summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/arch/ia64/mm
diff options
context:
space:
mode:
Diffstat (limited to 'ANDROID_3.4.5/arch/ia64/mm')
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/Makefile11
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/contig.c356
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/discontig.c825
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/extable.c115
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/fault.c281
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/hugetlbpage.c207
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/init.c716
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/ioremap.c121
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/numa.c92
-rw-r--r--ANDROID_3.4.5/arch/ia64/mm/tlb.c562
10 files changed, 0 insertions, 3286 deletions
diff --git a/ANDROID_3.4.5/arch/ia64/mm/Makefile b/ANDROID_3.4.5/arch/ia64/mm/Makefile
deleted file mode 100644
index bb0a01a8..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/Makefile
+++ /dev/null
@@ -1,11 +0,0 @@
-#
-# Makefile for the ia64-specific parts of the memory manager.
-#
-
-obj-y := init.o fault.o tlb.o extable.o ioremap.o
-
-obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
-obj-$(CONFIG_NUMA) += numa.o
-obj-$(CONFIG_DISCONTIGMEM) += discontig.o
-obj-$(CONFIG_SPARSEMEM) += discontig.o
-obj-$(CONFIG_FLATMEM) += contig.o
diff --git a/ANDROID_3.4.5/arch/ia64/mm/contig.c b/ANDROID_3.4.5/arch/ia64/mm/contig.c
deleted file mode 100644
index 1516d1dc..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/contig.c
+++ /dev/null
@@ -1,356 +0,0 @@
-/*
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Copyright (C) 1998-2003 Hewlett-Packard Co
- * David Mosberger-Tang <davidm@hpl.hp.com>
- * Stephane Eranian <eranian@hpl.hp.com>
- * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
- * Copyright (C) 1999 VA Linux Systems
- * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
- * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
- *
- * Routines used by ia64 machines with contiguous (or virtually contiguous)
- * memory.
- */
-#include <linux/bootmem.h>
-#include <linux/efi.h>
-#include <linux/memblock.h>
-#include <linux/mm.h>
-#include <linux/nmi.h>
-#include <linux/swap.h>
-
-#include <asm/meminit.h>
-#include <asm/pgalloc.h>
-#include <asm/pgtable.h>
-#include <asm/sections.h>
-#include <asm/mca.h>
-
-#ifdef CONFIG_VIRTUAL_MEM_MAP
-static unsigned long max_gap;
-#endif
-
-/**
- * show_mem - give short summary of memory stats
- *
- * Shows a simple page count of reserved and used pages in the system.
- * For discontig machines, it does this on a per-pgdat basis.
- */
-void show_mem(unsigned int filter)
-{
- int i, total_reserved = 0;
- int total_shared = 0, total_cached = 0;
- unsigned long total_present = 0;
- pg_data_t *pgdat;
-
- printk(KERN_INFO "Mem-info:\n");
- show_free_areas(filter);
- printk(KERN_INFO "Node memory in pages:\n");
- for_each_online_pgdat(pgdat) {
- unsigned long present;
- unsigned long flags;
- int shared = 0, cached = 0, reserved = 0;
- int nid = pgdat->node_id;
-
- if (skip_free_areas_node(filter, nid))
- continue;
- pgdat_resize_lock(pgdat, &flags);
- present = pgdat->node_present_pages;
- for(i = 0; i < pgdat->node_spanned_pages; i++) {
- struct page *page;
- if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
- touch_nmi_watchdog();
- if (pfn_valid(pgdat->node_start_pfn + i))
- page = pfn_to_page(pgdat->node_start_pfn + i);
- else {
-#ifdef CONFIG_VIRTUAL_MEM_MAP
- if (max_gap < LARGE_GAP)
- continue;
-#endif
- i = vmemmap_find_next_valid_pfn(nid, i) - 1;
- continue;
- }
- if (PageReserved(page))
- reserved++;
- else if (PageSwapCache(page))
- cached++;
- else if (page_count(page))
- shared += page_count(page)-1;
- }
- pgdat_resize_unlock(pgdat, &flags);
- total_present += present;
- total_reserved += reserved;
- total_cached += cached;
- total_shared += shared;
- printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
- "shrd: %10d, swpd: %10d\n", nid,
- present, reserved, shared, cached);
- }
- printk(KERN_INFO "%ld pages of RAM\n", total_present);
- printk(KERN_INFO "%d reserved pages\n", total_reserved);
- printk(KERN_INFO "%d pages shared\n", total_shared);
- printk(KERN_INFO "%d pages swap cached\n", total_cached);
- printk(KERN_INFO "Total of %ld pages in page table cache\n",
- quicklist_total_size());
- printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
-}
-
-
-/* physical address where the bootmem map is located */
-unsigned long bootmap_start;
-
-/**
- * find_bootmap_location - callback to find a memory area for the bootmap
- * @start: start of region
- * @end: end of region
- * @arg: unused callback data
- *
- * Find a place to put the bootmap and return its starting address in
- * bootmap_start. This address must be page-aligned.
- */
-static int __init
-find_bootmap_location (u64 start, u64 end, void *arg)
-{
- u64 needed = *(unsigned long *)arg;
- u64 range_start, range_end, free_start;
- int i;
-
-#if IGNORE_PFN0
- if (start == PAGE_OFFSET) {
- start += PAGE_SIZE;
- if (start >= end)
- return 0;
- }
-#endif
-
- free_start = PAGE_OFFSET;
-
- for (i = 0; i < num_rsvd_regions; i++) {
- range_start = max(start, free_start);
- range_end = min(end, rsvd_region[i].start & PAGE_MASK);
-
- free_start = PAGE_ALIGN(rsvd_region[i].end);
-
- if (range_end <= range_start)
- continue; /* skip over empty range */
-
- if (range_end - range_start >= needed) {
- bootmap_start = __pa(range_start);
- return -1; /* done */
- }
-
- /* nothing more available in this segment */
- if (range_end == end)
- return 0;
- }
- return 0;
-}
-
-#ifdef CONFIG_SMP
-static void *cpu_data;
-/**
- * per_cpu_init - setup per-cpu variables
- *
- * Allocate and setup per-cpu data areas.
- */
-void * __cpuinit
-per_cpu_init (void)
-{
- static bool first_time = true;
- void *cpu0_data = __cpu0_per_cpu;
- unsigned int cpu;
-
- if (!first_time)
- goto skip;
- first_time = false;
-
- /*
- * get_free_pages() cannot be used before cpu_init() done.
- * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
- * to avoid that AP calls get_zeroed_page().
- */
- for_each_possible_cpu(cpu) {
- void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
-
- memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
- __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
- per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
-
- /*
- * percpu area for cpu0 is moved from the __init area
- * which is setup by head.S and used till this point.
- * Update ar.k3. This move is ensures that percpu
- * area for cpu0 is on the correct node and its
- * virtual address isn't insanely far from other
- * percpu areas which is important for congruent
- * percpu allocator.
- */
- if (cpu == 0)
- ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
- (unsigned long)__per_cpu_start);
-
- cpu_data += PERCPU_PAGE_SIZE;
- }
-skip:
- return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
-}
-
-static inline void
-alloc_per_cpu_data(void)
-{
- cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
- PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
-}
-
-/**
- * setup_per_cpu_areas - setup percpu areas
- *
- * Arch code has already allocated and initialized percpu areas. All
- * this function has to do is to teach the determined layout to the
- * dynamic percpu allocator, which happens to be more complex than
- * creating whole new ones using helpers.
- */
-void __init
-setup_per_cpu_areas(void)
-{
- struct pcpu_alloc_info *ai;
- struct pcpu_group_info *gi;
- unsigned int cpu;
- ssize_t static_size, reserved_size, dyn_size;
- int rc;
-
- ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
- if (!ai)
- panic("failed to allocate pcpu_alloc_info");
- gi = &ai->groups[0];
-
- /* units are assigned consecutively to possible cpus */
- for_each_possible_cpu(cpu)
- gi->cpu_map[gi->nr_units++] = cpu;
-
- /* set parameters */
- static_size = __per_cpu_end - __per_cpu_start;
- reserved_size = PERCPU_MODULE_RESERVE;
- dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
- if (dyn_size < 0)
- panic("percpu area overflow static=%zd reserved=%zd\n",
- static_size, reserved_size);
-
- ai->static_size = static_size;
- ai->reserved_size = reserved_size;
- ai->dyn_size = dyn_size;
- ai->unit_size = PERCPU_PAGE_SIZE;
- ai->atom_size = PAGE_SIZE;
- ai->alloc_size = PERCPU_PAGE_SIZE;
-
- rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
- if (rc)
- panic("failed to setup percpu area (err=%d)", rc);
-
- pcpu_free_alloc_info(ai);
-}
-#else
-#define alloc_per_cpu_data() do { } while (0)
-#endif /* CONFIG_SMP */
-
-/**
- * find_memory - setup memory map
- *
- * Walk the EFI memory map and find usable memory for the system, taking
- * into account reserved areas.
- */
-void __init
-find_memory (void)
-{
- unsigned long bootmap_size;
-
- reserve_memory();
-
- /* first find highest page frame number */
- min_low_pfn = ~0UL;
- max_low_pfn = 0;
- efi_memmap_walk(find_max_min_low_pfn, NULL);
- max_pfn = max_low_pfn;
- /* how many bytes to cover all the pages */
- bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
-
- /* look for a location to hold the bootmap */
- bootmap_start = ~0UL;
- efi_memmap_walk(find_bootmap_location, &bootmap_size);
- if (bootmap_start == ~0UL)
- panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
-
- bootmap_size = init_bootmem_node(NODE_DATA(0),
- (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
-
- /* Free all available memory, then mark bootmem-map as being in use. */
- efi_memmap_walk(filter_rsvd_memory, free_bootmem);
- reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
-
- find_initrd();
-
- alloc_per_cpu_data();
-}
-
-static int count_pages(u64 start, u64 end, void *arg)
-{
- unsigned long *count = arg;
-
- *count += (end - start) >> PAGE_SHIFT;
- return 0;
-}
-
-/*
- * Set up the page tables.
- */
-
-void __init
-paging_init (void)
-{
- unsigned long max_dma;
- unsigned long max_zone_pfns[MAX_NR_ZONES];
-
- num_physpages = 0;
- efi_memmap_walk(count_pages, &num_physpages);
-
- memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
-#ifdef CONFIG_ZONE_DMA
- max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
- max_zone_pfns[ZONE_DMA] = max_dma;
-#endif
- max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
-
-#ifdef CONFIG_VIRTUAL_MEM_MAP
- efi_memmap_walk(filter_memory, register_active_ranges);
- efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
- if (max_gap < LARGE_GAP) {
- vmem_map = (struct page *) 0;
- free_area_init_nodes(max_zone_pfns);
- } else {
- unsigned long map_size;
-
- /* allocate virtual_mem_map */
-
- map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
- sizeof(struct page));
- VMALLOC_END -= map_size;
- vmem_map = (struct page *) VMALLOC_END;
- efi_memmap_walk(create_mem_map_page_table, NULL);
-
- /*
- * alloc_node_mem_map makes an adjustment for mem_map
- * which isn't compatible with vmem_map.
- */
- NODE_DATA(0)->node_mem_map = vmem_map +
- find_min_pfn_with_active_regions();
- free_area_init_nodes(max_zone_pfns);
-
- printk("Virtual mem_map starts at 0x%p\n", mem_map);
- }
-#else /* !CONFIG_VIRTUAL_MEM_MAP */
- memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
- free_area_init_nodes(max_zone_pfns);
-#endif /* !CONFIG_VIRTUAL_MEM_MAP */
- zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
-}
diff --git a/ANDROID_3.4.5/arch/ia64/mm/discontig.c b/ANDROID_3.4.5/arch/ia64/mm/discontig.c
deleted file mode 100644
index c641333c..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/discontig.c
+++ /dev/null
@@ -1,825 +0,0 @@
-/*
- * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
- * Copyright (c) 2001 Intel Corp.
- * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
- * Copyright (c) 2002 NEC Corp.
- * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
- * Copyright (c) 2004 Silicon Graphics, Inc
- * Russ Anderson <rja@sgi.com>
- * Jesse Barnes <jbarnes@sgi.com>
- * Jack Steiner <steiner@sgi.com>
- */
-
-/*
- * Platform initialization for Discontig Memory
- */
-
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/nmi.h>
-#include <linux/swap.h>
-#include <linux/bootmem.h>
-#include <linux/acpi.h>
-#include <linux/efi.h>
-#include <linux/nodemask.h>
-#include <linux/slab.h>
-#include <asm/pgalloc.h>
-#include <asm/tlb.h>
-#include <asm/meminit.h>
-#include <asm/numa.h>
-#include <asm/sections.h>
-
-/*
- * Track per-node information needed to setup the boot memory allocator, the
- * per-node areas, and the real VM.
- */
-struct early_node_data {
- struct ia64_node_data *node_data;
- unsigned long pernode_addr;
- unsigned long pernode_size;
- unsigned long num_physpages;
-#ifdef CONFIG_ZONE_DMA
- unsigned long num_dma_physpages;
-#endif
- unsigned long min_pfn;
- unsigned long max_pfn;
-};
-
-static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
-static nodemask_t memory_less_mask __initdata;
-
-pg_data_t *pgdat_list[MAX_NUMNODES];
-
-/*
- * To prevent cache aliasing effects, align per-node structures so that they
- * start at addresses that are strided by node number.
- */
-#define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
-#define NODEDATA_ALIGN(addr, node) \
- ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
- (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
-
-/**
- * build_node_maps - callback to setup bootmem structs for each node
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * We allocate a struct bootmem_data for each piece of memory that we wish to
- * treat as a virtually contiguous block (i.e. each node). Each such block
- * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
- * if necessary. Any non-existent pages will simply be part of the virtual
- * memmap. We also update min_low_pfn and max_low_pfn here as we receive
- * memory ranges from the caller.
- */
-static int __init build_node_maps(unsigned long start, unsigned long len,
- int node)
-{
- unsigned long spfn, epfn, end = start + len;
- struct bootmem_data *bdp = &bootmem_node_data[node];
-
- epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
- spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
-
- if (!bdp->node_low_pfn) {
- bdp->node_min_pfn = spfn;
- bdp->node_low_pfn = epfn;
- } else {
- bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
- bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
- }
-
- return 0;
-}
-
-/**
- * early_nr_cpus_node - return number of cpus on a given node
- * @node: node to check
- *
- * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
- * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
- * called yet. Note that node 0 will also count all non-existent cpus.
- */
-static int __meminit early_nr_cpus_node(int node)
-{
- int cpu, n = 0;
-
- for_each_possible_early_cpu(cpu)
- if (node == node_cpuid[cpu].nid)
- n++;
-
- return n;
-}
-
-/**
- * compute_pernodesize - compute size of pernode data
- * @node: the node id.
- */
-static unsigned long __meminit compute_pernodesize(int node)
-{
- unsigned long pernodesize = 0, cpus;
-
- cpus = early_nr_cpus_node(node);
- pernodesize += PERCPU_PAGE_SIZE * cpus;
- pernodesize += node * L1_CACHE_BYTES;
- pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
- pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
- pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
- pernodesize = PAGE_ALIGN(pernodesize);
- return pernodesize;
-}
-
-/**
- * per_cpu_node_setup - setup per-cpu areas on each node
- * @cpu_data: per-cpu area on this node
- * @node: node to setup
- *
- * Copy the static per-cpu data into the region we just set aside and then
- * setup __per_cpu_offset for each CPU on this node. Return a pointer to
- * the end of the area.
- */
-static void *per_cpu_node_setup(void *cpu_data, int node)
-{
-#ifdef CONFIG_SMP
- int cpu;
-
- for_each_possible_early_cpu(cpu) {
- void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
-
- if (node != node_cpuid[cpu].nid)
- continue;
-
- memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
- __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
- __per_cpu_start;
-
- /*
- * percpu area for cpu0 is moved from the __init area
- * which is setup by head.S and used till this point.
- * Update ar.k3. This move is ensures that percpu
- * area for cpu0 is on the correct node and its
- * virtual address isn't insanely far from other
- * percpu areas which is important for congruent
- * percpu allocator.
- */
- if (cpu == 0)
- ia64_set_kr(IA64_KR_PER_CPU_DATA,
- (unsigned long)cpu_data -
- (unsigned long)__per_cpu_start);
-
- cpu_data += PERCPU_PAGE_SIZE;
- }
-#endif
- return cpu_data;
-}
-
-#ifdef CONFIG_SMP
-/**
- * setup_per_cpu_areas - setup percpu areas
- *
- * Arch code has already allocated and initialized percpu areas. All
- * this function has to do is to teach the determined layout to the
- * dynamic percpu allocator, which happens to be more complex than
- * creating whole new ones using helpers.
- */
-void __init setup_per_cpu_areas(void)
-{
- struct pcpu_alloc_info *ai;
- struct pcpu_group_info *uninitialized_var(gi);
- unsigned int *cpu_map;
- void *base;
- unsigned long base_offset;
- unsigned int cpu;
- ssize_t static_size, reserved_size, dyn_size;
- int node, prev_node, unit, nr_units, rc;
-
- ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
- if (!ai)
- panic("failed to allocate pcpu_alloc_info");
- cpu_map = ai->groups[0].cpu_map;
-
- /* determine base */
- base = (void *)ULONG_MAX;
- for_each_possible_cpu(cpu)
- base = min(base,
- (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
- base_offset = (void *)__per_cpu_start - base;
-
- /* build cpu_map, units are grouped by node */
- unit = 0;
- for_each_node(node)
- for_each_possible_cpu(cpu)
- if (node == node_cpuid[cpu].nid)
- cpu_map[unit++] = cpu;
- nr_units = unit;
-
- /* set basic parameters */
- static_size = __per_cpu_end - __per_cpu_start;
- reserved_size = PERCPU_MODULE_RESERVE;
- dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
- if (dyn_size < 0)
- panic("percpu area overflow static=%zd reserved=%zd\n",
- static_size, reserved_size);
-
- ai->static_size = static_size;
- ai->reserved_size = reserved_size;
- ai->dyn_size = dyn_size;
- ai->unit_size = PERCPU_PAGE_SIZE;
- ai->atom_size = PAGE_SIZE;
- ai->alloc_size = PERCPU_PAGE_SIZE;
-
- /*
- * CPUs are put into groups according to node. Walk cpu_map
- * and create new groups at node boundaries.
- */
- prev_node = -1;
- ai->nr_groups = 0;
- for (unit = 0; unit < nr_units; unit++) {
- cpu = cpu_map[unit];
- node = node_cpuid[cpu].nid;
-
- if (node == prev_node) {
- gi->nr_units++;
- continue;
- }
- prev_node = node;
-
- gi = &ai->groups[ai->nr_groups++];
- gi->nr_units = 1;
- gi->base_offset = __per_cpu_offset[cpu] + base_offset;
- gi->cpu_map = &cpu_map[unit];
- }
-
- rc = pcpu_setup_first_chunk(ai, base);
- if (rc)
- panic("failed to setup percpu area (err=%d)", rc);
-
- pcpu_free_alloc_info(ai);
-}
-#endif
-
-/**
- * fill_pernode - initialize pernode data.
- * @node: the node id.
- * @pernode: physical address of pernode data
- * @pernodesize: size of the pernode data
- */
-static void __init fill_pernode(int node, unsigned long pernode,
- unsigned long pernodesize)
-{
- void *cpu_data;
- int cpus = early_nr_cpus_node(node);
- struct bootmem_data *bdp = &bootmem_node_data[node];
-
- mem_data[node].pernode_addr = pernode;
- mem_data[node].pernode_size = pernodesize;
- memset(__va(pernode), 0, pernodesize);
-
- cpu_data = (void *)pernode;
- pernode += PERCPU_PAGE_SIZE * cpus;
- pernode += node * L1_CACHE_BYTES;
-
- pgdat_list[node] = __va(pernode);
- pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
-
- mem_data[node].node_data = __va(pernode);
- pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
-
- pgdat_list[node]->bdata = bdp;
- pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
-
- cpu_data = per_cpu_node_setup(cpu_data, node);
-
- return;
-}
-
-/**
- * find_pernode_space - allocate memory for memory map and per-node structures
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * This routine reserves space for the per-cpu data struct, the list of
- * pg_data_ts and the per-node data struct. Each node will have something like
- * the following in the first chunk of addr. space large enough to hold it.
- *
- * ________________________
- * | |
- * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
- * | PERCPU_PAGE_SIZE * | start and length big enough
- * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
- * |------------------------|
- * | local pg_data_t * |
- * |------------------------|
- * | local ia64_node_data |
- * |------------------------|
- * | ??? |
- * |________________________|
- *
- * Once this space has been set aside, the bootmem maps are initialized. We
- * could probably move the allocation of the per-cpu and ia64_node_data space
- * outside of this function and use alloc_bootmem_node(), but doing it here
- * is straightforward and we get the alignments we want so...
- */
-static int __init find_pernode_space(unsigned long start, unsigned long len,
- int node)
-{
- unsigned long spfn, epfn;
- unsigned long pernodesize = 0, pernode, pages, mapsize;
- struct bootmem_data *bdp = &bootmem_node_data[node];
-
- spfn = start >> PAGE_SHIFT;
- epfn = (start + len) >> PAGE_SHIFT;
-
- pages = bdp->node_low_pfn - bdp->node_min_pfn;
- mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
-
- /*
- * Make sure this memory falls within this node's usable memory
- * since we may have thrown some away in build_maps().
- */
- if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
- return 0;
-
- /* Don't setup this node's local space twice... */
- if (mem_data[node].pernode_addr)
- return 0;
-
- /*
- * Calculate total size needed, incl. what's necessary
- * for good alignment and alias prevention.
- */
- pernodesize = compute_pernodesize(node);
- pernode = NODEDATA_ALIGN(start, node);
-
- /* Is this range big enough for what we want to store here? */
- if (start + len > (pernode + pernodesize + mapsize))
- fill_pernode(node, pernode, pernodesize);
-
- return 0;
-}
-
-/**
- * free_node_bootmem - free bootmem allocator memory for use
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * Simply calls the bootmem allocator to free the specified ranged from
- * the given pg_data_t's bdata struct. After this function has been called
- * for all the entries in the EFI memory map, the bootmem allocator will
- * be ready to service allocation requests.
- */
-static int __init free_node_bootmem(unsigned long start, unsigned long len,
- int node)
-{
- free_bootmem_node(pgdat_list[node], start, len);
-
- return 0;
-}
-
-/**
- * reserve_pernode_space - reserve memory for per-node space
- *
- * Reserve the space used by the bootmem maps & per-node space in the boot
- * allocator so that when we actually create the real mem maps we don't
- * use their memory.
- */
-static void __init reserve_pernode_space(void)
-{
- unsigned long base, size, pages;
- struct bootmem_data *bdp;
- int node;
-
- for_each_online_node(node) {
- pg_data_t *pdp = pgdat_list[node];
-
- if (node_isset(node, memory_less_mask))
- continue;
-
- bdp = pdp->bdata;
-
- /* First the bootmem_map itself */
- pages = bdp->node_low_pfn - bdp->node_min_pfn;
- size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
- base = __pa(bdp->node_bootmem_map);
- reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
-
- /* Now the per-node space */
- size = mem_data[node].pernode_size;
- base = __pa(mem_data[node].pernode_addr);
- reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
- }
-}
-
-static void __meminit scatter_node_data(void)
-{
- pg_data_t **dst;
- int node;
-
- /*
- * for_each_online_node() can't be used at here.
- * node_online_map is not set for hot-added nodes at this time,
- * because we are halfway through initialization of the new node's
- * structures. If for_each_online_node() is used, a new node's
- * pg_data_ptrs will be not initialized. Instead of using it,
- * pgdat_list[] is checked.
