summaryrefslogtreecommitdiff
path: root/mm/slab.c
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-11 12:28:04 +0530
committerSrikant Patnaik2015-01-11 12:28:04 +0530
commit871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch)
tree8718f573808810c2a1e8cb8fb6ac469093ca2784 /mm/slab.c
parent9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff)
downloadFOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure.
Diffstat (limited to 'mm/slab.c')
-rw-r--r--mm/slab.c4682
1 files changed, 4682 insertions, 0 deletions
diff --git a/mm/slab.c b/mm/slab.c
new file mode 100644
index 00000000..e901a36e
--- /dev/null
+++ b/mm/slab.c
@@ -0,0 +1,4682 @@
+/*
+ * linux/mm/slab.c
+ * Written by Mark Hemment, 1996/97.
+ * (markhe@nextd.demon.co.uk)
+ *
+ * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
+ *
+ * Major cleanup, different bufctl logic, per-cpu arrays
+ * (c) 2000 Manfred Spraul
+ *
+ * Cleanup, make the head arrays unconditional, preparation for NUMA
+ * (c) 2002 Manfred Spraul
+ *
+ * An implementation of the Slab Allocator as described in outline in;
+ * UNIX Internals: The New Frontiers by Uresh Vahalia
+ * Pub: Prentice Hall ISBN 0-13-101908-2
+ * or with a little more detail in;
+ * The Slab Allocator: An Object-Caching Kernel Memory Allocator
+ * Jeff Bonwick (Sun Microsystems).
+ * Presented at: USENIX Summer 1994 Technical Conference
+ *
+ * The memory is organized in caches, one cache for each object type.
+ * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
+ * Each cache consists out of many slabs (they are small (usually one
+ * page long) and always contiguous), and each slab contains multiple
+ * initialized objects.
+ *
+ * This means, that your constructor is used only for newly allocated
+ * slabs and you must pass objects with the same initializations to
+ * kmem_cache_free.
+ *
+ * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
+ * normal). If you need a special memory type, then must create a new
+ * cache for that memory type.
+ *
+ * In order to reduce fragmentation, the slabs are sorted in 3 groups:
+ * full slabs with 0 free objects
+ * partial slabs
+ * empty slabs with no allocated objects
+ *
+ * If partial slabs exist, then new allocations come from these slabs,
+ * otherwise from empty slabs or new slabs are allocated.
+ *
+ * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
+ * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
+ *
+ * Each cache has a short per-cpu head array, most allocs
+ * and frees go into that array, and if that array overflows, then 1/2
+ * of the entries in the array are given back into the global cache.
+ * The head array is strictly LIFO and should improve the cache hit rates.
+ * On SMP, it additionally reduces the spinlock operations.
+ *
+ * The c_cpuarray may not be read with enabled local interrupts -
+ * it's changed with a smp_call_function().
+ *
+ * SMP synchronization:
+ * constructors and destructors are called without any locking.
+ * Several members in struct kmem_cache and struct slab never change, they
+ * are accessed without any locking.
+ * The per-cpu arrays are never accessed from the wrong cpu, no locking,
+ * and local interrupts are disabled so slab code is preempt-safe.
+ * The non-constant members are protected with a per-cache irq spinlock.
+ *
+ * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
+ * in 2000 - many ideas in the current implementation are derived from
+ * his patch.
+ *
+ * Further notes from the original documentation:
+ *
+ * 11 April '97. Started multi-threading - markhe
+ * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
+ * The sem is only needed when accessing/extending the cache-chain, which
+ * can never happen inside an interrupt (kmem_cache_create(),
+ * kmem_cache_shrink() and kmem_cache_reap()).
+ *
+ * At present, each engine can be growing a cache. This should be blocked.
+ *
+ * 15 March 2005. NUMA slab allocator.
+ * Shai Fultheim <shai@scalex86.org>.
+ * Shobhit Dayal <shobhit@calsoftinc.com>
+ * Alok N Kataria <alokk@calsoftinc.com>
+ * Christoph Lameter <christoph@lameter.com>
+ *
+ * Modified the slab allocator to be node aware on NUMA systems.
+ * Each node has its own list of partial, free and full slabs.
+ * All object allocations for a node occur from node specific slab lists.
+ */
+
+#include <linux/slab.h>
+#include <linux/mm.h>
+#include <linux/poison.h>
+#include <linux/swap.h>
+#include <linux/cache.h>
+#include <linux/interrupt.h>
+#include <linux/init.h>
+#include <linux/compiler.h>
+#include <linux/cpuset.h>
+#include <linux/proc_fs.h>
+#include <linux/seq_file.h>
+#include <linux/notifier.h>
+#include <linux/kallsyms.h>
+#include <linux/cpu.h>
+#include <linux/sysctl.h>
+#include <linux/module.h>
+#include <linux/rcupdate.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/nodemask.h>
+#include <linux/kmemleak.h>
+#include <linux/mempolicy.h>
+#include <linux/mutex.h>
+#include <linux/fault-inject.h>
+#include <linux/rtmutex.h>
+#include <linux/reciprocal_div.h>
+#include <linux/debugobjects.h>
+#include <linux/kmemcheck.h>
+#include <linux/memory.h>
+#include <linux/prefetch.h>
+
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+#include <asm/page.h>
+
+#include <trace/events/kmem.h>
+
+/*
+ * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
+ * 0 for faster, smaller code (especially in the critical paths).
+ *
+ * STATS - 1 to collect stats for /proc/slabinfo.
+ * 0 for faster, smaller code (especially in the critical paths).
+ *
+ * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
+ */
+
+#ifdef CONFIG_DEBUG_SLAB
+#define DEBUG 1
+#define STATS 1
+#define FORCED_DEBUG 1
+#else
+#define DEBUG 0
+#define STATS 0
+#define FORCED_DEBUG 0
+#endif
+
+/* Shouldn't this be in a header file somewhere? */
+#define BYTES_PER_WORD sizeof(void *)
+#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
+
+#ifndef ARCH_KMALLOC_FLAGS
+#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
+#endif
+
+/* Legal flag mask for kmem_cache_create(). */
+#if DEBUG
+# define CREATE_MASK (SLAB_RED_ZONE | \
+ SLAB_POISON | SLAB_HWCACHE_ALIGN | \
+ SLAB_CACHE_DMA | \
+ SLAB_STORE_USER | \
+ SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
+ SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
+ SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
+#else
+# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
+ SLAB_CACHE_DMA | \
+ SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
+ SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
+ SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
+#endif
+
+/*
+ * kmem_bufctl_t:
+ *
+ * Bufctl's are used for linking objs within a slab
+ * linked offsets.
+ *
+ * This implementation relies on "struct page" for locating the cache &
+ * slab an object belongs to.
+ * This allows the bufctl structure to be small (one int), but limits
+ * the number of objects a slab (not a cache) can contain when off-slab
+ * bufctls are used. The limit is the size of the largest general cache
+ * that does not use off-slab slabs.
+ * For 32bit archs with 4 kB pages, is this 56.
+ * This is not serious, as it is only for large objects, when it is unwise
+ * to have too many per slab.
+ * Note: This limit can be raised by introducing a general cache whose size
+ * is less than 512 (PAGE_SIZE<<3), but greater than 256.
+ */
+
+typedef unsigned int kmem_bufctl_t;
+#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
+#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
+#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
+#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
+
+/*
+ * struct slab_rcu
+ *
+ * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
+ * arrange for kmem_freepages to be called via RCU. This is useful if
+ * we need to approach a kernel structure obliquely, from its address
+ * obtained without the usual locking. We can lock the structure to
+ * stabilize it and check it's still at the given address, only if we
+ * can be sure that the memory has not been meanwhile reused for some
+ * other kind of object (which our subsystem's lock might corrupt).
