, set OPERR in -| USER_FPSR. LEN is stored in d4. -| -| Register usage: -| Input/Output -| d0: exponent/Unchanged -| d2: x/x/scratch -| d3: x/x -| d4: exc picture/LEN -| d5: ICTR/Unchanged -| d6: ILOG/Unchanged -| d7: k-factor/Unchanged -| a0: ptr for original operand/final result -| a1: x/x -| a2: x/x -| fp0: float(ILOG)/Unchanged -| fp1: x/x -| fp2: x/x -| F_SCR1:x/x -| F_SCR2:Abs(X) with $3fff exponent/Unchanged -| L_SCR1:x/x -| L_SCR2:first word of X packed/Unchanged - -A6_str: - tstl %d7 |branch on sign of k - bles k_neg |if k <= 0, LEN = ILOG + 1 - k - movel %d7,%d4 |if k > 0, LEN = k - bras len_ck |skip to LEN check -k_neg: - movel %d6,%d4 |first load ILOG to d4 - subl %d7,%d4 |subtract off k - addql #1,%d4 |add in the 1 -len_ck: - tstl %d4 |LEN check: branch on sign of LEN - bles LEN_ng |if neg, set LEN = 1 - cmpl #17,%d4 |test if LEN > 17 - bles A7_str |if not, forget it - movel #17,%d4 |set max LEN = 17 - tstl %d7 |if negative, never set OPERR - bles A7_str |if positive, continue - orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR - bras A7_str |finished here -LEN_ng: - moveql #1,%d4 |min LEN is 1 - - -| A7. Calculate SCALE. -| SCALE is equal to 10^ISCALE, where ISCALE is the number -| of decimal places needed to insure LEN integer digits -| in the output before conversion to bcd. LAMBDA is the sign -| of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using -| the rounding mode as given in the following table (see -| Coonen, p. 7.23 as ref.; however, the SCALE variable is -| of opposite sign in bindec.sa from Coonen). -| -| Initial USE -| FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] -| ---------------------------------------------- -| RN 00 0 0 00/0 RN -| RN 00 0 1 00/0 RN -| RN 00 1 0 00/0 RN -| RN 00 1 1 00/0 RN -| RZ 01 0 0 11/3 RP -| RZ 01 0 1 11/3 RP -| RZ 01 1 0 10/2 RM -| RZ 01 1 1 10/2 RM -| RM 10 0 0 11/3 RP -| RM 10 0 1 10/2 RM -| RM 10 1 0 10/2 RM -| RM 10 1 1 11/3 RP -| RP 11 0 0 10/2 RM -| RP 11 0 1 11/3 RP -| RP 11 1 0 11/3 RP -| RP 11 1 1 10/2 RM -| -| Register usage: -| Input/Output -| d0: exponent/scratch - final is 0 -| d2: x/0 or 24 for A9 -| d3: x/scratch - offset ptr into PTENRM array -| d4: LEN/Unchanged -| d5: 0/ICTR:LAMBDA -| d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) -| d7: k-factor/Unchanged -| a0: ptr for original operand/final result -| a1: x/ptr to PTENRM array -| a2: x/x -| fp0: float(ILOG)/Unchanged -| fp1: x/10^ISCALE -| fp2: x/x -| F_SCR1:x/x -| F_SCR2:Abs(X) with $3fff exponent/Unchanged -| L_SCR1:x/x -| L_SCR2:first word of X packed/Unchanged - -A7_str: - tstl %d7 |test sign of k - bgts k_pos |if pos and > 0, skip this - cmpl %d6,%d7 |test k - ILOG - blts k_pos |if ILOG >= k, skip this - movel %d7,%d6 |if ((k<0) & (ILOG < k)) ILOG = k -k_pos: - movel %d6,%d0 |calc ILOG + 1 - LEN in d0 - addql #1,%d0 |add the 1 - subl %d4,%d0 |sub off LEN - swap %d5 |use upper word of d5 for LAMBDA - clrw %d5 |set it zero initially - clrw %d2 |set up d2 for very small case - tstl %d0 |test sign of ISCALE - bges iscale |if pos, skip next inst - addqw #1,%d5 |if neg, set LAMBDA true - cmpl #0xffffecd4,%d0 |test iscale <= -4908 - bgts no_inf |if false, skip rest - addil #24,%d0 |add in 24 to iscale - movel #24,%d2 |put 24 in d2 for A9 -no_inf: - negl %d0 |and take abs of ISCALE -iscale: - fmoves FONE,%fp1 |init fp1 to 1 - bfextu USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits - lslw #1,%d1 |put them in bits 2:1 - addw %d5,%d1 |add in LAMBDA - lslw #1,%d1 |put them in bits 3:1 - tstl L_SCR2(%a6) |test sign of original x - bges x_pos |if pos, don't set bit 0 - addql #1,%d1 |if neg, set bit 0 -x_pos: - leal RBDTBL,%a2 |load rbdtbl base - moveb (%a2,%d1),%d3 |load d3 with new rmode - lsll #4,%d3 |put bits in proper position - fmovel %d3,%fpcr |load bits into fpu - lsrl #4,%d3 |put bits in proper position - tstb %d3 |decode new rmode for pten table - bnes not_rn |if zero, it is RN - leal PTENRN,%a1 |load a1 with RN table base - bras rmode |exit decode -not_rn: - lsrb #1,%d3 |get lsb in carry - bccs not_rp |if carry clear, it is RM - leal PTENRP,%a1 |load a1 with RP table base - bras rmode |exit decode -not_rp: - leal PTENRM,%a1 |load a1 with RM table base -rmode: - clrl %d3 |clr table index -e_loop: - lsrl #1,%d0 |shift next bit into carry - bccs e_next |if zero, skip the mul - fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) -e_next: - addl #12,%d3 |inc d3 to next pwrten table entry - tstl %d0 |test if ISCALE is zero - bnes e_loop |if not, loop - - -| A8. Clr INEX; Force RZ. -| The operation in A3 above may have set INEX2. -| RZ mode is forced for the scaling operation to insure -| only one rounding error. The grs bits are collected in -| the INEX flag for use in A10. -| -| Register usage: -| Input/Output - - fmovel #0,%FPSR |clr INEX - fmovel #rz_mode,%FPCR |set RZ rounding mode - - -| A9. Scale X -> Y. -| The mantissa is scaled to the desired number of significant -| digits. The excess digits are collected in INEX2. If mul, -| Check d2 for excess 10 exponential value. If not zero, -| the iscale value would have caused the pwrten calculation -| to overflow. Only a negative iscale can cause this, so -| multiply by 10^(d2), which is now only allowed to be 24, -| with a multiply by 10^8 and 10^16, which is exact since -| 10^24 is exact. If the input was denormalized, we must -| create a busy stack frame with the mul command and the -| two operands, and allow the fpu to complete the multiply. -| -| Register usage: -| Input/Output -| d0: FPCR with RZ mode/Unchanged -| d2: 0 or 24/unchanged -| d3: x/x -| d4: LEN/Unchanged -| d5: ICTR:LAMBDA -| d6: ILOG/Unchanged -| d7: k-factor/Unchanged -| a0: ptr for original operand/final result -| a1: ptr to PTENRM array/Unchanged -| a2: x/x -| fp0: float(ILOG)/X adjusted for SCALE (Y) -| fp1: 10^ISCALE/Unchanged -| fp2: x/x -| F_SCR1:x/x -| F_SCR2:Abs(X) with $3fff exponent/Unchanged -| L_SCR1:x/x -| L_SCR2:first word of X packed/Unchanged - -A9_str: - fmovex (%a0),%fp0 |load X from memory - fabsx %fp0 |use abs(X) - tstw %d5 |LAMBDA is in lower word of d5 - bne sc_mul |if neg (LAMBDA = 1), scale by mul - fdivx %fp1,%fp0 |calculate X / SCALE -> Y to fp0 - bras A10_st |branch to A10 - -sc_mul: - tstb BINDEC_FLG(%a6) |check for denorm - beqs A9_norm |if norm, continue with mul - fmovemx %fp1-%fp1,-(%a7) |load ETEMP with 10^ISCALE - movel 8(%a0),-(%a7) |load FPTEMP with input arg - movel 4(%a0),-(%a7) - movel (%a0),-(%a7) - movel #18,%d3 |load count for busy stack -A9_loop: - clrl -(%a7) |clear lword on stack - dbf %d3,A9_loop - moveb VER_TMP(%a6),(%a7) |write current version number - moveb #BUSY_SIZE-4,1(%a7) |write current busy size - moveb #0x10,0x44(%a7) |set fcefpte[15] bit - movew #0x0023,0x40(%a7) |load cmdreg1b with mul command - moveb #0xfe,0x8(%a7) |load all 1s to cu savepc - frestore (%a7)+ |restore frame to fpu for completion - fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 - fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 - bras A10_st -A9_norm: - tstw %d2 |test for small exp case - beqs A9_con |if zero, continue as normal - fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 - fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 -A9_con: - fmulx %fp1,%fp0 |calculate X * SCALE -> Y to fp0 - - -| A10. Or in INEX. -| If INEX is set, round error occurred. This is compensated -| for by 'or-ing' in the INEX2 flag to the lsb of Y. -| -| Register usage: -| Input/Output -| d0: FPCR with RZ mode/FPSR with INEX2 isolated -| d2: x/x -| d3: x/x -| d4: LEN/Unchanged -| d5: ICTR:LAMBDA -| d6: ILOG/Unchanged -| d7: k-factor/Unchanged -| a0: ptr for original operand/final result -| a1: ptr to PTENxx array/Unchanged -| a2: x/ptr to FP_SCR2(a6) -| fp0: Y/Y with lsb adjusted -| fp1: 10^ISCALE/Unchanged -| fp2: x/x - -A10_st: - fmovel %FPSR,%d0 |get FPSR - fmovex %fp0,FP_SCR2(%a6) |move Y to memory - leal FP_SCR2(%a6),%a2 |load a2 with ptr to FP_SCR2 - btstl #9,%d0 |check if INEX2 set - beqs A11_st |if clear, skip rest - oril #1,8(%a2) |or in 1 to lsb of mantissa - fmovex FP_SCR2(%a6),%fp0 |write adjusted Y back to fpu - - -| A11. Restore original FPCR; set size ext. -| Perform FINT operation in the user's rounding mode. Keep -| the size to extended. The sintdo entry point in the sint -| routine expects the FPCR value to be in USER_FPCR for -| mode and precision. The original FPCR is saved in L_SCR1. - -A11_st: - movel USER_FPCR(%a6),L_SCR1(%a6) |save it for later - andil #0x00000030,USER_FPCR(%a6) |set size to ext, -| ;block exceptions - - -| A12. Calculate YINT = FINT(Y) according to user's rounding mode. -| The FPSP routine sintd0 is used. The output is in fp0. -| -| Register usage: -| Input/Output -| d0: FPSR with AINEX cleared/FPCR with size set to ext -| d2: x/x/scratch -| d3: x/x -| d4: LEN/Unchanged -| d5: ICTR:LAMBDA/Unchanged -| d6: ILOG/Unchanged -| d7: k-factor/Unchanged -| a0: ptr for original operand/src ptr for sintdo -| a1: ptr to PTENxx array/Unchanged -| a2: ptr to FP_SCR2(a6)/Unchanged -| a6: temp pointer to FP_SCR2(a6) - orig value saved and restored -| fp0: Y/YINT -| fp1: 10^ISCALE/Unchanged -| fp2: x/x -| F_SCR1:x/x -| F_SCR2:Y adjusted for inex/Y with original exponent -| L_SCR1:x/original USER_FPCR -| L_SCR2:first word of X packed/Unchanged - -A12_st: - moveml %d0-%d1/%a0-%a1,-(%a7) |save regs used by sintd0 - movel L_SCR1(%a6),-(%a7) - movel L_SCR2(%a6),-(%a7) - leal FP_SCR2(%a6),%a0 |a0 is ptr to F_SCR2(a6) - fmovex %fp0,(%a0) |move Y to memory at FP_SCR2(a6) - tstl L_SCR2(%a6) |test sign of original operand - bges do_fint |if pos, use Y - orl #0x80000000,(%a0) |if neg, use -Y -do_fint: - movel USER_FPSR(%a6),-(%a7) - bsr sintdo |sint routine returns int in fp0 - moveb (%a7),USER_FPSR(%a6) - addl #4,%a7 - movel (%a7)+,L_SCR2(%a6) - movel (%a7)+,L_SCR1(%a6) - moveml (%a7)+,%d0-%d1/%a0-%a1 |restore regs used by sint - movel L_SCR2(%a6),FP_SCR2(%a6) |restore original exponent - movel L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR - - -| A13. Check for LEN digits. -| If the int operation results in more than LEN digits, -| or less than LEN -1 digits, adjust ILOG and repeat from -| A6. This test occurs only on the first pass. If the -| result is exactly 10^LEN, decrement ILOG and divide -| the mantissa by 10. The calculation of 10^LEN cannot -| be inexact, since all powers of ten up to 10^27 are exact -| in extended precision, so the use of a previous power-of-ten -| table will introduce no error. -| -| -| Register usage: -| Input/Output -| d0: FPCR with size set to ext/scratch final = 0 -| d2: x/x -| d3: x/scratch final = x -| d4: LEN/LEN adjusted -| d5: ICTR:LAMBDA/LAMBDA:ICTR -| d6: ILOG/ILOG adjusted -| d7: k-factor/Unchanged -| a0: pointer into memory for packed bcd string formation -| a1: ptr to PTENxx array/Unchanged -| a2: ptr to FP_SCR2(a6)/Unchanged -| fp0: int portion of Y/abs(YINT) adjusted -| fp1: 10^ISCALE/Unchanged -| fp2: x/10^LEN -| F_SCR1:x/x -| F_SCR2:Y with original exponent/Unchanged -| L_SCR1:original USER_FPCR/Unchanged -| L_SCR2:first word of X packed/Unchanged - -A13_st: - swap %d5 |put ICTR in lower word of d5 - tstw %d5 |check if ICTR = 0 - bne not_zr |if non-zero, go to second test -| -| Compute 10^(LEN-1) -| - fmoves FONE,%fp2 |init fp2 to 1.0 - movel %d4,%d0 |put LEN in d0 - subql #1,%d0 |d0 = LEN -1 - clrl %d3 |clr table index -l_loop: - lsrl #1,%d0 |shift next bit into carry - bccs l_next |if zero, skip the mul - fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) -l_next: - addl #12,%d3 |inc d3 to next pwrten table entry - tstl %d0 |test if LEN is zero - bnes l_loop |if not, loop -| -| 10^LEN-1 is computed for this test and A14. If the input was -| denormalized, check only the case in which YINT > 10^LEN. -| - tstb BINDEC_FLG(%a6) |check if input was norm - beqs A13_con |if norm, continue with checking - fabsx %fp0 |take abs of YINT - bra test_2 -| -| Compare abs(YINT) to 10^(LEN-1) and 10^LEN -| -A13_con: - fabsx %fp0 |take abs of YINT - fcmpx %fp2,%fp0 |compare abs(YINT) with 10^(LEN-1) - fbge test_2 |if greater, do next test - subql #1,%d6 |subtract 1 from ILOG - movew #1,%d5 |set ICTR - fmovel #rm_mode,%FPCR |set rmode to RM - fmuls FTEN,%fp2 |compute 10^LEN - bra A6_str |return to A6 and recompute YINT -test_2: - fmuls FTEN,%fp2 |compute 10^LEN - fcmpx %fp2,%fp0 |compare abs(YINT) with 10^LEN - fblt A14_st |if less, all is ok, go to A14 - fbgt fix_ex |if greater, fix and redo - fdivs FTEN,%fp0 |if equal, divide by 10 - addql #1,%d6 | and inc ILOG - bras A14_st | and continue elsewhere -fix_ex: - addql #1,%d6 |increment ILOG by 1 - movew #1,%d5 |set ICTR - fmovel #rm_mode,%FPCR |set rmode to RM - bra A6_str |return to A6 and recompute YINT -| -| Since ICTR <> 0, we have already been through one adjustment, -| and shouldn't have another; this is to check if abs(YINT) = 10^LEN -| 10^LEN is again computed using whatever table is in a1 since the -| value calculated cannot be inexact. -| -not_zr: - fmoves FONE,%fp2 |init fp2 to 1.0 - movel %d4,%d0 |put LEN in d0 - clrl %d3 |clr table index -z_loop: - lsrl #1,%d0 |shift next bit into carry - bccs z_next |if zero, skip the mul - fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) -z_next: - addl #12,%d3 |inc d3 to next pwrten table entry - tstl %d0 |test if LEN is zero - bnes z_loop |if not, loop - fabsx %fp0 |get abs(YINT) - fcmpx %fp2,%fp0 |check if abs(YINT) = 10^LEN - fbne A14_st |if not, skip this - fdivs FTEN,%fp0 |divide abs(YINT) by 10 - addql #1,%d6 |and inc ILOG by 1 - addql #1,%d4 | and inc LEN - fmuls FTEN,%fp2 | if LEN++, the get 10^^LEN - - -| A14. Convert the mantissa to bcd. -| The binstr routine is used to convert the LEN digit -| mantissa to bcd in memory. The input to binstr is -| to be a fraction; i.e. (mantissa)/10^LEN and adjusted -| such that the decimal point is to the left of bit 63. -| The bcd digits are stored in the correct position in -| the final string area in memory. -| -| -| Register usage: -| Input/Output -| d0: x/LEN call to binstr - final is 0 -| d1: x/0 -| d2: x/ms 32-bits of mant of abs(YINT) -| d3: x/ls 32-bits of mant of abs(YINT) -| d4: LEN/Unchanged -| d5: ICTR:LAMBDA/LAMBDA:ICTR -| d6: ILOG -| d7: k-factor/Unchanged -| a0: pointer into memory for packed bcd string formation -| /ptr to first mantissa byte in result string -| a1: ptr to PTENxx array/Unchanged -| a2: ptr to FP_SCR2(a6)/Unchanged -| fp0: int portion of Y/abs(YINT) adjusted -| fp1: 10^ISCALE/Unchanged -| fp2: 10^LEN/Unchanged -| F_SCR1:x/Work area for final result -| F_SCR2:Y with original exponent/Unchanged -| L_SCR1:original USER_FPCR/Unchanged -| L_SCR2:first word of X packed/Unchanged - -A14_st: - fmovel #rz_mode,%FPCR |force rz for conversion - fdivx %fp2,%fp0 |divide abs(YINT) by 10^LEN - leal FP_SCR1(%a6),%a0 - fmovex %fp0,(%a0) |move abs(YINT)/10^LEN to memory - movel 4(%a0),%d2 |move 2nd word of FP_RES to d2 - movel 8(%a0),%d3 |move 3rd word of FP_RES to d3 - clrl 4(%a0) |zero word 2 of FP_RES - clrl 8(%a0) |zero word 3 of FP_RES - movel (%a0),%d0 |move exponent to d0 - swap %d0 |put exponent in lower word - beqs no_sft |if zero, don't shift - subil #0x3ffd,%d0 |sub bias less 2 to make fract - tstl %d0 |check if > 1 - bgts no_sft |if so, don't shift - negl %d0 |make exp positive -m_loop: - lsrl #1,%d2 |shift d2:d3 right, add 0s - roxrl #1,%d3 |the number of places - dbf %d0,m_loop |given in d0 -no_sft: - tstl %d2 |check for mantissa of zero - bnes no_zr |if not, go on - tstl %d3 |continue zero check - beqs zer_m |if zero, go directly to binstr -no_zr: - clrl %d1 |put zero in d1 for addx - addil #0x00000080,%d3 |inc at bit 7 - addxl %d1,%d2 |continue inc - andil #0xffffff80,%d3 |strip off lsb not used by 882 -zer_m: - movel %d4,%d0 |put LEN in d0 for binstr call - addql #3,%a0 |a0 points to M16 byte in result - bsr binstr |call binstr to convert mant - - -| A15. Convert the exponent to bcd. -| As in A14 above, the exp is converted to bcd and the -| digits are stored in the final string. -| -| Digits are stored in L_SCR1(a6) on return from BINDEC as: -| -| 32 16 15 0 -| ----------------------------------------- -| | 0 | e3 | e2 | e1 | e4 | X | X | X | -| ----------------------------------------- -| -| And are moved into their proper places in FP_SCR1. If digit e4 -| is non-zero, OPERR is signaled. In all cases, all 4 digits are -| written as specified in the 881/882 manual for packed decimal. -| -| Register usage: -| Input/Output -| d0: x/LEN call to binstr - final is 0 -| d1: x/scratch (0);shift count for final exponent packing -| d2: x/ms 32-bits of exp fraction/scratch -| d3: x/ls 32-bits of exp fraction -| d4: LEN/Unchanged -| d5: ICTR:LAMBDA/LAMBDA:ICTR -| d6: ILOG -| d7: k-factor/Unchanged -| a0: ptr to result string/ptr to L_SCR1(a6) -| a1: ptr to PTENxx array/Unchanged -| a2: ptr to FP_SCR2(a6)/Unchanged -| fp0: abs(YINT) adjusted/float(ILOG) -| fp1: 10^ISCALE/Unchanged -| fp2: 10^LEN/Unchanged -| F_SCR1:Work area for final result/BCD result -| F_SCR2:Y with original exponent/ILOG/10^4 -| L_SCR1:original USER_FPCR/Exponent digits on return from binstr -| L_SCR2:first word of X packed/Unchanged - -A15_st: - tstb BINDEC_FLG(%a6) |check for denorm - beqs not_denorm - ftstx %fp0 |test for zero - fbeq den_zero |if zero, use k-factor or 4933 - fmovel %d6,%fp0 |float ILOG - fabsx %fp0 |get abs of ILOG - bras convrt -den_zero: - tstl %d7 |check sign of the k-factor - blts use_ilog |if negative, use ILOG - fmoves F4933,%fp0 |force exponent to 4933 - bras convrt |do it -use_ilog: - fmovel %d6,%fp0 |float ILOG - fabsx %fp0 |get abs of ILOG - bras convrt -not_denorm: - ftstx %fp0 |test for zero - fbne not_zero |if zero, force exponent - fmoves FONE,%fp0 |force exponent to 1 - bras convrt |do it -not_zero: - fmovel %d6,%fp0 |float ILOG - fabsx %fp0 |get abs of ILOG -convrt: - fdivx 24(%a1),%fp0 |compute ILOG/10^4 - fmovex %fp0,FP_SCR2(%a6) |store fp0 in memory - movel 4(%a2),%d2 |move word 2 to d2 - movel 8(%a2),%d3 |move word 3 to d3 - movew (%a2),%d0 |move exp to d0 - beqs x_loop_fin |if zero, skip the shift - subiw #0x3ffd,%d0 |subtract off bias - negw %d0 |make exp positive -x_loop: - lsrl #1,%d2 |shift d2:d3 right - roxrl #1,%d3 |the number of places - dbf %d0,x_loop |given in d0 -x_loop_fin: - clrl %d1 |put zero in d1 for addx - addil #0x00000080,%d3 |inc at bit 6 - addxl %d1,%d2 |continue inc - andil #0xffffff80,%d3 |strip off lsb not used by 882 - movel #4,%d0 |put 4 in d0 for binstr call - leal L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits - bsr binstr |call binstr to convert exp - movel L_SCR1(%a6),%d0 |load L_SCR1 lword to d0 - movel #12,%d1 |use d1 for shift count - lsrl %d1,%d0 |shift d0 right by 12 - bfins %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1 - lsrl %d1,%d0 |shift d0 right by 12 - bfins %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1 - tstb %d0 |check if e4 is zero - beqs A16_st |if zero, skip rest - orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR - - -| A16. Write sign bits to final string. -| Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). -| -| Register usage: -| Input/Output -| d0: x/scratch - final is x -| d2: x/x -| d3: x/x -| d4: LEN/Unchanged -| d5: ICTR:LAMBDA/LAMBDA:ICTR -| d6: ILOG/ILOG adjusted -| d7: k-factor/Unchanged -| a0: ptr to L_SCR1(a6)/Unchanged -| a1: ptr to PTENxx array/Unchanged -| a2: ptr to FP_SCR2(a6)/Unchanged -| fp0: float(ILOG)/Unchanged -| fp1: 10^ISCALE/Unchanged -| fp2: 10^LEN/Unchanged -| F_SCR1:BCD result with correct signs -| F_SCR2:ILOG/10^4 -| L_SCR1:Exponent digits on return from binstr -| L_SCR2:first word of X packed/Unchanged - -A16_st: - clrl %d0 |clr d0 for collection of signs - andib #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1 - tstl L_SCR2(%a6) |check sign of original mantissa - bges mant_p |if pos, don't set SM - moveql #2,%d0 |move 2 in to d0 for SM -mant_p: - tstl %d6 |check sign of ILOG - bges wr_sgn |if pos, don't set SE - addql #1,%d0 |set bit 0 in d0 for SE -wr_sgn: - bfins %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1 - -| Clean up and restore all registers used. - - fmovel #0,%FPSR |clear possible inex2/ainex bits - fmovemx (%a7)+,%fp0-%fp2 - moveml (%a7)+,%d2-%d7/%a2 - rts - - |end |