- */
- for_each_node(node) {
- if (pgdat_list[node]) {
- dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
- memcpy(dst, pgdat_list, sizeof(pgdat_list));
- }
- }
-}
-
-/**
- * initialize_pernode_data - fixup per-cpu & per-node pointers
- *
- * Each node's per-node area has a copy of the global pg_data_t list, so
- * we copy that to each node here, as well as setting the per-cpu pointer
- * to the local node data structure. The active_cpus field of the per-node
- * structure gets setup by the platform_cpu_init() function later.
- */
-static void __init initialize_pernode_data(void)
-{
- int cpu, node;
-
- scatter_node_data();
-
-#ifdef CONFIG_SMP
- /* Set the node_data pointer for each per-cpu struct */
- for_each_possible_early_cpu(cpu) {
- node = node_cpuid[cpu].nid;
- per_cpu(ia64_cpu_info, cpu).node_data =
- mem_data[node].node_data;
- }
-#else
- {
- struct cpuinfo_ia64 *cpu0_cpu_info;
- cpu = 0;
- node = node_cpuid[cpu].nid;
- cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
- ((char *)&ia64_cpu_info - __per_cpu_start));
- cpu0_cpu_info->node_data = mem_data[node].node_data;
- }
-#endif /* CONFIG_SMP */
-}
-
-/**
- * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
- * node but fall back to any other node when __alloc_bootmem_node fails
- * for best.
- * @nid: node id
- * @pernodesize: size of this node's pernode data
- */
-static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
-{
- void *ptr = NULL;
- u8 best = 0xff;
- int bestnode = -1, node, anynode = 0;
-
- for_each_online_node(node) {
- if (node_isset(node, memory_less_mask))
- continue;
- else if (node_distance(nid, node) < best) {
- best = node_distance(nid, node);
- bestnode = node;
- }
- anynode = node;
- }
-
- if (bestnode == -1)
- bestnode = anynode;
-
- ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
- PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
-
- return ptr;
-}
-
-/**
- * memory_less_nodes - allocate and initialize CPU only nodes pernode
- * information.
- */
-static void __init memory_less_nodes(void)
-{
- unsigned long pernodesize;
- void *pernode;
- int node;
-
- for_each_node_mask(node, memory_less_mask) {
- pernodesize = compute_pernodesize(node);
- pernode = memory_less_node_alloc(node, pernodesize);
- fill_pernode(node, __pa(pernode), pernodesize);
- }
-
- return;
-}
-
-/**
- * find_memory - walk the EFI memory map and setup the bootmem allocator
- *
- * Called early in boot to setup the bootmem allocator, and to
- * allocate the per-cpu and per-node structures.
- */
-void __init find_memory(void)
-{
- int node;
-
- reserve_memory();
-
- if (num_online_nodes() == 0) {
- printk(KERN_ERR "node info missing!\n");
- node_set_online(0);
- }
-
- nodes_or(memory_less_mask, memory_less_mask, node_online_map);
- min_low_pfn = -1;
- max_low_pfn = 0;
-
- /* These actually end up getting called by call_pernode_memory() */
- efi_memmap_walk(filter_rsvd_memory, build_node_maps);
- efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
- efi_memmap_walk(find_max_min_low_pfn, NULL);
-
- for_each_online_node(node)
- if (bootmem_node_data[node].node_low_pfn) {
- node_clear(node, memory_less_mask);
- mem_data[node].min_pfn = ~0UL;
- }
-
- efi_memmap_walk(filter_memory, register_active_ranges);
-
- /*
- * Initialize the boot memory maps in reverse order since that's
- * what the bootmem allocator expects
- */
- for (node = MAX_NUMNODES - 1; node >= 0; node--) {
- unsigned long pernode, pernodesize, map;
- struct bootmem_data *bdp;
-
- if (!node_online(node))
- continue;
- else if (node_isset(node, memory_less_mask))
- continue;
-
- bdp = &bootmem_node_data[node];
- pernode = mem_data[node].pernode_addr;
- pernodesize = mem_data[node].pernode_size;
- map = pernode + pernodesize;
-
- init_bootmem_node(pgdat_list[node],
- map>>PAGE_SHIFT,
- bdp->node_min_pfn,
- bdp->node_low_pfn);
- }
-
- efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
-
- reserve_pernode_space();
- memory_less_nodes();
- initialize_pernode_data();
-
- max_pfn = max_low_pfn;
-
- find_initrd();
-}
-
-#ifdef CONFIG_SMP
-/**
- * per_cpu_init - setup per-cpu variables
- *
- * find_pernode_space() does most of this already, we just need to set
- * local_per_cpu_offset
- */
-void __cpuinit *per_cpu_init(void)
-{
- int cpu;
- static int first_time = 1;
-
- if (first_time) {
- first_time = 0;
- for_each_possible_early_cpu(cpu)
- per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
- }
-
- return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
-}
-#endif /* CONFIG_SMP */
-
-/**
- * show_mem - give short summary of memory stats
- *
- * Shows a simple page count of reserved and used pages in the system.
- * For discontig machines, it does this on a per-pgdat basis.
- */
-void show_mem(unsigned int filter)
-{
- int i, total_reserved = 0;
- int total_shared = 0, total_cached = 0;
- unsigned long total_present = 0;
- pg_data_t *pgdat;
-
- printk(KERN_INFO "Mem-info:\n");
- show_free_areas(filter);
- printk(KERN_INFO "Node memory in pages:\n");
- for_each_online_pgdat(pgdat) {
- unsigned long present;
- unsigned long flags;
- int shared = 0, cached = 0, reserved = 0;
- int nid = pgdat->node_id;
-
- if (skip_free_areas_node(filter, nid))
- continue;
- pgdat_resize_lock(pgdat, &flags);
- present = pgdat->node_present_pages;
- for(i = 0; i < pgdat->node_spanned_pages; i++) {
- struct page *page;
- if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
- touch_nmi_watchdog();
- if (pfn_valid(pgdat->node_start_pfn + i))
- page = pfn_to_page(pgdat->node_start_pfn + i);
- else {
- i = vmemmap_find_next_valid_pfn(nid, i) - 1;
- continue;
- }
- if (PageReserved(page))
- reserved++;
- else if (PageSwapCache(page))
- cached++;
- else if (page_count(page))
- shared += page_count(page)-1;
- }
- pgdat_resize_unlock(pgdat, &flags);
- total_present += present;
- total_reserved += reserved;
- total_cached += cached;
- total_shared += shared;
- printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
- "shrd: %10d, swpd: %10d\n", nid,
- present, reserved, shared, cached);
- }
- printk(KERN_INFO "%ld pages of RAM\n", total_present);
- printk(KERN_INFO "%d reserved pages\n", total_reserved);
- printk(KERN_INFO "%d pages shared\n", total_shared);
- printk(KERN_INFO "%d pages swap cached\n", total_cached);
- printk(KERN_INFO "Total of %ld pages in page table cache\n",
- quicklist_total_size());
- printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
-}
-
-/**
- * call_pernode_memory - use SRAT to call callback functions with node info
- * @start: physical start of range
- * @len: length of range
- * @arg: function to call for each range
- *
- * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
- * out to which node a block of memory belongs. Ignore memory that we cannot
- * identify, and split blocks that run across multiple nodes.
- *
- * Take this opportunity to round the start address up and the end address
- * down to page boundaries.
- */
-void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
-{
- unsigned long rs, re, end = start + len;
- void (*func)(unsigned long, unsigned long, int);
- int i;
-
- start = PAGE_ALIGN(start);
- end &= PAGE_MASK;
- if (start >= end)
- return;
-
- func = arg;
-
- if (!num_node_memblks) {
- /* No SRAT table, so assume one node (node 0) */
- if (start < end)
- (*func)(start, end - start, 0);
- return;
- }
-
- for (i = 0; i < num_node_memblks; i++) {
- rs = max(start, node_memblk[i].start_paddr);
- re = min(end, node_memblk[i].start_paddr +
- node_memblk[i].size);
-
- if (rs < re)
- (*func)(rs, re - rs, node_memblk[i].nid);
-
- if (re == end)
- break;
- }
-}
-
-/**
- * count_node_pages - callback to build per-node memory info structures
- * @start: physical start of range
- * @len: length of range
- * @node: node where this range resides
- *
- * Each node has it's own number of physical pages, DMAable pages, start, and
- * end page frame number. This routine will be called by call_pernode_memory()
- * for each piece of usable memory and will setup these values for each node.
- * Very similar to build_maps().
- */
-static __init int count_node_pages(unsigned long start, unsigned long len, int node)
-{
- unsigned long end = start + len;
-
- mem_data[node].num_physpages += len >> PAGE_SHIFT;
-#ifdef CONFIG_ZONE_DMA
- if (start <= __pa(MAX_DMA_ADDRESS))
- mem_data[node].num_dma_physpages +=
- (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
-#endif
- start = GRANULEROUNDDOWN(start);
- end = GRANULEROUNDUP(end);
- mem_data[node].max_pfn = max(mem_data[node].max_pfn,
- end >> PAGE_SHIFT);
- mem_data[node].min_pfn = min(mem_data[node].min_pfn,
- start >> PAGE_SHIFT);
-
- return 0;
-}
-
-/**
- * paging_init - setup page tables
- *
- * paging_init() sets up the page tables for each node of the system and frees
- * the bootmem allocator memory for general use.
- */
-void __init paging_init(void)
-{
- unsigned long max_dma;
- unsigned long pfn_offset = 0;
- unsigned long max_pfn = 0;
- int node;
- unsigned long max_zone_pfns[MAX_NR_ZONES];
-
- max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
-
- efi_memmap_walk(filter_rsvd_memory, count_node_pages);
-
- sparse_memory_present_with_active_regions(MAX_NUMNODES);
- sparse_init();
-
-#ifdef CONFIG_VIRTUAL_MEM_MAP
- VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
- sizeof(struct page));
- vmem_map = (struct page *) VMALLOC_END;
- efi_memmap_walk(create_mem_map_page_table, NULL);
- printk("Virtual mem_map starts at 0x%p\n", vmem_map);
-#endif
-
- for_each_online_node(node) {
- num_physpages += mem_data[node].num_physpages;
- pfn_offset = mem_data[node].min_pfn;
-
-#ifdef CONFIG_VIRTUAL_MEM_MAP
- NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
-#endif
- if (mem_data[node].max_pfn > max_pfn)
- max_pfn = mem_data[node].max_pfn;
- }
-
- memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
-#ifdef CONFIG_ZONE_DMA
- max_zone_pfns[ZONE_DMA] = max_dma;
-#endif
- max_zone_pfns[ZONE_NORMAL] = max_pfn;
- free_area_init_nodes(max_zone_pfns);
-
- zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
-}
-
-#ifdef CONFIG_MEMORY_HOTPLUG
-pg_data_t *arch_alloc_nodedata(int nid)
-{
- unsigned long size = compute_pernodesize(nid);
-
- return kzalloc(size, GFP_KERNEL);
-}
-
-void arch_free_nodedata(pg_data_t *pgdat)
-{
- kfree(pgdat);
-}
-
-void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
-{
- pgdat_list[update_node] = update_pgdat;
- scatter_node_data();
-}
-#endif
-
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
-int __meminit vmemmap_populate(struct page *start_page,
- unsigned long size, int node)
-{
- return vmemmap_populate_basepages(start_page, size, node);
-}
-#endif
diff --git a/ANDROID_3.4.5/arch/ia64/mm/extable.c b/ANDROID_3.4.5/arch/ia64/mm/extable.c
deleted file mode 100644
index c99a41e2..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/extable.c
+++ /dev/null
@@ -1,115 +0,0 @@
-/*
- * Kernel exception handling table support. Derived from arch/alpha/mm/extable.c.