+ *
+ * rcu_read_lock before reading the address, then rcu_read_unlock after
+ * taking the spinlock within the structure expected at that address.
+ */
+struct slab_rcu {
+ struct rcu_head head;
+ struct kmem_cache *cachep;
+ void *addr;
+};
+
+/*
+ * struct slab
+ *
+ * Manages the objs in a slab. Placed either at the beginning of mem allocated
+ * for a slab, or allocated from an general cache.
+ * Slabs are chained into three list: fully used, partial, fully free slabs.
+ */
+struct slab {
+ union {
+ struct {
+ struct list_head list;
+ unsigned long colouroff;
+ void *s_mem; /* including colour offset */
+ unsigned int inuse; /* num of objs active in slab */
+ kmem_bufctl_t free;
+ unsigned short nodeid;
+ };
+ struct slab_rcu __slab_cover_slab_rcu;
+ };
+};
+
+/*
+ * struct array_cache
+ *
+ * Purpose:
+ * - LIFO ordering, to hand out cache-warm objects from _alloc
+ * - reduce the number of linked list operations
+ * - reduce spinlock operations
+ *
+ * The limit is stored in the per-cpu structure to reduce the data cache
+ * footprint.
+ *
+ */
+struct array_cache {
+ unsigned int avail;
+ unsigned int limit;
+ unsigned int batchcount;
+ unsigned int touched;
+ spinlock_t lock;
+ void *entry[]; /*
+ * Must have this definition in here for the proper
+ * alignment of array_cache. Also simplifies accessing
+ * the entries.
+ */
+};
+
+/*
+ * bootstrap: The caches do not work without cpuarrays anymore, but the
+ * cpuarrays are allocated from the generic caches...
+ */
+#define BOOT_CPUCACHE_ENTRIES 1
+struct arraycache_init {
+ struct array_cache cache;
+ void *entries[BOOT_CPUCACHE_ENTRIES];
+};
+
+/*
+ * The slab lists for all objects.
+ */
+struct kmem_list3 {
+ struct list_head slabs_partial; /* partial list first, better asm code */
+ struct list_head slabs_full;
+ struct list_head slabs_free;
+ unsigned long free_objects;
+ unsigned int free_limit;
+ unsigned int colour_next; /* Per-node cache coloring */
+ spinlock_t list_lock;
+ struct array_cache *shared; /* shared per node */
+ struct array_cache **alien; /* on other nodes */
+ unsigned long next_reap; /* updated without locking */
+ int free_touched; /* updated without locking */
+};
+
+/*
+ * Need this for bootstrapping a per node allocator.
+ */
+#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
+static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
+#define CACHE_CACHE 0
+#define SIZE_AC MAX_NUMNODES
+#define SIZE_L3 (2 * MAX_NUMNODES)
+
+static int drain_freelist(struct kmem_cache *cache,
+ struct kmem_list3 *l3, int tofree);
+static void free_block(struct kmem_cache *cachep, void **objpp, int len,
+ int node);
+static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
+static void cache_reap(struct work_struct *unused);
+
+/*
+ * This function must be completely optimized away if a constant is passed to
+ * it. Mostly the same as what is in linux/slab.h except it returns an index.
+ */
+static __always_inline int index_of(const size_t size)
+{
+ extern void __bad_size(void);
+
+ if (__builtin_constant_p(size)) {
+ int i = 0;
+
+#define CACHE(x) \
+ if (size <=x) \
+ return i; \
+ else \
+ i++;
+#include <linux/kmalloc_sizes.h>
+#undef CACHE
+ __bad_size();
+ } else
+ __bad_size();
+ return 0;
+}
+
+static int slab_early_init = 1;
+
+#define INDEX_AC index_of(sizeof(struct arraycache_init))
+#define INDEX_L3 index_of(sizeof(struct kmem_list3))
+
+static void kmem_list3_init(struct kmem_list3 *parent)
+{
+ INIT_LIST_HEAD(&parent->slabs_full);
+ INIT_LIST_HEAD(&parent->slabs_partial);
+ INIT_LIST_HEAD(&parent->slabs_free);
+ parent->shared = NULL;
+ parent->alien = NULL;
+ parent->colour_next = 0;
+ spin_lock_init(&parent->list_lock);
+ parent->free_objects = 0;
+ parent->free_touched = 0;
+}
+
+#define MAKE_LIST(cachep, listp, slab, nodeid) \
+ do { \
+ INIT_LIST_HEAD(listp); \
+ list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
+ } while (0)
+
+#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
+ do { \
+ MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
+ MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
+ MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
+ } while (0)
+
+#define CFLGS_OFF_SLAB (0x80000000UL)
+#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
+
+#define BATCHREFILL_LIMIT 16
+/*
+ * Optimization question: fewer reaps means less probability for unnessary
+ * cpucache drain/refill cycles.
+ *
+ * OTOH the cpuarrays can contain lots of objects,
+ * which could lock up otherwise freeable slabs.
+ */
+#define REAPTIMEOUT_CPUC (2*HZ)
+#define REAPTIMEOUT_LIST3 (4*HZ)
+
+#if STATS
+#define STATS_INC_ACTIVE(x) ((x)->num_active++)
+#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
+#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
+#define STATS_INC_GROWN(x) ((x)->grown++)
+#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
+#define STATS_SET_HIGH(x) \
+ do { \
+ if ((x)->num_active > (x)->high_mark) \
+ (x)->high_mark = (x)->num_active; \
+ } while (0)
+#define STATS_INC_ERR(x) ((x)->errors++)
+#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
+#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
+#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
+#define STATS_SET_FREEABLE(x, i) \
+ do { \
+ if ((x)->max_freeable < i) \
+ (x)->max_freeable = i; \
+ } while (0)
+#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
+#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
+#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
+#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
+#else
+#define STATS_INC_ACTIVE(x) do { } while (0)
+#define STATS_DEC_ACTIVE(x) do { } while (0)
+#define STATS_INC_ALLOCED(x) do { } while (0)
+#define STATS_INC_GROWN(x) do { } while (0)
+#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
+#define STATS_SET_HIGH(x) do { } while (0)
+#define STATS_INC_ERR(x) do { } while (0)
+#define STATS_INC_NODEALLOCS(x) do { } while (0)
+#define STATS_INC_NODEFREES(x) do { } while (0)
+#define STATS_INC_ACOVERFLOW(x) do { } while (0)
+#define STATS_SET_FREEABLE(x, i) do { } while (0)
+#define STATS_INC_ALLOCHIT(x) do { } while (0)
+#define STATS_INC_ALLOCMISS(x) do { } while (0)
+#define STATS_INC_FREEHIT(x) do { } while (0)
+#define STATS_INC_FREEMISS(x) do { } while (0)
+#endif
+
+#if DEBUG
+
+/*
+ * memory layout of objects:
+ * 0 : objp
+ * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
+ * the end of an object is aligned with the end of the real
+ * allocation. Catches writes behind the end of the allocation.
+ * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
+ * redzone word.
+ * cachep->obj_offset: The real object.
+ * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
+ * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
+ * [BYTES_PER_WORD long]
+ */
+static int obj_offset(struct kmem_cache *cachep)
+{
+ return cachep->obj_offset;
+}
+
+static int obj_size(struct kmem_cache *cachep)
+{
+ return cachep->obj_size;
+}
+
+static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
+{
+ BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
+ return (unsigned long long*) (objp + obj_offset(cachep) -
+ sizeof(unsigned long long));
+}
+
+static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
+{
+ BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
+ if (cachep->flags & SLAB_STORE_USER)
+ return (unsigned long long *)(objp + cachep->buffer_size -
+ sizeof(unsigned long long) -
+ REDZONE_ALIGN);
+ return (unsigned long long *) (objp + cachep->buffer_size -
+ sizeof(unsigned long long));
+}
+
+static void **dbg_userword(struct kmem_cache *cachep, void *objp)
+{
+ BUG_ON(!(cachep->flags & SLAB_STORE_USER));
+ return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
+}
+
+#else
+
+#define obj_offset(x) 0
+#define obj_size(cachep) (cachep->buffer_size)
+#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
+#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
+#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
+
+#endif
+
+#ifdef CONFIG_TRACING
+size_t slab_buffer_size(struct kmem_cache *cachep)
+{
+ return cachep->buffer_size;
+}
+EXPORT_SYMBOL(slab_buffer_size);
+#endif
+
+/*
+ * Do not go above this order unless 0 objects fit into the slab or
+ * overridden on the command line.
+ */
+#define SLAB_MAX_ORDER_HI 1
+#define SLAB_MAX_ORDER_LO 0
+static int slab_max_order = SLAB_MAX_ORDER_LO;
+static bool slab_max_order_set __initdata;
+
+/*
+ * Functions for storing/retrieving the cachep and or slab from the page
+ * allocator. These are used to find the slab an obj belongs to. With kfree(),
+ * these are used to find the cache which an obj belongs to.
+ */
+static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
+{
+ page->lru.next = (struct list_head *)cache;
+}
+
+static inline struct kmem_cache *page_get_cache(struct page *page)
+{
+ page = compound_head(page);
+ BUG_ON(!PageSlab(page));
+ return (struct kmem_cache *)page->lru.next;
+}
+
+static inline void page_set_slab(struct page *page, struct slab *slab)
+{
+ page->lru.prev = (struct list_head *)slab;
+}
+
+static inline struct slab *page_get_slab(struct page *page)
+{
+ BUG_ON(!PageSlab(page));
+ return (struct slab *)page->lru.prev;
+}
+
+static inline struct kmem_cache *virt_to_cache(const void *obj)
+{
+ struct page *page = virt_to_head_page(obj);
+ return page_get_cache(page);
+}
+
+static inline struct slab *virt_to_slab(const void *obj)
+{
+ struct page *page = virt_to_head_page(obj);
+ return page_get_slab(page);
+}
+
+static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
+ unsigned int idx)
+{
+ return slab->s_mem + cache->buffer_size * idx;
+}
+
+/*
+ * We want to avoid an expensive divide : (offset / cache->buffer_size)
+ * Using the fact that buffer_size is a constant for a particular cache,
+ * we can replace (offset / cache->buffer_size) by
+ * reciprocal_divide(offset, cache->reciprocal_buffer_size)
+ */
+static inline unsigned int obj_to_index(const struct kmem_cache *cache,
+ const struct slab *slab, void *obj)
+{
+ u32 offset = (obj - slab->s_mem);
+ return reciprocal_divide(offset, cache->reciprocal_buffer_size);
+}
+
+/*
+ * These are the default caches for kmalloc. Custom caches can have other sizes.
+ */
+struct cache_sizes malloc_sizes[] = {
+#define CACHE(x) { .cs_size = (x) },
+#include <linux/kmalloc_sizes.h>
+ CACHE(ULONG_MAX)
+#undef CACHE
+};
+EXPORT_SYMBOL(malloc_sizes);
+
+/* Must match cache_sizes above. Out of line to keep cache footprint low. */
+struct cache_names {
+ char *name;
+ char *name_dma;
+};
+
+static struct cache_names __initdata cache_names[] = {
+#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
+#include <linux/kmalloc_sizes.h>
+ {NULL,}
+#undef CACHE
+};
+
+static struct arraycache_init initarray_cache __initdata =
+ { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
+static struct arraycache_init initarray_generic =
+ { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
+
+/* internal cache of cache description objs */
+static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
+static struct kmem_cache cache_cache = {
+ .nodelists = cache_cache_nodelists,
+ .batchcount = 1,
+ .limit = BOOT_CPUCACHE_ENTRIES,
+ .shared = 1,
+ .buffer_size = sizeof(struct kmem_cache),
+ .name = "kmem_cache",
+};
+
+#define BAD_ALIEN_MAGIC 0x01020304ul
+
+/*
+ * chicken and egg problem: delay the per-cpu array allocation
+ * until the general caches are up.
+ */
+static enum {
+ NONE,
+ PARTIAL_AC,
+ PARTIAL_L3,
+ EARLY,
+ LATE,
+ FULL
+} g_cpucache_up;
+
+/*
+ * used by boot code to determine if it can use slab based allocator
+ */
+int slab_is_available(void)
+{
+ return g_cpucache_up >= EARLY;
+}
+
+#ifdef CONFIG_LOCKDEP
+
+/*
+ * Slab sometimes uses the kmalloc slabs to store the slab headers
+ * for other slabs "off slab".
+ * The locking for this is tricky in that it nests within the locks
+ * of all other slabs in a few places; to deal with this special
+ * locking we put on-slab caches into a separate lock-class.
+ *
+ * We set lock class for alien array caches which are up during init.
+ * The lock annotation will be lost if all cpus of a node goes down and
+ * then comes back up during hotplug
+ */
+static struct lock_class_key on_slab_l3_key;
+static struct lock_class_key on_slab_alc_key;
+
+static struct lock_class_key debugobj_l3_key;
+static struct lock_class_key debugobj_alc_key;
+
+static void slab_set_lock_classes(struct kmem_cache *cachep,
+ struct lock_class_key *l3_key, struct lock_class_key *alc_key,
+ int q)
+{
+ struct array_cache **alc;
+ struct kmem_list3 *l3;
+ int r;
+
+ l3 = cachep->nodelists[q];
+ if (!l3)
+ return;
+
+ lockdep_set_class(&l3->list_lock, l3_key);
+ alc = l3->alien;
+ /*
+ * FIXME: This check for BAD_ALIEN_MAGIC
+ * should go away when common slab code is taught to
+ * work even without alien caches.
+ * Currently, non NUMA code returns BAD_ALIEN_MAGIC
+ * for alloc_alien_cache,
+ */
+ if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
+ return;
+ for_each_node(r) {
+ if (alc[r])
+ lockdep_set_class(&alc[r]->lock, alc_key);
+ }
+}
+
+static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
+{
+ slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
+}
+
+static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
+{
+ int node;
+
+ for_each_online_node(node)
+ slab_set_debugobj_lock_classes_node(cachep, node);
+}
+
+static void init_node_lock_keys(int q)
+{
+ struct cache_sizes *s = malloc_sizes;
+
+ if (g_cpucache_up < LATE)
+ return;
+
+ for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
+ struct kmem_list3 *l3;
+
+ l3 = s->cs_cachep->nodelists[q];
+ if (!l3 || OFF_SLAB(s->cs_cachep))
+ continue;
+
+ slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
+ &on_slab_alc_key, q);
+ }
+}
+
+static inline void init_lock_keys(void)
+{
+ int node;
+
+ for_each_node(node)
+ init_node_lock_keys(node);
+}
+#else
+static void init_node_lock_keys(int q)
+{
+}
+
+static inline void init_lock_keys(void)
+{
+}
+
+static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
+{
+}
+
+static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
+{
+}
+#endif
+
+/*
+ * Guard access to the cache-chain.