- *
- * Copyright (C) 1998, 1999, 2001-2002, 2004 Hewlett-Packard Co
- * David Mosberger-Tang <davidm@hpl.hp.com>
- */
-
-#include <linux/sort.h>
-
-#include <asm/uaccess.h>
-#include <linux/module.h>
-
-static int cmp_ex(const void *a, const void *b)
-{
- const struct exception_table_entry *l = a, *r = b;
- u64 lip = (u64) &l->addr + l->addr;
- u64 rip = (u64) &r->addr + r->addr;
-
- /* avoid overflow */
- if (lip > rip)
- return 1;
- if (lip < rip)
- return -1;
- return 0;
-}
-
-static void swap_ex(void *a, void *b, int size)
-{
- struct exception_table_entry *l = a, *r = b, tmp;
- u64 delta = (u64) r - (u64) l;
-
- tmp = *l;
- l->addr = r->addr + delta;
- l->cont = r->cont + delta;
- r->addr = tmp.addr - delta;
- r->cont = tmp.cont - delta;
-}
-
-/*
- * Sort the exception table. It's usually already sorted, but there
- * may be unordered entries due to multiple text sections (such as the
- * .init text section). Note that the exception-table-entries contain
- * location-relative addresses, which requires a bit of care during
- * sorting to avoid overflows in the offset members (e.g., it would
- * not be safe to make a temporary copy of an exception-table entry on
- * the stack, because the stack may be more than 2GB away from the
- * exception-table).
- */
-void sort_extable (struct exception_table_entry *start,
- struct exception_table_entry *finish)
-{
- sort(start, finish - start, sizeof(struct exception_table_entry),
- cmp_ex, swap_ex);
-}
-
-static inline unsigned long ex_to_addr(const struct exception_table_entry *x)
-{
- return (unsigned long)&x->addr + x->addr;
-}
-
-#ifdef CONFIG_MODULES
-/*
- * Any entry referring to the module init will be at the beginning or
- * the end.
- */
-void trim_init_extable(struct module *m)
-{
- /*trim the beginning*/
- while (m->num_exentries &&
- within_module_init(ex_to_addr(&m->extable[0]), m)) {
- m->extable++;
- m->num_exentries--;
- }
- /*trim the end*/
- while (m->num_exentries &&
- within_module_init(ex_to_addr(&m->extable[m->num_exentries-1]),
- m))
- m->num_exentries--;
-}
-#endif /* CONFIG_MODULES */
-
-const struct exception_table_entry *
-search_extable (const struct exception_table_entry *first,
- const struct exception_table_entry *last,
- unsigned long ip)
-{
- const struct exception_table_entry *mid;
- unsigned long mid_ip;
- long diff;
-
- while (first <= last) {
- mid = &first[(last - first)/2];
- mid_ip = (u64) &mid->addr + mid->addr;
- diff = mid_ip - ip;
- if (diff == 0)
- return mid;
- else if (diff < 0)
- first = mid + 1;
- else
- last = mid - 1;
- }
- return NULL;
-}
-
-void
-ia64_handle_exception (struct pt_regs *regs, const struct exception_table_entry *e)
-{
- long fix = (u64) &e->cont + e->cont;
-
- regs->r8 = -EFAULT;
- if (fix & 4)
- regs->r9 = 0;
- regs->cr_iip = fix & ~0xf;
- ia64_psr(regs)->ri = fix & 0x3; /* set continuation slot number */
-}
diff --git a/ANDROID_3.4.5/arch/ia64/mm/fault.c b/ANDROID_3.4.5/arch/ia64/mm/fault.c
deleted file mode 100644
index 02d29c2a..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/fault.c
+++ /dev/null
@@ -1,281 +0,0 @@
-/*
- * MMU fault handling support.
- *
- * Copyright (C) 1998-2002 Hewlett-Packard Co
- * David Mosberger-Tang <davidm@hpl.hp.com>
- */
-#include <linux/sched.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/interrupt.h>
-#include <linux/kprobes.h>
-#include <linux/kdebug.h>
-#include <linux/prefetch.h>
-
-#include <asm/pgtable.h>
-#include <asm/processor.h>
-#include <asm/uaccess.h>
-
-extern int die(char *, struct pt_regs *, long);
-
-#ifdef CONFIG_KPROBES
-static inline int notify_page_fault(struct pt_regs *regs, int trap)
-{
- int ret = 0;
-
- if (!user_mode(regs)) {
- /* kprobe_running() needs smp_processor_id() */
- preempt_disable();
- if (kprobe_running() && kprobe_fault_handler(regs, trap))
- ret = 1;
- preempt_enable();
- }
-
- return ret;
-}
-#else
-static inline int notify_page_fault(struct pt_regs *regs, int trap)
-{
- return 0;
-}
-#endif
-
-/*
- * Return TRUE if ADDRESS points at a page in the kernel's mapped segment
- * (inside region 5, on ia64) and that page is present.
- */
-static int
-mapped_kernel_page_is_present (unsigned long address)
-{
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *ptep, pte;
-
- pgd = pgd_offset_k(address);
- if (pgd_none(*pgd) || pgd_bad(*pgd))
- return 0;
-
- pud = pud_offset(pgd, address);
- if (pud_none(*pud) || pud_bad(*pud))
- return 0;
-
- pmd = pmd_offset(pud, address);
- if (pmd_none(*pmd) || pmd_bad(*pmd))
- return 0;
-
- ptep = pte_offset_kernel(pmd, address);
- if (!ptep)
- return 0;
-
- pte = *ptep;
- return pte_present(pte);
-}
-
-void __kprobes
-ia64_do_page_fault (unsigned long address, unsigned long isr, struct pt_regs *regs)
-{
- int signal = SIGSEGV, code = SEGV_MAPERR;
- struct vm_area_struct *vma, *prev_vma;
- struct mm_struct *mm = current->mm;
- struct siginfo si;
- unsigned long mask;
- int fault;
-
- /* mmap_sem is performance critical.... */
- prefetchw(&mm->mmap_sem);
-
- /*
- * If we're in an interrupt or have no user context, we must not take the fault..
- */
- if (in_atomic() || !mm)
- goto no_context;
-
-#ifdef CONFIG_VIRTUAL_MEM_MAP
- /*
- * If fault is in region 5 and we are in the kernel, we may already
- * have the mmap_sem (pfn_valid macro is called during mmap). There
- * is no vma for region 5 addr's anyway, so skip getting the semaphore
- * and go directly to the exception handling code.
- */
-
- if ((REGION_NUMBER(address) == 5) && !user_mode(regs))
- goto bad_area_no_up;
-#endif
-
- /*
- * This is to handle the kprobes on user space access instructions
- */
- if (notify_page_fault(regs, TRAP_BRKPT))
- return;
-
- down_read(&mm->mmap_sem);
-
- vma = find_vma_prev(mm, address, &prev_vma);
- if (!vma && !prev_vma )
- goto bad_area;
-
- /*
- * find_vma_prev() returns vma such that address < vma->vm_end or NULL
- *
- * May find no vma, but could be that the last vm area is the
- * register backing store that needs to expand upwards, in
- * this case vma will be null, but prev_vma will ne non-null
- */
- if (( !vma && prev_vma ) || (address < vma->vm_start) )
- goto check_expansion;
-
- good_area:
- code = SEGV_ACCERR;
-
- /* OK, we've got a good vm_area for this memory area. Check the access permissions: */
-
-# define VM_READ_BIT 0
-# define VM_WRITE_BIT 1
-# define VM_EXEC_BIT 2
-
-# if (((1 << VM_READ_BIT) != VM_READ || (1 << VM_WRITE_BIT) != VM_WRITE) \
- || (1 << VM_EXEC_BIT) != VM_EXEC)
-# error File is out of sync with <linux/mm.h>. Please update.
-# endif
-
- if (((isr >> IA64_ISR_R_BIT) & 1UL) && (!(vma->vm_flags & (VM_READ | VM_WRITE))))
- goto bad_area;
-
- mask = ( (((isr >> IA64_ISR_X_BIT) & 1UL) << VM_EXEC_BIT)
- | (((isr >> IA64_ISR_W_BIT) & 1UL) << VM_WRITE_BIT));
-
- if ((vma->vm_flags & mask) != mask)
- goto bad_area;
-
- /*
- * If for any reason at all we couldn't handle the fault, make
- * sure we exit gracefully rather than endlessly redo the
- * fault.
- */
- fault = handle_mm_fault(mm, vma, address, (mask & VM_WRITE) ? FAULT_FLAG_WRITE : 0);
- if (unlikely(fault & VM_FAULT_ERROR)) {
- /*
- * We ran out of memory, or some other thing happened
- * to us that made us unable to handle the page fault
- * gracefully.
- */
- if (fault & VM_FAULT_OOM) {
- goto out_of_memory;
- } else if (fault & VM_FAULT_SIGBUS) {
- signal = SIGBUS;
- goto bad_area;
- }
- BUG();
- }
- if (fault & VM_FAULT_MAJOR)
- current->maj_flt++;
- else
- current->min_flt++;
- up_read(&mm->mmap_sem);
- return;
-
- check_expansion:
- if (!(prev_vma && (prev_vma->vm_flags & VM_GROWSUP) && (address == prev_vma->vm_end))) {
- if (!vma)
- goto bad_area;
- if (!(vma->vm_flags & VM_GROWSDOWN))
- goto bad_area;
- if (REGION_NUMBER(address) != REGION_NUMBER(vma->vm_start)
- || REGION_OFFSET(address) >= RGN_MAP_LIMIT)
- goto bad_area;
- if (expand_stack(vma, address))
- goto bad_area;
- } else {
- vma = prev_vma;
- if (REGION_NUMBER(address) != REGION_NUMBER(vma->vm_start)
- || REGION_OFFSET(address) >= RGN_MAP_LIMIT)
- goto bad_area;
- /*
- * Since the register backing store is accessed sequentially,
- * we disallow growing it by more than a page at a time.
- */
- if (address > vma->vm_end + PAGE_SIZE - sizeof(long))
- goto bad_area;
- if (expand_upwards(vma, address))
- goto bad_area;
- }
- goto good_area;
-
- bad_area:
- up_read(&mm->mmap_sem);
-#ifdef CONFIG_VIRTUAL_MEM_MAP
- bad_area_no_up:
-#endif
- if ((isr & IA64_ISR_SP)
- || ((isr & IA64_ISR_NA) && (isr & IA64_ISR_CODE_MASK) == IA64_ISR_CODE_LFETCH))
- {
- /*
- * This fault was due to a speculative load or lfetch.fault, set the "ed"
- * bit in the psr to ensure forward progress. (Target register will get a
- * NaT for ld.s, lfetch will be canceled.)
- */
- ia64_psr(regs)->ed = 1;
- return;
- }
- if (user_mode(regs)) {
- si.si_signo = signal;
- si.si_errno = 0;
- si.si_code = code;
- si.si_addr = (void __user *) address;
- si.si_isr = isr;
- si.si_flags = __ISR_VALID;
- force_sig_info(signal, &si, current);
- return;
- }
-
- no_context:
- if ((isr & IA64_ISR_SP)
- || ((isr & IA64_ISR_NA) && (isr & IA64_ISR_CODE_MASK) == IA64_ISR_CODE_LFETCH))
- {
- /*
- * This fault was due to a speculative load or lfetch.fault, set the "ed"
- * bit in the psr to ensure forward progress. (Target register will get a
- * NaT for ld.s, lfetch will be canceled.)
- */
- ia64_psr(regs)->ed = 1;
- return;
- }
-
- /*
- * Since we have no vma's for region 5, we might get here even if the address is
- * valid, due to the VHPT walker inserting a non present translation that becomes
- * stale. If that happens, the non present fault handler already purged the stale
- * translation, which fixed the problem. So, we check to see if the translation is
- * valid, and return if it is.
- */
- if (REGION_NUMBER(address) == 5 && mapped_kernel_page_is_present(address))
- return;
-
- if (ia64_done_with_exception(regs))
- return;
-
- /*
- * Oops. The kernel tried to access some bad page. We'll have to terminate things
- * with extreme prejudice.