+ */
+static DEFINE_MUTEX(cache_chain_mutex);
+static struct list_head cache_chain;
+
+static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
+
+static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
+{
+ return cachep->array[smp_processor_id()];
+}
+
+static inline struct kmem_cache *__find_general_cachep(size_t size,
+ gfp_t gfpflags)
+{
+ struct cache_sizes *csizep = malloc_sizes;
+
+#if DEBUG
+ /* This happens if someone tries to call
+ * kmem_cache_create(), or __kmalloc(), before
+ * the generic caches are initialized.
+ */
+ BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
+#endif
+ if (!size)
+ return ZERO_SIZE_PTR;
+
+ while (size > csizep->cs_size)
+ csizep++;
+
+ /*
+ * Really subtle: The last entry with cs->cs_size==ULONG_MAX
+ * has cs_{dma,}cachep==NULL. Thus no special case
+ * for large kmalloc calls required.
+ */
+#ifdef CONFIG_ZONE_DMA
+ if (unlikely(gfpflags & GFP_DMA))
+ return csizep->cs_dmacachep;
+#endif
+ return csizep->cs_cachep;
+}
+
+static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
+{
+ return __find_general_cachep(size, gfpflags);
+}
+
+static size_t slab_mgmt_size(size_t nr_objs, size_t align)
+{
+ return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
+}
+
+/*
+ * Calculate the number of objects and left-over bytes for a given buffer size.
+ */
+static void cache_estimate(unsigned long gfporder, size_t buffer_size,
+ size_t align, int flags, size_t *left_over,
+ unsigned int *num)
+{
+ int nr_objs;
+ size_t mgmt_size;
+ size_t slab_size = PAGE_SIZE << gfporder;
+
+ /*
+ * The slab management structure can be either off the slab or
+ * on it. For the latter case, the memory allocated for a
+ * slab is used for:
+ *
+ * - The struct slab
+ * - One kmem_bufctl_t for each object
+ * - Padding to respect alignment of @align
+ * - @buffer_size bytes for each object
+ *
+ * If the slab management structure is off the slab, then the
+ * alignment will already be calculated into the size. Because
+ * the slabs are all pages aligned, the objects will be at the
+ * correct alignment when allocated.
+ */
+ if (flags & CFLGS_OFF_SLAB) {
+ mgmt_size = 0;
+ nr_objs = slab_size / buffer_size;
+
+ if (nr_objs > SLAB_LIMIT)
+ nr_objs = SLAB_LIMIT;
+ } else {
+ /*
+ * Ignore padding for the initial guess. The padding
+ * is at most @align-1 bytes, and @buffer_size is at
+ * least @align. In the worst case, this result will
+ * be one greater than the number of objects that fit
+ * into the memory allocation when taking the padding
+ * into account.
+ */
+ nr_objs = (slab_size - sizeof(struct slab)) /
+ (buffer_size + sizeof(kmem_bufctl_t));
+
+ /*
+ * This calculated number will be either the right
+ * amount, or one greater than what we want.
+ */
+ if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
+ > slab_size)
+ nr_objs--;
+
+ if (nr_objs > SLAB_LIMIT)
+ nr_objs = SLAB_LIMIT;
+
+ mgmt_size = slab_mgmt_size(nr_objs, align);
+ }
+ *num = nr_objs;
+ *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
+}
+
+#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
+
+static void __slab_error(const char *function, struct kmem_cache *cachep,
+ char *msg)
+{
+ printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
+ function, cachep->name, msg);
+ dump_stack();
+}
+
+/*
+ * By default on NUMA we use alien caches to stage the freeing of
+ * objects allocated from other nodes. This causes massive memory
+ * inefficiencies when using fake NUMA setup to split memory into a
+ * large number of small nodes, so it can be disabled on the command
+ * line
+ */
+
+static int use_alien_caches __read_mostly = 1;
+static int __init noaliencache_setup(char *s)
+{
+ use_alien_caches = 0;
+ return 1;
+}
+__setup("noaliencache", noaliencache_setup);
+
+static int __init slab_max_order_setup(char *str)
+{
+ get_option(&str, &slab_max_order);
+ slab_max_order = slab_max_order < 0 ? 0 :
+ min(slab_max_order, MAX_ORDER - 1);
+ slab_max_order_set = true;
+
+ return 1;
+}
+__setup("slab_max_order=", slab_max_order_setup);
+
+#ifdef CONFIG_NUMA
+/*
+ * Special reaping functions for NUMA systems called from cache_reap().
+ * These take care of doing round robin flushing of alien caches (containing
+ * objects freed on different nodes from which they were allocated) and the
+ * flushing of remote pcps by calling drain_node_pages.
+ */
+static DEFINE_PER_CPU(unsigned long, slab_reap_node);
+
+static void init_reap_node(int cpu)
+{
+ int node;
+
+ node = next_node(cpu_to_mem(cpu), node_online_map);
+ if (node == MAX_NUMNODES)
+ node = first_node(node_online_map);
+
+ per_cpu(slab_reap_node, cpu) = node;
+}
+
+static void next_reap_node(void)
+{
+ int node = __this_cpu_read(slab_reap_node);
+
+ node = next_node(node, node_online_map);
+ if (unlikely(node >= MAX_NUMNODES))
+ node = first_node(node_online_map);
+ __this_cpu_write(slab_reap_node, node);
+}
+
+#else
+#define init_reap_node(cpu) do { } while (0)
+#define next_reap_node(void) do { } while (0)
+#endif
+
+/*
+ * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
+ * via the workqueue/eventd.
+ * Add the CPU number into the expiration time to minimize the possibility of
+ * the CPUs getting into lockstep and contending for the global cache chain
+ * lock.
+ */
+static void __cpuinit start_cpu_timer(int cpu)
+{
+ struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
+
+ /*
+ * When this gets called from do_initcalls via cpucache_init(),
+ * init_workqueues() has already run, so keventd will be setup
+ * at that time.
+ */
+ if (keventd_up() && reap_work->work.func == NULL) {
+ init_reap_node(cpu);
+ INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
+ schedule_delayed_work_on(cpu, reap_work,
+ __round_jiffies_relative(HZ, cpu));
+ }
+}
+
+static struct array_cache *alloc_arraycache(int node, int entries,
+ int batchcount, gfp_t gfp)
+{
+ int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
+ struct array_cache *nc = NULL;
+
+ nc = kmalloc_node(memsize, gfp, node);
+ /*
+ * The array_cache structures contain pointers to free object.
+ * However, when such objects are allocated or transferred to another
+ * cache the pointers are not cleared and they could be counted as
+ * valid references during a kmemleak scan. Therefore, kmemleak must
+ * not scan such objects.
+ */
+ kmemleak_no_scan(nc);
+ if (nc) {
+ nc->avail = 0;
+ nc->limit = entries;
+ nc->batchcount = batchcount;
+ nc->touched = 0;
+ spin_lock_init(&nc->lock);
+ }
+ return nc;
+}
+
+/*
+ * Transfer objects in one arraycache to another.
+ * Locking must be handled by the caller.
+ *
+ * Return the number of entries transferred.