- */
- bust_spinlocks(1);
-
- if (address < PAGE_SIZE)
- printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference (address %016lx)\n", address);
- else
- printk(KERN_ALERT "Unable to handle kernel paging request at "
- "virtual address %016lx\n", address);
- if (die("Oops", regs, isr))
- regs = NULL;
- bust_spinlocks(0);
- if (regs)
- do_exit(SIGKILL);
- return;
-
- out_of_memory:
- up_read(&mm->mmap_sem);
- if (!user_mode(regs))
- goto no_context;
- pagefault_out_of_memory();
-}
diff --git a/ANDROID_3.4.5/arch/ia64/mm/hugetlbpage.c b/ANDROID_3.4.5/arch/ia64/mm/hugetlbpage.c
deleted file mode 100644
index 5ca674b7..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/hugetlbpage.c
+++ /dev/null
@@ -1,207 +0,0 @@
-/*
- * IA-64 Huge TLB Page Support for Kernel.
- *
- * Copyright (C) 2002-2004 Rohit Seth <rohit.seth@intel.com>
- * Copyright (C) 2003-2004 Ken Chen <kenneth.w.chen@intel.com>
- *
- * Sep, 2003: add numa support
- * Feb, 2004: dynamic hugetlb page size via boot parameter
- */
-
-#include <linux/init.h>
-#include <linux/fs.h>
-#include <linux/mm.h>
-#include <linux/hugetlb.h>
-#include <linux/pagemap.h>
-#include <linux/module.h>
-#include <linux/sysctl.h>
-#include <linux/log2.h>
-#include <asm/mman.h>
-#include <asm/pgalloc.h>
-#include <asm/tlb.h>
-#include <asm/tlbflush.h>
-
-unsigned int hpage_shift = HPAGE_SHIFT_DEFAULT;
-EXPORT_SYMBOL(hpage_shift);
-
-pte_t *
-huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
-{
- unsigned long taddr = htlbpage_to_page(addr);
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte = NULL;
-
- pgd = pgd_offset(mm, taddr);
- pud = pud_alloc(mm, pgd, taddr);
- if (pud) {
- pmd = pmd_alloc(mm, pud, taddr);
- if (pmd)
- pte = pte_alloc_map(mm, NULL, pmd, taddr);
- }
- return pte;
-}
-
-pte_t *
-huge_pte_offset (struct mm_struct *mm, unsigned long addr)
-{
- unsigned long taddr = htlbpage_to_page(addr);
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte = NULL;
-
- pgd = pgd_offset(mm, taddr);
- if (pgd_present(*pgd)) {
- pud = pud_offset(pgd, taddr);
- if (pud_present(*pud)) {
- pmd = pmd_offset(pud, taddr);
- if (pmd_present(*pmd))
- pte = pte_offset_map(pmd, taddr);
- }
- }
-
- return pte;
-}
-
-int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
-{
- return 0;
-}
-
-#define mk_pte_huge(entry) { pte_val(entry) |= _PAGE_P; }
-
-/*
- * Don't actually need to do any preparation, but need to make sure
- * the address is in the right region.
- */
-int prepare_hugepage_range(struct file *file,
- unsigned long addr, unsigned long len)
-{
- if (len & ~HPAGE_MASK)
- return -EINVAL;
- if (addr & ~HPAGE_MASK)
- return -EINVAL;
- if (REGION_NUMBER(addr) != RGN_HPAGE)
- return -EINVAL;
-
- return 0;
-}
-
-struct page *follow_huge_addr(struct mm_struct *mm, unsigned long addr, int write)
-{
- struct page *page;
- pte_t *ptep;
-
- if (REGION_NUMBER(addr) != RGN_HPAGE)
- return ERR_PTR(-EINVAL);
-
- ptep = huge_pte_offset(mm, addr);
- if (!ptep || pte_none(*ptep))
- return NULL;
- page = pte_page(*ptep);
- page += ((addr & ~HPAGE_MASK) >> PAGE_SHIFT);
- return page;
-}
-int pmd_huge(pmd_t pmd)
-{
- return 0;
-}
-
-int pud_huge(pud_t pud)
-{
- return 0;
-}
-
-struct page *
-follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write)
-{
- return NULL;
-}
-
-void hugetlb_free_pgd_range(struct mmu_gather *tlb,
- unsigned long addr, unsigned long end,
- unsigned long floor, unsigned long ceiling)
-{
- /*
- * This is called to free hugetlb page tables.
- *
- * The offset of these addresses from the base of the hugetlb
- * region must be scaled down by HPAGE_SIZE/PAGE_SIZE so that
- * the standard free_pgd_range will free the right page tables.
- *
- * If floor and ceiling are also in the hugetlb region, they
- * must likewise be scaled down; but if outside, left unchanged.
- */
-
- addr = htlbpage_to_page(addr);
- end = htlbpage_to_page(end);
- if (REGION_NUMBER(floor) == RGN_HPAGE)
- floor = htlbpage_to_page(floor);
- if (REGION_NUMBER(ceiling) == RGN_HPAGE)
- ceiling = htlbpage_to_page(ceiling);
-
- free_pgd_range(tlb, addr, end, floor, ceiling);
-}
-
-unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
- unsigned long pgoff, unsigned long flags)
-{
- struct vm_area_struct *vmm;
-
- if (len > RGN_MAP_LIMIT)
- return -ENOMEM;
- if (len & ~HPAGE_MASK)
- return -EINVAL;
-
- /* Handle MAP_FIXED */
- if (flags & MAP_FIXED) {
- if (prepare_hugepage_range(file, addr, len))
- return -EINVAL;
- return addr;
- }
-
- /* This code assumes that RGN_HPAGE != 0. */
- if ((REGION_NUMBER(addr) != RGN_HPAGE) || (addr & (HPAGE_SIZE - 1)))
- addr = HPAGE_REGION_BASE;
- else
- addr = ALIGN(addr, HPAGE_SIZE);
- for (vmm = find_vma(current->mm, addr); ; vmm = vmm->vm_next) {
- /* At this point: (!vmm || addr < vmm->vm_end). */
- if (REGION_OFFSET(addr) + len > RGN_MAP_LIMIT)
- return -ENOMEM;
- if (!vmm || (addr + len) <= vmm->vm_start)
- return addr;
- addr = ALIGN(vmm->vm_end, HPAGE_SIZE);
- }
-}
-
-static int __init hugetlb_setup_sz(char *str)
-{
- u64 tr_pages;
- unsigned long long size;
-
- if (ia64_pal_vm_page_size(&tr_pages, NULL) != 0)
- /*
- * shouldn't happen, but just in case.
- */
- tr_pages = 0x15557000UL;
-
- size = memparse(str, &str);
- if (*str || !is_power_of_2(size) || !(tr_pages & size) ||
- size <= PAGE_SIZE ||
- size >= (1UL << PAGE_SHIFT << MAX_ORDER)) {
- printk(KERN_WARNING "Invalid huge page size specified\n");
- return 1;
- }
-
- hpage_shift = __ffs(size);
- /*
- * boot cpu already executed ia64_mmu_init, and has HPAGE_SHIFT_DEFAULT
- * override here with new page shift.
- */
- ia64_set_rr(HPAGE_REGION_BASE, hpage_shift << 2);
- return 0;
-}
-early_param("hugepagesz", hugetlb_setup_sz);
diff --git a/ANDROID_3.4.5/arch/ia64/mm/init.c b/ANDROID_3.4.5/arch/ia64/mm/init.c
deleted file mode 100644
index 0eab4548..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/init.c
+++ /dev/null
@@ -1,716 +0,0 @@
-/*
- * Initialize MMU support.
- *
- * Copyright (C) 1998-2003 Hewlett-Packard Co
- * David Mosberger-Tang <davidm@hpl.hp.com>
- */
-#include <linux/kernel.h>
-#include <linux/init.h>
-
-#include <linux/bootmem.h>
-#include <linux/efi.h>
-#include <linux/elf.h>
-#include <linux/memblock.h>
-#include <linux/mm.h>
-#include <linux/mmzone.h>
-#include <linux/module.h>
-#include <linux/personality.h>
-#include <linux/reboot.h>
-#include <linux/slab.h>
-#include <linux/swap.h>
-#include <linux/proc_fs.h>
-#include <linux/bitops.h>
-#include <linux/kexec.h>
-
-#include <asm/dma.h>
-#include <asm/io.h>
-#include <asm/machvec.h>
-#include <asm/numa.h>
-#include <asm/patch.h>
-#include <asm/pgalloc.h>
-#include <asm/sal.h>
-#include <asm/sections.h>
-#include <asm/tlb.h>
-#include <asm/uaccess.h>
-#include <asm/unistd.h>
-#include <asm/mca.h>
-#include <asm/paravirt.h>
-
-extern void ia64_tlb_init (void);
-
-unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
-
-#ifdef CONFIG_VIRTUAL_MEM_MAP
-unsigned long VMALLOC_END = VMALLOC_END_INIT;
-EXPORT_SYMBOL(VMALLOC_END);
-struct page *vmem_map;
-EXPORT_SYMBOL(vmem_map);
-#endif
-
-struct page *zero_page_memmap_ptr; /* map entry for zero page */
-EXPORT_SYMBOL(zero_page_memmap_ptr);
-
-void
-__ia64_sync_icache_dcache (pte_t pte)
-{
- unsigned long addr;
- struct page *page;
-
- page = pte_page(pte);
- addr = (unsigned long) page_address(page);
-
- if (test_bit(PG_arch_1, &page->flags))
- return; /* i-cache is already coherent with d-cache */
-
- flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
- set_bit(PG_arch_1, &page->flags); /* mark page as clean */
-}
-
-/*
- * Since DMA is i-cache coherent, any (complete) pages that were written via
- * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
- * flush them when they get mapped into an executable vm-area.
- */
-void
-dma_mark_clean(void *addr, size_t size)
-{
- unsigned long pg_addr, end;
-
- pg_addr = PAGE_ALIGN((unsigned long) addr);
- end = (unsigned long) addr + size;
- while (pg_addr + PAGE_SIZE <= end) {
- struct page *page = virt_to_page(pg_addr);
- set_bit(PG_arch_1, &page->flags);
- pg_addr += PAGE_SIZE;
- }
-}
-
-inline void
-ia64_set_rbs_bot (void)
-{
- unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
-
- if (stack_size > MAX_USER_STACK_SIZE)
- stack_size = MAX_USER_STACK_SIZE;
- current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
-}
-
-/*
- * This performs some platform-dependent address space initialization.
- * On IA-64, we want to setup the VM area for the register backing
- * store (which grows upwards) and install the gateway page which is
- * used for signal trampolines, etc.
- */
-void
-ia64_init_addr_space (void)
-{
- struct vm_area_struct *vma;
-
- ia64_set_rbs_bot();
-
- /*
- * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
- * the problem. When the process attempts to write to the register backing store
- * for the first time, it will get a SEGFAULT in this case.
- */
- vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
- if (vma) {
- INIT_LIST_HEAD(&vma->anon_vma_chain);
- vma->vm_mm = current->mm;
- vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
- vma->vm_end = vma->vm_start + PAGE_SIZE;
- vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
- vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
- down_write(&current->mm->mmap_sem);
- if (insert_vm_struct(current->mm, vma)) {
- up_write(&current->mm->mmap_sem);
- kmem_cache_free(vm_area_cachep, vma);
- return;
- }
- up_write(&current->mm->mmap_sem);
- }
-
- /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
- if (!(current->personality & MMAP_PAGE_ZERO)) {
- vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
- if (vma) {
- INIT_LIST_HEAD(&vma->anon_vma_chain);
- vma->vm_mm = current->mm;
- vma->vm_end = PAGE_SIZE;
- vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
- vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
- down_write(&current->mm->mmap_sem);
- if (insert_vm_struct(current->mm, vma)) {
- up_write(&current->mm->mmap_sem);
- kmem_cache_free(vm_area_cachep, vma);
- return;
- }
- up_write(&current->mm->mmap_sem);
- }
- }
-}
-
-void
-free_initmem (void)
-{
- unsigned long addr, eaddr;
-
- addr = (unsigned long) ia64_imva(__init_begin);
- eaddr = (unsigned long) ia64_imva(__init_end);
- while (addr < eaddr) {
- ClearPageReserved(virt_to_page(addr));
- init_page_count(virt_to_page(addr));
- free_page(addr);
- ++totalram_pages;
- addr += PAGE_SIZE;
- }
- printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
- (__init_end - __init_begin) >> 10);
-}
-
-void __init
-free_initrd_mem (unsigned long start, unsigned long end)
-{
- struct page *page;
- /*
- * EFI uses 4KB pages while the kernel can use 4KB or bigger.