+ */
+static int transfer_objects(struct array_cache *to,
+ struct array_cache *from, unsigned int max)
+{
+ /* Figure out how many entries to transfer */
+ int nr = min3(from->avail, max, to->limit - to->avail);
+
+ if (!nr)
+ return 0;
+
+ memcpy(to->entry + to->avail, from->entry + from->avail -nr,
+ sizeof(void *) *nr);
+
+ from->avail -= nr;
+ to->avail += nr;
+ return nr;
+}
+
+#ifndef CONFIG_NUMA
+
+#define drain_alien_cache(cachep, alien) do { } while (0)
+#define reap_alien(cachep, l3) do { } while (0)
+
+static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
+{
+ return (struct array_cache **)BAD_ALIEN_MAGIC;
+}
+
+static inline void free_alien_cache(struct array_cache **ac_ptr)
+{
+}
+
+static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
+{
+ return 0;
+}
+
+static inline void *alternate_node_alloc(struct kmem_cache *cachep,
+ gfp_t flags)
+{
+ return NULL;
+}
+
+static inline void *____cache_alloc_node(struct kmem_cache *cachep,
+ gfp_t flags, int nodeid)
+{
+ return NULL;
+}
+
+#else /* CONFIG_NUMA */
+
+static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
+static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
+
+static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
+{
+ struct array_cache **ac_ptr;
+ int memsize = sizeof(void *) * nr_node_ids;
+ int i;
+
+ if (limit > 1)
+ limit = 12;
+ ac_ptr = kzalloc_node(memsize, gfp, node);
+ if (ac_ptr) {
+ for_each_node(i) {
+ if (i == node || !node_online(i))
+ continue;
+ ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
+ if (!ac_ptr[i]) {
+ for (i--; i >= 0; i--)
+ kfree(ac_ptr[i]);
+ kfree(ac_ptr);
+ return NULL;
+ }
+ }
+ }
+ return ac_ptr;
+}
+
+static void free_alien_cache(struct array_cache **ac_ptr)
+{
+ int i;
+
+ if (!ac_ptr)
+ return;
+ for_each_node(i)
+ kfree(ac_ptr[i]);
+ kfree(ac_ptr);
+}
+
+static void __drain_alien_cache(struct kmem_cache *cachep,
+ struct array_cache *ac, int node)
+{
+ struct kmem_list3 *rl3 = cachep->nodelists[node];
+
+ if (ac->avail) {
+ spin_lock(&rl3->list_lock);
+ /*
+ * Stuff objects into the remote nodes shared array first.
+ * That way we could avoid the overhead of putting the objects
+ * into the free lists and getting them back later.
+ */
+ if (rl3->shared)
+ transfer_objects(rl3->shared, ac, ac->limit);
+
+ free_block(cachep, ac->entry, ac->avail, node);
+ ac->avail = 0;
+ spin_unlock(&rl3->list_lock);
+ }
+}
+
+/*
+ * Called from cache_reap() to regularly drain alien caches round robin.
+ */
+static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
+{
+ int node = __this_cpu_read(slab_reap_node);
+
+ if (l3->alien) {
+ struct array_cache *ac = l3->alien[node];
+
+ if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
+ __drain_alien_cache(cachep, ac, node);
+ spin_unlock_irq(&ac->lock);
+ }
+ }
+}
+
+static void drain_alien_cache(struct kmem_cache *cachep,
+ struct array_cache **alien)
+{
+ int i = 0;
+ struct array_cache *ac;
+ unsigned long flags;
+
+ for_each_online_node(i) {
+ ac = alien[i];
+ if (ac) {
+ spin_lock_irqsave(&ac->lock, flags);
+ __drain_alien_cache(cachep, ac, i);
+ spin_unlock_irqrestore(&ac->lock, flags);
+ }
+ }
+}
+
+static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
+{
+ struct slab *slabp = virt_to_slab(objp);
+ int nodeid = slabp->nodeid;
+ struct kmem_list3 *l3;
+ struct array_cache *alien = NULL;
+ int node;
+
+ node = numa_mem_id();
+
+ /*
+ * Make sure we are not freeing a object from another node to the array
+ * cache on this cpu.
+ */
+ if (likely(slabp->nodeid == node))
+ return 0;
+
+ l3 = cachep->nodelists[node];
+ STATS_INC_NODEFREES(cachep);
+ if (l3->alien && l3->alien[nodeid]) {
+ alien = l3->alien[nodeid];
+ spin_lock(&alien->lock);
+ if (unlikely(alien->avail == alien->limit)) {
+ STATS_INC_ACOVERFLOW(cachep);
+ __drain_alien_cache(cachep, alien, nodeid);
+ }
+ alien->entry[alien->avail++] = objp;
+ spin_unlock(&alien->lock);
+ } else {
+ spin_lock(&(cachep->nodelists[nodeid])->list_lock);
+ free_block(cachep, &objp, 1, nodeid);
+ spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
+ }
+ return 1;
+}
+#endif
+
+/*
+ * Allocates and initializes nodelists for a node on each slab cache, used for
+ * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
+ * will be allocated off-node since memory is not yet online for the new node.
+ * When hotplugging memory or a cpu, existing nodelists are not replaced if
+ * already in use.
+ *
+ * Must hold cache_chain_mutex.
+ */
+static int init_cache_nodelists_node(int node)
+{
+ struct kmem_cache *cachep;
+ struct kmem_list3 *l3;
+ const int memsize = sizeof(struct kmem_list3);
+
+ list_for_each_entry(cachep, &cache_chain, next) {
+ /*
+ * Set up the size64 kmemlist for cpu before we can
+ * begin anything. Make sure some other cpu on this
+ * node has not already allocated this
+ */
+ if (!cachep->nodelists[node]) {
+ l3 = kmalloc_node(memsize, GFP_KERNEL, node);
+ if (!l3)
+ return -ENOMEM;
+ kmem_list3_init(l3);
+ l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+
+ /*
+ * The l3s don't come and go as CPUs come and
+ * go. cache_chain_mutex is sufficient
+ * protection here.
+ */
+ cachep->nodelists[node] = l3;
+ }
+
+ spin_lock_irq(&cachep->nodelists[node]->list_lock);
+ cachep->nodelists[node]->free_limit =
+ (1 + nr_cpus_node(node)) *
+ cachep->batchcount + cachep->num;
+ spin_unlock_irq(&cachep->nodelists[node]->list_lock);
+ }
+ return 0;
+}
+
+static void __cpuinit cpuup_canceled(long cpu)
+{
+ struct kmem_cache *cachep;
+ struct kmem_list3 *l3 = NULL;
+ int node = cpu_to_mem(cpu);
+ const struct cpumask *mask = cpumask_of_node(node);
+
+ list_for_each_entry(cachep, &cache_chain, next) {
+ struct array_cache *nc;
+ struct array_cache *shared;
+ struct array_cache **alien;
+
+ /* cpu is dead; no one can alloc from it. */
+ nc = cachep->array[cpu];
+ cachep->array[cpu] = NULL;
+ l3 = cachep->nodelists[node];
+
+ if (!l3)
+ goto free_array_cache;
+
+ spin_lock_irq(&l3->list_lock);
+
+ /* Free limit for this kmem_list3 */
+ l3->free_limit -= cachep->batchcount;
+ if (nc)
+ free_block(cachep, nc->entry, nc->avail, node);
+
+ if (!cpumask_empty(mask)) {
+ spin_unlock_irq(&l3->list_lock);
+ goto free_array_cache;
+ }
+
+ shared = l3->shared;
+ if (shared) {
+ free_block(cachep, shared->entry,
+ shared->avail, node);
+ l3->shared = NULL;
+ }
+
+ alien = l3->alien;
+ l3->alien = NULL;
+
+ spin_unlock_irq(&l3->list_lock);
+
+ kfree(shared);
+ if (alien) {
+ drain_alien_cache(cachep, alien);
+ free_alien_cache(alien);
+ }
+free_array_cache:
+ kfree(nc);
+ }
+ /*
+ * In the previous loop, all the objects were freed to
+ * the respective cache's slabs, now we can go ahead and
+ * shrink each nodelist to its limit.
+ */
+ list_for_each_entry(cachep, &cache_chain, next) {
+ l3 = cachep->nodelists[node];
+ if (!l3)
+ continue;
+ drain_freelist(cachep, l3, l3->free_objects);
+ }
+}
+
+static int __cpuinit cpuup_prepare(long cpu)
+{
+ struct kmem_cache *cachep;
+ struct kmem_list3 *l3 = NULL;
+ int node = cpu_to_mem(cpu);
+ int err;
+
+ /*
+ * We need to do this right in the beginning since
+ * alloc_arraycache's are going to use this list.
+ * kmalloc_node allows us to add the slab to the right
+ * kmem_list3 and not this cpu's kmem_list3
+ */
+ err = init_cache_nodelists_node(node);
+ if (err < 0)
+ goto bad;
+
+ /*
+ * Now we can go ahead with allocating the shared arrays and
+ * array caches
+ */
+ list_for_each_entry(cachep, &cache_chain, next) {
+ struct array_cache *nc;
+ struct array_cache *shared = NULL;
+ struct array_cache **alien = NULL;
+
+ nc = alloc_arraycache(node, cachep->limit,
+ cachep->batchcount, GFP_KERNEL);
+ if (!nc)
+ goto bad;
+ if (cachep->shared) {
+ shared = alloc_arraycache(node,
+ cachep->shared * cachep->batchcount,
+ 0xbaadf00d, GFP_KERNEL);
+ if (!shared) {
+ kfree(nc);
+ goto bad;
+ }
+ }
+ if (use_alien_caches) {
+ alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
+ if (!alien) {
+ kfree(shared);
+ kfree(nc);
+ goto bad;
+ }
+ }
+ cachep->array[cpu] = nc;
+ l3 = cachep->nodelists[node];
+ BUG_ON(!l3);
+
+ spin_lock_irq(&l3->list_lock);
+ if (!l3->shared) {
+ /*
+ * We are serialised from CPU_DEAD or
+ * CPU_UP_CANCELLED by the cpucontrol lock
+ */
+ l3->shared = shared;
+ shared = NULL;
+ }
+#ifdef CONFIG_NUMA
+ if (!l3->alien) {
+ l3->alien = alien;
+ alien = NULL;
+ }
+#endif
+ spin_unlock_irq(&l3->list_lock);
+ kfree(shared);
+ free_alien_cache(alien);
+ if (cachep->flags & SLAB_DEBUG_OBJECTS)
+ slab_set_debugobj_lock_classes_node(cachep, node);
+ }
+ init_node_lock_keys(node);
+
+ return 0;
+bad:
+ cpuup_canceled(cpu);
+ return -ENOMEM;
+}
+
+static int __cpuinit cpuup_callback(struct notifier_block *nfb,
+ unsigned long action, void *hcpu)
+{
+ long cpu = (long)hcpu;
+ int err = 0;
+
+ switch (action) {
+ case CPU_UP_PREPARE:
+ case CPU_UP_PREPARE_FROZEN:
+ mutex_lock(&cache_chain_mutex);
+ err = cpuup_prepare(cpu);
+ mutex_unlock(&cache_chain_mutex);
+ break;
+ case CPU_ONLINE:
+ case CPU_ONLINE_FROZEN:
+ start_cpu_timer(cpu);
+ break;
+#ifdef CONFIG_HOTPLUG_CPU
+ case CPU_DOWN_PREPARE:
+ case CPU_DOWN_PREPARE_FROZEN:
+ /*
+ * Shutdown cache reaper. Note that the cache_chain_mutex is
+ * held so that if cache_reap() is invoked it cannot do
+ * anything expensive but will only modify reap_work
+ * and reschedule the timer.
+ */
+ cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
+ /* Now the cache_reaper is guaranteed to be not running. */
+ per_cpu(slab_reap_work, cpu).work.func = NULL;
+ break;
+ case CPU_DOWN_FAILED:
+ case CPU_DOWN_FAILED_FROZEN:
+ start_cpu_timer(cpu);
+ break;
+ case CPU_DEAD:
+ case CPU_DEAD_FROZEN:
+ /*
+ * Even if all the cpus of a node are down, we don't free the
+ * kmem_list3 of any cache. This to avoid a race between
+ * cpu_down, and a kmalloc allocation from another cpu for
+ * memory from the node of the cpu going down. The list3
+ * structure is usually allocated from kmem_cache_create() and
+ * gets destroyed at kmem_cache_destroy().
+ */
+ /* fall through */
+#endif
+ case CPU_UP_CANCELED:
+ case CPU_UP_CANCELED_FROZEN:
+ mutex_lock(&cache_chain_mutex);
+ cpuup_canceled(cpu);
+ mutex_unlock(&cache_chain_mutex);
+ break;
+ }
+ return notifier_from_errno(err);
+}
+
+static struct notifier_block __cpuinitdata cpucache_notifier = {
+ &cpuup_callback, NULL, 0
+};
+
+#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
+/*
+ * Drains freelist for a node on each slab cache, used for memory hot-remove.
+ * Returns -EBUSY if all objects cannot be drained so that the node is not
+ * removed.
+ *
+ * Must hold cache_chain_mutex.
+ */
+static int __meminit drain_cache_nodelists_node(int node)
+{
+ struct kmem_cache *cachep;
+ int ret = 0;
+
+ list_for_each_entry(cachep, &cache_chain, next) {
+ struct kmem_list3 *l3;
+
+ l3 = cachep->nodelists[node];
+ if (!l3)
+ continue;
+
+ drain_freelist(cachep, l3, l3->free_objects);
+
+ if (!list_empty(&l3->slabs_full) ||
+ !list_empty(&l3->slabs_partial)) {
+ ret = -EBUSY;
+ break;
+ }
+ }
+ return ret;
+}
+
+static int __meminit slab_memory_callback(struct notifier_block *self,
+ unsigned long action, void *arg)
+{
+ struct memory_notify *mnb = arg;
+ int ret = 0;
+ int nid;
+
+ nid = mnb->status_change_nid;
+ if (nid < 0)
+ goto out;
+
+ switch (action) {
+ case MEM_GOING_ONLINE:
+ mutex_lock(&cache_chain_mutex);
+ ret = init_cache_nodelists_node(nid);
+ mutex_unlock(&cache_chain_mutex);
+ break;
+ case MEM_GOING_OFFLINE:
+ mutex_lock(&cache_chain_mutex);
+ ret = drain_cache_nodelists_node(nid);
+ mutex_unlock(&cache_chain_mutex);
+ break;
+ case MEM_ONLINE:
+ case MEM_OFFLINE:
+ case MEM_CANCEL_ONLINE:
+ case MEM_CANCEL_OFFLINE:
+ break;
+ }
+out:
+ return notifier_from_errno(ret);
+}
+#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
+
+/*
+ * swap the static kmem_list3 with kmalloced memory
+ */
+static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
+ int nodeid)
+{
+ struct kmem_list3 *ptr;
+
+ ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
+ BUG_ON(!ptr);
+
+ memcpy(ptr, list, sizeof(struct kmem_list3));
+ /*
+ * Do not assume that spinlocks can be initialized via memcpy:
+ */
+ spin_lock_init(&ptr->list_lock);
+
+ MAKE_ALL_LISTS(cachep, ptr, nodeid);
+ cachep->nodelists[nodeid] = ptr;
+}
+
+/*
+ * For setting up all the kmem_list3s for cache whose buffer_size is same as
+ * size of kmem_list3.
+ */
+static void __init set_up_list3s(struct kmem_cache *cachep, int index)
+{
+ int node;
+
+ for_each_online_node(node) {
+ cachep->nodelists[node] = &initkmem_list3[index + node];
+ cachep->nodelists[node]->next_reap = jiffies +
+ REAPTIMEOUT_LIST3 +
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+ }
+}
+
+/*
+ * Initialisation. Called after the page allocator have been initialised and
+ * before smp_init().