- * Thus EFI and the kernel may have different page sizes. It is
- * therefore possible to have the initrd share the same page as
- * the end of the kernel (given current setup).
- *
- * To avoid freeing/using the wrong page (kernel sized) we:
- * - align up the beginning of initrd
- * - align down the end of initrd
- *
- * | |
- * |=============| a000
- * | |
- * | |
- * | | 9000
- * |/////////////|
- * |/////////////|
- * |=============| 8000
- * |///INITRD////|
- * |/////////////|
- * |/////////////| 7000
- * | |
- * |KKKKKKKKKKKKK|
- * |=============| 6000
- * |KKKKKKKKKKKKK|
- * |KKKKKKKKKKKKK|
- * K=kernel using 8KB pages
- *
- * In this example, we must free page 8000 ONLY. So we must align up
- * initrd_start and keep initrd_end as is.
- */
- start = PAGE_ALIGN(start);
- end = end & PAGE_MASK;
-
- if (start < end)
- printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
-
- for (; start < end; start += PAGE_SIZE) {
- if (!virt_addr_valid(start))
- continue;
- page = virt_to_page(start);
- ClearPageReserved(page);
- init_page_count(page);
- free_page(start);
- ++totalram_pages;
- }
-}
-
-/*
- * This installs a clean page in the kernel's page table.
- */
-static struct page * __init
-put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
-{
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- if (!PageReserved(page))
- printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
- page_address(page));
-
- pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
-
- {
- pud = pud_alloc(&init_mm, pgd, address);
- if (!pud)
- goto out;
- pmd = pmd_alloc(&init_mm, pud, address);
- if (!pmd)
- goto out;
- pte = pte_alloc_kernel(pmd, address);
- if (!pte)
- goto out;
- if (!pte_none(*pte))
- goto out;
- set_pte(pte, mk_pte(page, pgprot));
- }
- out:
- /* no need for flush_tlb */
- return page;
-}
-
-static void __init
-setup_gate (void)
-{
- void *gate_section;
- struct page *page;
-
- /*
- * Map the gate page twice: once read-only to export the ELF
- * headers etc. and once execute-only page to enable
- * privilege-promotion via "epc":
- */
- gate_section = paravirt_get_gate_section();
- page = virt_to_page(ia64_imva(gate_section));
- put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
-#ifdef HAVE_BUGGY_SEGREL
- page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
- put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
-#else
- put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
- /* Fill in the holes (if any) with read-only zero pages: */
- {
- unsigned long addr;
-
- for (addr = GATE_ADDR + PAGE_SIZE;
- addr < GATE_ADDR + PERCPU_PAGE_SIZE;
- addr += PAGE_SIZE)
- {
- put_kernel_page(ZERO_PAGE(0), addr,
- PAGE_READONLY);
- put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
- PAGE_READONLY);
- }
- }
-#endif
- ia64_patch_gate();
-}
-
-void __devinit
-ia64_mmu_init (void *my_cpu_data)
-{
- unsigned long pta, impl_va_bits;
- extern void __devinit tlb_init (void);
-
-#ifdef CONFIG_DISABLE_VHPT
-# define VHPT_ENABLE_BIT 0
-#else
-# define VHPT_ENABLE_BIT 1
-#endif
-
- /*
- * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
- * address space. The IA-64 architecture guarantees that at least 50 bits of
- * virtual address space are implemented but if we pick a large enough page size
- * (e.g., 64KB), the mapped address space is big enough that it will overlap with
- * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
- * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
- * problem in practice. Alternatively, we could truncate the top of the mapped
- * address space to not permit mappings that would overlap with the VMLPT.
- * --davidm 00/12/06
- */
-# define pte_bits 3
-# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
- /*
- * The virtual page table has to cover the entire implemented address space within
- * a region even though not all of this space may be mappable. The reason for
- * this is that the Access bit and Dirty bit fault handlers perform
- * non-speculative accesses to the virtual page table, so the address range of the
- * virtual page table itself needs to be covered by virtual page table.
- */
-# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
-# define POW2(n) (1ULL << (n))
-
- impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
-
- if (impl_va_bits < 51 || impl_va_bits > 61)
- panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
- /*
- * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
- * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
- * the test makes sure that our mapped space doesn't overlap the
- * unimplemented hole in the middle of the region.
- */
- if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
- (mapped_space_bits > impl_va_bits - 1))
- panic("Cannot build a big enough virtual-linear page table"
- " to cover mapped address space.\n"
- " Try using a smaller page size.\n");
-
-
- /* place the VMLPT at the end of each page-table mapped region: */
- pta = POW2(61) - POW2(vmlpt_bits);
-
- /*
- * Set the (virtually mapped linear) page table address. Bit
- * 8 selects between the short and long format, bits 2-7 the
- * size of the table, and bit 0 whether the VHPT walker is
- * enabled.
- */
- ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
-
- ia64_tlb_init();
-
-#ifdef CONFIG_HUGETLB_PAGE
- ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
- ia64_srlz_d();
-#endif
-}
-
-#ifdef CONFIG_VIRTUAL_MEM_MAP
-int vmemmap_find_next_valid_pfn(int node, int i)
-{
- unsigned long end_address, hole_next_pfn;
- unsigned long stop_address;
- pg_data_t *pgdat = NODE_DATA(node);
-
- end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
- end_address = PAGE_ALIGN(end_address);
-
- stop_address = (unsigned long) &vmem_map[
- pgdat->node_start_pfn + pgdat->node_spanned_pages];
-
- do {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- pgd = pgd_offset_k(end_address);
- if (pgd_none(*pgd)) {
- end_address += PGDIR_SIZE;
- continue;
- }
-
- pud = pud_offset(pgd, end_address);
- if (pud_none(*pud)) {
- end_address += PUD_SIZE;
- continue;
- }
-
- pmd = pmd_offset(pud, end_address);
- if (pmd_none(*pmd)) {
- end_address += PMD_SIZE;
- continue;
- }
-
- pte = pte_offset_kernel(pmd, end_address);
-retry_pte:
- if (pte_none(*pte)) {
- end_address += PAGE_SIZE;
- pte++;
- if ((end_address < stop_address) &&
- (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
- goto retry_pte;
- continue;
- }
- /* Found next valid vmem_map page */
- break;
- } while (end_address < stop_address);
-
- end_address = min(end_address, stop_address);
- end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
- hole_next_pfn = end_address / sizeof(struct page);
- return hole_next_pfn - pgdat->node_start_pfn;
-}
-
-int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
-{
- unsigned long address, start_page, end_page;
- struct page *map_start, *map_end;
- int node;
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
- map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
-
- start_page = (unsigned long) map_start & PAGE_MASK;
- end_page = PAGE_ALIGN((unsigned long) map_end);
- node = paddr_to_nid(__pa(start));
-
- for (address = start_page; address < end_page; address += PAGE_SIZE) {
- pgd = pgd_offset_k(address);
- if (pgd_none(*pgd))
- pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
- pud = pud_offset(pgd, address);
-
- if (pud_none(*pud))
- pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
- pmd = pmd_offset(pud, address);
-
- if (pmd_none(*pmd))
- pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
- pte = pte_offset_kernel(pmd, address);
-
- if (pte_none(*pte))
- set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
- PAGE_KERNEL));
- }
- return 0;
-}
-
-struct memmap_init_callback_data {
- struct page *start;
- struct page *end;
- int nid;
- unsigned long zone;
-};
-
-static int __meminit
-virtual_memmap_init(u64 start, u64 end, void *arg)
-{
- struct memmap_init_callback_data *args;
- struct page *map_start, *map_end;
-
- args = (struct memmap_init_callback_data *) arg;
- map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
- map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
-
- if (map_start < args->start)
- map_start = args->start;
- if (map_end > args->end)
- map_end = args->end;
-
- /*
- * We have to initialize "out of bounds" struct page elements that fit completely
- * on the same pages that were allocated for the "in bounds" elements because they
- * may be referenced later (and found to be "reserved").
- */
- map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
- map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
- / sizeof(struct page));
-
- if (map_start < map_end)
- memmap_init_zone((unsigned long)(map_end - map_start),
- args->nid, args->zone, page_to_pfn(map_start),
- MEMMAP_EARLY);
- return 0;
-}
-
-void __meminit
-memmap_init (unsigned long size, int nid, unsigned long zone,
- unsigned long start_pfn)
-{
- if (!vmem_map)
- memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
- else {
- struct page *start;
- struct memmap_init_callback_data args;
-
- start = pfn_to_page(start_pfn);
- args.start = start;
- args.end = start + size;
- args.nid = nid;
- args.zone = zone;
-
- efi_memmap_walk(virtual_memmap_init, &args);
- }
-}
-
-int
-ia64_pfn_valid (unsigned long pfn)
-{
- char byte;
- struct page *pg = pfn_to_page(pfn);
-
- return (__get_user(byte, (char __user *) pg) == 0)
- && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
- || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
-}
-EXPORT_SYMBOL(ia64_pfn_valid);
-
-int __init find_largest_hole(u64 start, u64 end, void *arg)
-{
- u64 *max_gap = arg;
-
- static u64 last_end = PAGE_OFFSET;
-
- /* NOTE: this algorithm assumes efi memmap table is ordered */
-
- if (*max_gap < (start - last_end))
- *max_gap = start - last_end;
- last_end = end;
- return 0;
-}
-
-#endif /* CONFIG_VIRTUAL_MEM_MAP */
-
-int __init register_active_ranges(u64 start, u64 len, int nid)
-{
- u64 end = start + len;
-
-#ifdef CONFIG_KEXEC
- if (start > crashk_res.start && start < crashk_res.end)
- start = crashk_res.end;
- if (end > crashk_res.start && end < crashk_res.end)
- end = crashk_res.start;
-#endif
-
- if (start < end)
- memblock_add_node(__pa(start), end - start, nid);
- return 0;
-}
-
-static int __init
-count_reserved_pages(u64 start, u64 end, void *arg)
-{
- unsigned long num_reserved = 0;
- unsigned long *count = arg;
-
- for (; start < end; start += PAGE_SIZE)
- if (PageReserved(virt_to_page(start)))
- ++num_reserved;
- *count += num_reserved;
- return 0;
-}
-
-int
-find_max_min_low_pfn (u64 start, u64 end, void *arg)
-{
- unsigned long pfn_start, pfn_end;
-#ifdef CONFIG_FLATMEM
- pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
- pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
-#else
- pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
- pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
-#endif
- min_low_pfn = min(min_low_pfn, pfn_start);
- max_low_pfn = max(max_low_pfn, pfn_end);
- return 0;
-}
-
-/*
- * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
- * system call handler. When this option is in effect, all fsyscalls will end up bubbling
- * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
- * useful for performance testing, but conceivably could also come in handy for debugging
- * purposes.
- */
-
-static int nolwsys __initdata;
-
-static int __init
-nolwsys_setup (char *s)
-{
- nolwsys = 1;
- return 1;
-}
-
-__setup("nolwsys", nolwsys_setup);
-
-void __init
-mem_init (void)
-{
- long reserved_pages, codesize, datasize, initsize;
- pg_data_t *pgdat;
- int i;
-
- BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
- BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
- BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
-
-#ifdef CONFIG_PCI
- /*
- * This needs to be called _after_ the command line has been parsed but _before_
- * any drivers that may need the PCI DMA interface are initialized or bootmem has
- * been freed.
- */
- platform_dma_init();
-#endif
-
-#ifdef CONFIG_FLATMEM
- BUG_ON(!mem_map);
- max_mapnr = max_low_pfn;
-#endif
-
- high_memory = __va(max_low_pfn * PAGE_SIZE);
-
- for_each_online_pgdat(pgdat)
- if (pgdat->bdata->node_bootmem_map)
- totalram_pages += free_all_bootmem_node(pgdat);
-
- reserved_pages = 0;
- efi_memmap_walk(count_reserved_pages, &reserved_pages);
-
- codesize = (unsigned long) _etext - (unsigned long) _stext;
- datasize = (unsigned long) _edata - (unsigned long) _etext;
- initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
-
- printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
- "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
- num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
- reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
-
-
- /*
- * For fsyscall entrpoints with no light-weight handler, use the ordinary
- * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
- * code can tell them apart.
- */
- for (i = 0; i < NR_syscalls; ++i) {
- extern unsigned long sys_call_table[NR_syscalls];
- unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
-
- if (!fsyscall_table[i] || nolwsys)
- fsyscall_table[i] = sys_call_table[i] | 1;
- }
- setup_gate();
-}
-
-#ifdef CONFIG_MEMORY_HOTPLUG
-int arch_add_memory(int nid, u64 start, u64 size)
-{
- pg_data_t *pgdat;
- struct zone *zone;
- unsigned long start_pfn = start >> PAGE_SHIFT;
- unsigned long nr_pages = size >> PAGE_SHIFT;
- int ret;
-
- pgdat = NODE_DATA(nid);
-
- zone = pgdat->node_zones + ZONE_NORMAL;
- ret = __add_pages(nid, zone, start_pfn, nr_pages);
-
- if (ret)
- printk("%s: Problem encountered in __add_pages() as ret=%d\n",
- __func__, ret);
-
- return ret;
-}
-#endif
-
-/*
- * Even when CONFIG_IA32_SUPPORT is not enabled it is
- * useful to have the Linux/x86 domain registered to
- * avoid an attempted module load when emulators call
- * personality(PER_LINUX32). This saves several milliseconds
- * on each such call.
- */
-static struct exec_domain ia32_exec_domain;
-
-static int __init
-per_linux32_init(void)
-{
- ia32_exec_domain.name = "Linux/x86";
- ia32_exec_domain.handler = NULL;
- ia32_exec_domain.pers_low = PER_LINUX32;
- ia32_exec_domain.pers_high = PER_LINUX32;
- ia32_exec_domain.signal_map = default_exec_domain.signal_map;
- ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
- register_exec_domain(&ia32_exec_domain);
-
- return 0;
-}
-
-__initcall(per_linux32_init);
diff --git a/ANDROID_3.4.5/arch/ia64/mm/ioremap.c b/ANDROID_3.4.5/arch/ia64/mm/ioremap.c
deleted file mode 100644
index 3dccdd8e..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/ioremap.c
+++ /dev/null
@@ -1,121 +0,0 @@
-/*
- * (c) Copyright 2006, 2007 Hewlett-Packard Development Company, L.P.
- * Bjorn Helgaas <bjorn.helgaas@hp.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
-
-#include <linux/compiler.h>
-#include <linux/module.h>
-#include <linux/efi.h>
-#include <linux/io.h>
-#include <linux/vmalloc.h>
-#include <asm/io.h>
-#include <asm/meminit.h>
-
-static inline void __iomem *
-__ioremap (unsigned long phys_addr)
-{
- return (void __iomem *) (__IA64_UNCACHED_OFFSET | phys_addr);
-}
-
-void __iomem *
-early_ioremap (unsigned long phys_addr, unsigned long size)
-{
- return __ioremap(phys_addr);
-}
-
-void __iomem *
-ioremap (unsigned long phys_addr, unsigned long size)
-{
- void __iomem *addr;
- struct vm_struct *area;
- unsigned long offset;
- pgprot_t prot;
- u64 attr;
- unsigned long gran_base, gran_size;
- unsigned long page_base;
-
- /*
- * For things in kern_memmap, we must use the same attribute
- * as the rest of the kernel. For more details, see
- * Documentation/ia64/aliasing.txt.
- */
- attr = kern_mem_attribute(phys_addr, size);
- if (attr & EFI_MEMORY_WB)
- return (void __iomem *) phys_to_virt(phys_addr);
- else if (attr & EFI_MEMORY_UC)
- return __ioremap(phys_addr);
-
- /*
- * Some chipsets don't support UC access to memory. If
- * WB is supported for the whole granule, we prefer that.
- */
- gran_base = GRANULEROUNDDOWN(phys_addr);
- gran_size = GRANULEROUNDUP(phys_addr + size) - gran_base;
- if (efi_mem_attribute(gran_base, gran_size) & EFI_MEMORY_WB)
- return (void __iomem *) phys_to_virt(phys_addr);
-
- /*
- * WB is not supported for the whole granule, so we can't use
- * the region 7 identity mapping. If we can safely cover the
- * area with kernel page table mappings, we can use those
- * instead.
- */
- page_base = phys_addr & PAGE_MASK;
- size = PAGE_ALIGN(phys_addr + size) - page_base;
- if (efi_mem_attribute(page_base, size) & EFI_MEMORY_WB) {
- prot = PAGE_KERNEL;
-
- /*
- * Mappings have to be page-aligned
- */
- offset = phys_addr & ~PAGE_MASK;
- phys_addr &= PAGE_MASK;
-
- /*
- * Ok, go for it..
- */
- area = get_vm_area(size, VM_IOREMAP);
- if (!area)
- return NULL;
-
- area->phys_addr = phys_addr;
- addr = (void __iomem *) area->addr;
- if (ioremap_page_range((unsigned long) addr,
- (unsigned long) addr + size, phys_addr, prot)) {
- vunmap((void __force *) addr);
- return NULL;
- }
-
- return (void __iomem *) (offset + (char __iomem *)addr);
- }
-
- return __ioremap(phys_addr);
-}
-EXPORT_SYMBOL(ioremap);
-
-void __iomem *
-ioremap_nocache (unsigned long phys_addr, unsigned long size)
-{
- if (kern_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
- return NULL;
-
- return __ioremap(phys_addr);
-}
-EXPORT_SYMBOL(ioremap_nocache);
-
-void
-early_iounmap (volatile void __iomem *addr, unsigned long size)
-{
-}
-
-void
-iounmap (volatile void __iomem *addr)
-{
- if (REGION_NUMBER(addr) == RGN_GATE)
- vunmap((void *) ((unsigned long) addr & PAGE_MASK));
-}
-EXPORT_SYMBOL(iounmap);
diff --git a/ANDROID_3.4.5/arch/ia64/mm/numa.c b/ANDROID_3.4.5/arch/ia64/mm/numa.c
deleted file mode 100644
index 3efea7d0..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/numa.c
+++ /dev/null
@@ -1,92 +0,0 @@
-/*
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * This file contains NUMA specific variables and functions which can
- * be split away from DISCONTIGMEM and are used on NUMA machines with
- * contiguous memory.
- *
- * 2002/08/07 Erich Focht <efocht@ess.nec.de>
- */
-
-#include <linux/cpu.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/node.h>
-#include <linux/init.h>
-#include <linux/bootmem.h>
-#include <linux/module.h>
-#include <asm/mmzone.h>
-#include <asm/numa.h>
-
-
-/*
- * The following structures are usually initialized by ACPI or
- * similar mechanisms and describe the NUMA characteristics of the machine.
- */
-int num_node_memblks;
-struct node_memblk_s node_memblk[NR_NODE_MEMBLKS];
-struct node_cpuid_s node_cpuid[NR_CPUS] =
- { [0 ... NR_CPUS-1] = { .phys_id = 0, .nid = NUMA_NO_NODE } };
-
-/*
- * This is a matrix with "distances" between nodes, they should be
- * proportional to the memory access latency ratios.
- */
-u8 numa_slit[MAX_NUMNODES * MAX_NUMNODES];
-
-/* Identify which cnode a physical address resides on */
-int
-paddr_to_nid(unsigned long paddr)
-{
- int i;
-
- for (i = 0; i < num_node_memblks; i++)
- if (paddr >= node_memblk[i].start_paddr &&
- paddr < node_memblk[i].start_paddr + node_memblk[i].size)
- break;
-
- return (i < num_node_memblks) ? node_memblk[i].nid : (num_node_memblks ? -1 : 0);
-}
-
-#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_NUMA)
-/*
- * Because of holes evaluate on section limits.
- * If the section of memory exists, then return the node where the section
- * resides. Otherwise return node 0 as the default. This is used by
- * SPARSEMEM to allocate the SPARSEMEM sectionmap on the NUMA node where
- * the section resides.
- */
-int __meminit __early_pfn_to_nid(unsigned long pfn)
-{
- int i, section = pfn >> PFN_SECTION_SHIFT, ssec, esec;
-
- for (i = 0; i < num_node_memblks; i++) {
- ssec = node_memblk[i].start_paddr >> PA_SECTION_SHIFT;
- esec = (node_memblk[i].start_paddr + node_memblk[i].size +
- ((1L << PA_SECTION_SHIFT) - 1)) >> PA_SECTION_SHIFT;
- if (section >= ssec && section < esec)
- return node_memblk[i].nid;
- }
-
- return -1;
-}
-
-#ifdef CONFIG_MEMORY_HOTPLUG
-/*
- * SRAT information is stored in node_memblk[], then we can use SRAT
- * information at memory-hot-add if necessary.
- */
-
-int memory_add_physaddr_to_nid(u64 addr)
-{
- int nid = paddr_to_nid(addr);
- if (nid < 0)
- return 0;
- return nid;
-}
-
-EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
-#endif
-#endif
diff --git a/ANDROID_3.4.5/arch/ia64/mm/tlb.c b/ANDROID_3.4.5/arch/ia64/mm/tlb.c
deleted file mode 100644
index 7b3cdc6c..00000000
--- a/ANDROID_3.4.5/arch/ia64/mm/tlb.c
+++ /dev/null
@@ -1,562 +0,0 @@
-/*
- * TLB support routines.
- *
- * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
- * David Mosberger-Tang <davidm@hpl.hp.com>
- *
- * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
- * Modified RID allocation for SMP
- * Goutham Rao <goutham.rao@intel.com>
- * IPI based ptc implementation and A-step IPI implementation.
- * Rohit Seth <rohit.seth@intel.com>
- * Ken Chen <kenneth.w.chen@intel.com>
- * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
- * Copyright (C) 2007 Intel Corp
- * Fenghua Yu <fenghua.yu@intel.com>
- * Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
- */
-#include <linux/module.h>
-#include <linux/init.h>
-#include <linux/kernel.h>
-#include <linux/sched.h>
-#include <linux/smp.h>
-#include <linux/mm.h>
-#include <linux/bootmem.h>
-#include <linux/slab.h>
-
-#include <asm/delay.h>
-#include <asm/mmu_context.h>
-#include <asm/pgalloc.h>
-#include <asm/pal.h>
-#include <asm/tlbflush.h>
-#include <asm/dma.h>
-#include <asm/processor.h>
-#include <asm/sal.h>
-#include <asm/tlb.h>
-
-static struct {
- u64 mask; /* mask of supported purge page-sizes */
- unsigned long max_bits; /* log2 of largest supported purge page-size */
-} purge;
-
-struct ia64_ctx ia64_ctx = {
- .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
- .next = 1,
- .max_ctx = ~0U
-};
-
-DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
-DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/
-DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
-
-struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
-
-/*
- * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
- * Called after cpu_init() has setup ia64_ctx.max_ctx based on
- * maximum RID that is supported by boot CPU.
- */
-void __init
-mmu_context_init (void)
-{
- ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
- ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
-}
-
-/*
- * Acquire the ia64_ctx.lock before calling this function!
- */
-void
-wrap_mmu_context (struct mm_struct *mm)
-{
- int i, cpu;
- unsigned long flush_bit;
-
- for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
- flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
- ia64_ctx.bitmap[i] ^= flush_bit;
- }
-
- /* use offset at 300 to skip daemons */
- ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
- ia64_ctx.max_ctx, 300);
- ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
- ia64_ctx.max_ctx, ia64_ctx.next);
-
- /*
- * can't call flush_tlb_all() here because of race condition
- * with O(1) scheduler [EF]
- */
- cpu = get_cpu(); /* prevent preemption/migration */
- for_each_online_cpu(i)
- if (i != cpu)
- per_cpu(ia64_need_tlb_flush, i) = 1;
- put_cpu();
- local_flush_tlb_all();
-}
-
-/*
- * Implement "spinaphores" ... like counting semaphores, but they
- * spin instead of sleeping. If there are ever any other users for
- * this primitive it can be moved up to a spinaphore.h header.