+ */
+void __init kmem_cache_init(void)
+{
+ size_t left_over;
+ struct cache_sizes *sizes;
+ struct cache_names *names;
+ int i;
+ int order;
+ int node;
+
+ if (num_possible_nodes() == 1)
+ use_alien_caches = 0;
+
+ for (i = 0; i < NUM_INIT_LISTS; i++) {
+ kmem_list3_init(&initkmem_list3[i]);
+ if (i < MAX_NUMNODES)
+ cache_cache.nodelists[i] = NULL;
+ }
+ set_up_list3s(&cache_cache, CACHE_CACHE);
+
+ /*
+ * Fragmentation resistance on low memory - only use bigger
+ * page orders on machines with more than 32MB of memory if
+ * not overridden on the command line.
+ */
+ if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
+ slab_max_order = SLAB_MAX_ORDER_HI;
+
+ /* Bootstrap is tricky, because several objects are allocated
+ * from caches that do not exist yet:
+ * 1) initialize the cache_cache cache: it contains the struct
+ * kmem_cache structures of all caches, except cache_cache itself:
+ * cache_cache is statically allocated.
+ * Initially an __init data area is used for the head array and the
+ * kmem_list3 structures, it's replaced with a kmalloc allocated
+ * array at the end of the bootstrap.
+ * 2) Create the first kmalloc cache.
+ * The struct kmem_cache for the new cache is allocated normally.
+ * An __init data area is used for the head array.
+ * 3) Create the remaining kmalloc caches, with minimally sized
+ * head arrays.
+ * 4) Replace the __init data head arrays for cache_cache and the first
+ * kmalloc cache with kmalloc allocated arrays.
+ * 5) Replace the __init data for kmem_list3 for cache_cache and
+ * the other cache's with kmalloc allocated memory.
+ * 6) Resize the head arrays of the kmalloc caches to their final sizes.
+ */
+
+ node = numa_mem_id();
+
+ /* 1) create the cache_cache */
+ INIT_LIST_HEAD(&cache_chain);
+ list_add(&cache_cache.next, &cache_chain);
+ cache_cache.colour_off = cache_line_size();
+ cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
+ cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
+
+ /*
+ * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
+ */
+ cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
+ nr_node_ids * sizeof(struct kmem_list3 *);
+#if DEBUG
+ cache_cache.obj_size = cache_cache.buffer_size;
+#endif
+ cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
+ cache_line_size());
+ cache_cache.reciprocal_buffer_size =
+ reciprocal_value(cache_cache.buffer_size);
+
+ for (order = 0; order < MAX_ORDER; order++) {
+ cache_estimate(order, cache_cache.buffer_size,
+ cache_line_size(), 0, &left_over, &cache_cache.num);
+ if (cache_cache.num)
+ break;
+ }
+ BUG_ON(!cache_cache.num);
+ cache_cache.gfporder = order;
+ cache_cache.colour = left_over / cache_cache.colour_off;
+ cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
+ sizeof(struct slab), cache_line_size());
+
+ /* 2+3) create the kmalloc caches */
+ sizes = malloc_sizes;
+ names = cache_names;
+
+ /*
+ * Initialize the caches that provide memory for the array cache and the
+ * kmem_list3 structures first. Without this, further allocations will
+ * bug.
+ */
+
+ sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
+ sizes[INDEX_AC].cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+ NULL);
+
+ if (INDEX_AC != INDEX_L3) {
+ sizes[INDEX_L3].cs_cachep =
+ kmem_cache_create(names[INDEX_L3].name,
+ sizes[INDEX_L3].cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+ NULL);
+ }
+
+ slab_early_init = 0;
+
+ while (sizes->cs_size != ULONG_MAX) {
+ /*
+ * For performance, all the general caches are L1 aligned.
+ * This should be particularly beneficial on SMP boxes, as it
+ * eliminates "false sharing".
+ * Note for systems short on memory removing the alignment will
+ * allow tighter packing of the smaller caches.
+ */
+ if (!sizes->cs_cachep) {
+ sizes->cs_cachep = kmem_cache_create(names->name,
+ sizes->cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+ NULL);
+ }
+#ifdef CONFIG_ZONE_DMA
+ sizes->cs_dmacachep = kmem_cache_create(
+ names->name_dma,
+ sizes->cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
+ SLAB_PANIC,
+ NULL);
+#endif
+ sizes++;
+ names++;
+ }
+ /* 4) Replace the bootstrap head arrays */
+ {
+ struct array_cache *ptr;
+
+ ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
+
+ BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
+ memcpy(ptr, cpu_cache_get(&cache_cache),
+ sizeof(struct arraycache_init));
+ /*
+ * Do not assume that spinlocks can be initialized via memcpy:
+ */
+ spin_lock_init(&ptr->lock);
+
+ cache_cache.array[smp_processor_id()] = ptr;
+
+ ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
+
+ BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
+ != &initarray_generic.cache);
+ memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
+ sizeof(struct arraycache_init));
+ /*
+ * Do not assume that spinlocks can be initialized via memcpy:
+ */
+ spin_lock_init(&ptr->lock);
+
+ malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
+ ptr;
+ }
+ /* 5) Replace the bootstrap kmem_list3's */
+ {
+ int nid;
+
+ for_each_online_node(nid) {
+ init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
+
+ init_list(malloc_sizes[INDEX_AC].cs_cachep,
+ &initkmem_list3[SIZE_AC + nid], nid);
+
+ if (INDEX_AC != INDEX_L3) {
+ init_list(malloc_sizes[INDEX_L3].cs_cachep,
+ &initkmem_list3[SIZE_L3 + nid], nid);
+ }
+ }
+ }
+
+ g_cpucache_up = EARLY;
+}
+
+void __init kmem_cache_init_late(void)
+{
+ struct kmem_cache *cachep;
+
+ g_cpucache_up = LATE;
+
+ /* Annotate slab for lockdep -- annotate the malloc caches */
+ init_lock_keys();
+
+ /* 6) resize the head arrays to their final sizes */
+ mutex_lock(&cache_chain_mutex);
+ list_for_each_entry(cachep, &cache_chain, next)
+ if (enable_cpucache(cachep, GFP_NOWAIT))
+ BUG();
+ mutex_unlock(&cache_chain_mutex);
+
+ /* Done! */
+ g_cpucache_up = FULL;
+
+ /*
+ * Register a cpu startup notifier callback that initializes
+ * cpu_cache_get for all new cpus
+ */
+ register_cpu_notifier(&cpucache_notifier);
+
+#ifdef CONFIG_NUMA
+ /*
+ * Register a memory hotplug callback that initializes and frees
+ * nodelists.
+ */
+ hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
+#endif
+
+ /*
+ * The reap timers are started later, with a module init call: That part
+ * of the kernel is not yet operational.