- */
-struct spinaphore {
- unsigned long ticket;
- unsigned long serve;
-};
-
-static inline void spinaphore_init(struct spinaphore *ss, int val)
-{
- ss->ticket = 0;
- ss->serve = val;
-}
-
-static inline void down_spin(struct spinaphore *ss)
-{
- unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve;
-
- if (time_before(t, ss->serve))
- return;
-
- ia64_invala();
-
- for (;;) {
- asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory");
- if (time_before(t, serve))
- return;
- cpu_relax();
- }
-}
-
-static inline void up_spin(struct spinaphore *ss)
-{
- ia64_fetchadd(1, &ss->serve, rel);
-}
-
-static struct spinaphore ptcg_sem;
-static u16 nptcg = 1;
-static int need_ptcg_sem = 1;
-static int toolatetochangeptcgsem = 0;
-
-/*
- * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
- * purges which is reported from either PAL or SAL PALO.
- *
- * We don't have sanity checking for nptcg value. It's the user's responsibility
- * for valid nptcg value on the platform. Otherwise, kernel may hang in some
- * cases.
- */
-static int __init
-set_nptcg(char *str)
-{
- int value = 0;
-
- get_option(&str, &value);
- setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
-
- return 1;
-}
-
-__setup("nptcg=", set_nptcg);
-
-/*
- * Maximum number of simultaneous ptc.g purges in the system can
- * be defined by PAL_VM_SUMMARY (in which case we should take
- * the smallest value for any cpu in the system) or by the PAL
- * override table (in which case we should ignore the value from
- * PAL_VM_SUMMARY).
- *
- * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
- * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
- * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
- *
- * Complicating the logic here is the fact that num_possible_cpus()
- * isn't fully setup until we start bringing cpus online.
- */
-void
-setup_ptcg_sem(int max_purges, int nptcg_from)
-{
- static int kp_override;
- static int palo_override;
- static int firstcpu = 1;
-
- if (toolatetochangeptcgsem) {
- if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
- BUG_ON(1 < nptcg);
- else
- BUG_ON(max_purges < nptcg);
- return;
- }
-
- if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
- kp_override = 1;
- nptcg = max_purges;
- goto resetsema;
- }
- if (kp_override) {
- need_ptcg_sem = num_possible_cpus() > nptcg;
- return;
- }
-
- if (nptcg_from == NPTCG_FROM_PALO) {
- palo_override = 1;
-
- /* In PALO max_purges == 0 really means it! */
- if (max_purges == 0)
- panic("Whoa! Platform does not support global TLB purges.\n");
- nptcg = max_purges;
- if (nptcg == PALO_MAX_TLB_PURGES) {
- need_ptcg_sem = 0;
- return;
- }
- goto resetsema;
- }
- if (palo_override) {
- if (nptcg != PALO_MAX_TLB_PURGES)
- need_ptcg_sem = (num_possible_cpus() > nptcg);
- return;
- }
-
- /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
- if (max_purges == 0) max_purges = 1;
-
- if (firstcpu) {
- nptcg = max_purges;
- firstcpu = 0;
- }
- if (max_purges < nptcg)
- nptcg = max_purges;
- if (nptcg == PAL_MAX_PURGES) {
- need_ptcg_sem = 0;
- return;
- } else
- need_ptcg_sem = (num_possible_cpus() > nptcg);
-
-resetsema:
- spinaphore_init(&ptcg_sem, max_purges);
-}
-
-void
-ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
- unsigned long end, unsigned long nbits)
-{
- struct mm_struct *active_mm = current->active_mm;
-
- toolatetochangeptcgsem = 1;
-
- if (mm != active_mm) {
- /* Restore region IDs for mm */
- if (mm && active_mm) {
- activate_context(mm);
- } else {
- flush_tlb_all();
- return;
- }
- }
-
- if (need_ptcg_sem)
- down_spin(&ptcg_sem);
-
- do {
- /*
- * Flush ALAT entries also.
- */
- ia64_ptcga(start, (nbits << 2));
- ia64_srlz_i();
- start += (1UL << nbits);
- } while (start < end);
-
- if (need_ptcg_sem)
- up_spin(&ptcg_sem);
-
- if (mm != active_mm) {
- activate_context(active_mm);
- }
-}
-
-void
-local_flush_tlb_all (void)
-{
- unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
-
- addr = local_cpu_data->ptce_base;
- count0 = local_cpu_data->ptce_count[0];
- count1 = local_cpu_data->ptce_count[1];
- stride0 = local_cpu_data->ptce_stride[0];
- stride1 = local_cpu_data->ptce_stride[1];
-
- local_irq_save(flags);
- for (i = 0; i < count0; ++i) {
- for (j = 0; j < count1; ++j) {
- ia64_ptce(addr);
- addr += stride1;
- }
- addr += stride0;
- }
- local_irq_restore(flags);
- ia64_srlz_i(); /* srlz.i implies srlz.d */
-}
-
-void
-flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
- unsigned long end)
-{
- struct mm_struct *mm = vma->vm_mm;
- unsigned long size = end - start;
- unsigned long nbits;
-
-#ifndef CONFIG_SMP
- if (mm != current->active_mm) {
- mm->context = 0;
- return;
- }
-#endif
-
- nbits = ia64_fls(size + 0xfff);
- while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
- (nbits < purge.max_bits))
- ++nbits;
- if (nbits > purge.max_bits)
- nbits = purge.max_bits;
- start &= ~((1UL << nbits) - 1);
-
- preempt_disable();
-#ifdef CONFIG_SMP
- if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) {
- platform_global_tlb_purge(mm, start, end, nbits);
- preempt_enable();
- return;
- }
-#endif
- do {
- ia64_ptcl(start, (nbits<<2));
- start += (1UL << nbits);
- } while (start < end);
- preempt_enable();
- ia64_srlz_i(); /* srlz.i implies srlz.d */
-}
-EXPORT_SYMBOL(flush_tlb_range);
-
-void __devinit
-ia64_tlb_init (void)
-{
- ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
- u64 tr_pgbits;
- long status;
- pal_vm_info_1_u_t vm_info_1;
- pal_vm_info_2_u_t vm_info_2;
- int cpu = smp_processor_id();
-
- if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
- printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
- "defaulting to architected purge page-sizes.\n", status);
- purge.mask = 0x115557000UL;
- }
- purge.max_bits = ia64_fls(purge.mask);
-
- ia64_get_ptce(&ptce_info);
- local_cpu_data->ptce_base = ptce_info.base;
- local_cpu_data->ptce_count[0] = ptce_info.count[0];
- local_cpu_data->ptce_count[1] = ptce_info.count[1];
- local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
- local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
-
- local_flush_tlb_all(); /* nuke left overs from bootstrapping... */
- status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
-
- if (status) {
- printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
- per_cpu(ia64_tr_num, cpu) = 8;
- return;
- }
- per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
- if (per_cpu(ia64_tr_num, cpu) >
- (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
- per_cpu(ia64_tr_num, cpu) =
- vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
- if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
- static int justonce = 1;
- per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
- if (justonce) {
- justonce = 0;
- printk(KERN_DEBUG "TR register number exceeds "
- "IA64_TR_ALLOC_MAX!\n");
- }
- }
-}
-
-/*
- * is_tr_overlap
- *
- * Check overlap with inserted TRs.
- */
-static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
-{
- u64 tr_log_size;
- u64 tr_end;
- u64 va_rr = ia64_get_rr(va);
- u64 va_rid = RR_TO_RID(va_rr);
- u64 va_end = va + (1<<log_size) - 1;
-
- if (va_rid != RR_TO_RID(p->rr))
- return 0;
- tr_log_size = (p->itir & 0xff) >> 2;
- tr_end = p->ifa + (1<<tr_log_size) - 1;
-
- if (va > tr_end || p->ifa > va_end)
- return 0;
- return 1;
-
-}
-
-/*
- * ia64_insert_tr in virtual mode. Allocate a TR slot
- *
- * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
- *
- * va : virtual address.
- * pte : pte entries inserted.
- * log_size: range to be covered.
- *
- * Return value: <0 : error No.
- *
- * >=0 : slot number allocated for TR.
- * Must be called with preemption disabled.
- */
-int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
-{
- int i, r;
- unsigned long psr;
- struct ia64_tr_entry *p;
- int cpu = smp_processor_id();
-
- if (!ia64_idtrs[cpu]) {
- ia64_idtrs[cpu] = kmalloc(2 * IA64_TR_ALLOC_MAX *
- sizeof (struct ia64_tr_entry), GFP_KERNEL);
- if (!ia64_idtrs[cpu])
- return -ENOMEM;
- }
- r = -EINVAL;
- /*Check overlap with existing TR entries*/
- if (target_mask & 0x1) {
- p = ia64_idtrs[cpu];
- for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
- i++, p++) {
- if (p->pte & 0x1)
- if (is_tr_overlap(p, va, log_size)) {
- printk(KERN_DEBUG "Overlapped Entry"
- "Inserted for TR Reigster!!\n");
- goto out;
- }
- }
- }
- if (target_mask & 0x2) {
- p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX;
- for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
- i++, p++) {
- if (p->pte & 0x1)
- if (is_tr_overlap(p, va, log_size)) {
- printk(KERN_DEBUG "Overlapped Entry"
- "Inserted for TR Reigster!!\n");
- goto out;
- }
- }
- }
-
- for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
- switch (target_mask & 0x3) {
- case 1:
- if (!((ia64_idtrs[cpu] + i)->pte & 0x1))
- goto found;
- continue;
- case 2:
- if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
- goto found;
- continue;
- case 3:
- if (!((ia64_idtrs[cpu] + i)->pte & 0x1) &&
- !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
- goto found;
- continue;
- default:
- r = -EINVAL;
- goto out;
- }
- }
-found:
- if (i >= per_cpu(ia64_tr_num, cpu))
- return -EBUSY;
-
- /*Record tr info for mca hander use!*/
- if (i > per_cpu(ia64_tr_used, cpu))
- per_cpu(ia64_tr_used, cpu) = i;
-
- psr = ia64_clear_ic();
- if (target_mask & 0x1) {
- ia64_itr(0x1, i, va, pte, log_size);
- ia64_srlz_i();
- p = ia64_idtrs[cpu] + i;
- p->ifa = va;
- p->pte = pte;
- p->itir = log_size << 2;
- p->rr = ia64_get_rr(va);
- }
- if (target_mask & 0x2) {
- ia64_itr(0x2, i, va, pte, log_size);
- ia64_srlz_i();
- p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i;
- p->ifa = va;
- p->pte = pte;
- p->itir = log_size << 2;
- p->rr = ia64_get_rr(va);
- }
- ia64_set_psr(psr);
- r = i;
-out:
- return r;
-}
-EXPORT_SYMBOL_GPL(ia64_itr_entry);
-
-/*
- * ia64_purge_tr
- *
- * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
- * slot: slot number to be freed.
- *
- * Must be called with preemption disabled.
- */
-void ia64_ptr_entry(u64 target_mask, int slot)
-{
- int cpu = smp_processor_id();
- int i;
- struct ia64_tr_entry *p;
-
- if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
- return;
-
- if (target_mask & 0x1) {
- p = ia64_idtrs[cpu] + slot;
- if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
- p->pte = 0;
- ia64_ptr(0x1, p->ifa, p->itir>>2);
- ia64_srlz_i();
- }
- }
-
- if (target_mask & 0x2) {
- p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot;
- if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
- p->pte = 0;
- ia64_ptr(0x2, p->ifa, p->itir>>2);
- ia64_srlz_i();
- }
- }
-
- for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
- if (((ia64_idtrs[cpu] + i)->pte & 0x1) ||
- ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
- break;
- }
- per_cpu(ia64_tr_used, cpu) = i;
-}
-EXPORT_SYMBOL_GPL(ia64_ptr_entry);