+ */
+}
+
+static int __init cpucache_init(void)
+{
+ int cpu;
+
+ /*
+ * Register the timers that return unneeded pages to the page allocator
+ */
+ for_each_online_cpu(cpu)
+ start_cpu_timer(cpu);
+ return 0;
+}
+__initcall(cpucache_init);
+
+static noinline void
+slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
+{
+ struct kmem_list3 *l3;
+ struct slab *slabp;
+ unsigned long flags;
+ int node;
+
+ printk(KERN_WARNING
+ "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
+ nodeid, gfpflags);
+ printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
+ cachep->name, cachep->buffer_size, cachep->gfporder);
+
+ for_each_online_node(node) {
+ unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
+ unsigned long active_slabs = 0, num_slabs = 0;
+
+ l3 = cachep->nodelists[node];
+ if (!l3)
+ continue;
+
+ spin_lock_irqsave(&l3->list_lock, flags);
+ list_for_each_entry(slabp, &l3->slabs_full, list) {
+ active_objs += cachep->num;
+ active_slabs++;
+ }
+ list_for_each_entry(slabp, &l3->slabs_partial, list) {
+ active_objs += slabp->inuse;
+ active_slabs++;
+ }
+ list_for_each_entry(slabp, &l3->slabs_free, list)
+ num_slabs++;
+
+ free_objects += l3->free_objects;
+ spin_unlock_irqrestore(&l3->list_lock, flags);
+
+ num_slabs += active_slabs;
+ num_objs = num_slabs * cachep->num;
+ printk(KERN_WARNING
+ " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
+ node, active_slabs, num_slabs, active_objs, num_objs,
+ free_objects);
+ }
+}
+
+/*
+ * Interface to system's page allocator. No need to hold the cache-lock.
+ *
+ * If we requested dmaable memory, we will get it. Even if we
+ * did not request dmaable memory, we might get it, but that
+ * would be relatively rare and ignorable.
+ */
+static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
+{
+ struct page *page;
+ int nr_pages;
+ int i;
+
+#ifndef CONFIG_MMU
+ /*
+ * Nommu uses slab's for process anonymous memory allocations, and thus
+ * requires __GFP_COMP to properly refcount higher order allocations
+ */
+ flags |= __GFP_COMP;
+#endif
+
+ flags |= cachep->gfpflags;
+ if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
+ flags |= __GFP_RECLAIMABLE;
+
+ page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
+ if (!page) {
+ if (!(flags & __GFP_NOWARN) && printk_ratelimit())
+ slab_out_of_memory(cachep, flags, nodeid);
+ return NULL;
+ }
+
+ nr_pages = (1 << cachep->gfporder);
+ if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
+ add_zone_page_state(page_zone(page),
+ NR_SLAB_RECLAIMABLE, nr_pages);
+ else
+ add_zone_page_state(page_zone(page),
+ NR_SLAB_UNRECLAIMABLE, nr_pages);
+ for (i = 0; i < nr_pages; i++)
+ __SetPageSlab(page + i);
+
+ if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
+ kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
+
+ if (cachep->ctor)
+ kmemcheck_mark_uninitialized_pages(page, nr_pages);
+ else
+ kmemcheck_mark_unallocated_pages(page, nr_pages);
+ }
+
+ return page_address(page);
+}
+
+/*
+ * Interface to system's page release.
+ */
+static void kmem_freepages(struct kmem_cache *cachep, void *addr)
+{
+ unsigned long i = (1 << cachep->gfporder);
+ struct page *page = virt_to_page(addr);
+ const unsigned long nr_freed = i;
+
+ kmemcheck_free_shadow(page, cachep->gfporder);
+
+ if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
+ sub_zone_page_state(page_zone(page),
+ NR_SLAB_RECLAIMABLE, nr_freed);
+ else
+ sub_zone_page_state(page_zone(page),
+ NR_SLAB_UNRECLAIMABLE, nr_freed);
+ while (i--) {
+ BUG_ON(!PageSlab(page));
+ __ClearPageSlab(page);
+ page++;
+ }
+ if (current->reclaim_state)
+ current->reclaim_state->reclaimed_slab += nr_freed;
+ free_pages((unsigned long)addr, cachep->gfporder);
+}
+
+static void kmem_rcu_free(struct rcu_head *head)
+{
+ struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
+ struct kmem_cache *cachep = slab_rcu->cachep;
+
+ kmem_freepages(cachep, slab_rcu->addr);
+ if (OFF_SLAB(cachep))
+ kmem_cache_free(cachep->slabp_cache, slab_rcu);
+}
+
+#if DEBUG
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
+ unsigned long caller)
+{
+ int size = obj_size(cachep);
+
+ addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
+
+ if (size < 5 * sizeof(unsigned long))
+ return;
+
+ *addr++ = 0x12345678;
+ *addr++ = caller;
+ *addr++ = smp_processor_id();
+ size -= 3 * sizeof(unsigned long);
+ {
+ unsigned long *sptr = &caller;
+ unsigned long svalue;
+
+ while (!kstack_end(sptr)) {
+ svalue = *sptr++;
+ if (kernel_text_address(svalue)) {
+ *addr++ = svalue;
+ size -= sizeof(unsigned long);
+ if (size <= sizeof(unsigned long))
+ break;
+ }
+ }
+
+ }
+ *addr++ = 0x87654321;
+}
+#endif
+
+static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
+{
+ int size = obj_size(cachep);
+ addr = &((char *)addr)[obj_offset(cachep)];
+
+ memset(addr, val, size);
+ *(unsigned char *)(addr + size - 1) = POISON_END;
+}
+
+static void dump_line(char *data, int offset, int limit)
+{
+ int i;
+ unsigned char error = 0;
+ int bad_count = 0;
+
+ printk(KERN_ERR "%03x: ", offset);
+ for (i = 0; i < limit; i++) {
+ if (data[offset + i] != POISON_FREE) {
+ error = data[offset + i];
+ bad_count++;
+ }
+ }
+ print_hex_dump(KERN_CONT, "", 0, 16, 1,
+ &data[offset], limit, 1);
+
+ if (bad_count == 1) {
+ error ^= POISON_FREE;
+ if (!(error & (error - 1))) {
+ printk(KERN_ERR "Single bit error detected. Probably "
+ "bad RAM.\n");
+#ifdef CONFIG_X86
+ printk(KERN_ERR "Run memtest86+ or a similar memory "
+ "test tool.\n");
+#else
+ printk(KERN_ERR "Run a memory test tool.\n");
+#endif
+ }
+ }
+}
+#endif
+
+#if DEBUG
+
+static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
+{
+ int i, size;
+ char *realobj;
+
+ if (cachep->flags & SLAB_RED_ZONE) {
+ printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
+ *dbg_redzone1(cachep, objp),
+ *dbg_redzone2(cachep, objp));
+ }
+
+ if (cachep->flags & SLAB_STORE_USER) {
+ printk(KERN_ERR "Last user: [<%p>]",
+ *dbg_userword(cachep, objp));
+ print_symbol("(%s)",
+ (unsigned long)*dbg_userword(cachep, objp));
+ printk("\n");
+ }
+ realobj = (char *)objp + obj_offset(cachep);
+ size = obj_size(cachep);
+ for (i = 0; i < size && lines; i += 16, lines--) {
+ int limit;
+ limit = 16;
+ if (i + limit > size)
+ limit = size - i;
+ dump_line(realobj, i, limit);
+ }
+}
+
+static void check_poison_obj(struct kmem_cache *cachep, void *objp)
+{
+ char *realobj;
+ int size, i;
+ int lines = 0;
+
+ realobj = (char *)objp + obj_offset(cachep);
+ size = obj_size(cachep);
+
+ for (i = 0; i < size; i++) {
+ char exp = POISON_FREE;
+ if (i == size - 1)
+ exp = POISON_END;
+ if (realobj[i] != exp) {
+ int limit;
+ /* Mismatch ! */
+ /* Print header */
+ if (lines == 0) {
+ printk(KERN_ERR
+ "Slab corruption (%s): %s start=%p, len=%d\n",
+ print_tainted(), cachep->name, realobj, size);
+ print_objinfo(cachep, objp, 0);
+ }
+ /* Hexdump the affected line */
+ i = (i / 16) * 16;
+ limit = 16;
+ if (i + limit > size)
+ limit = size - i;
+ dump_line(realobj, i, limit);
+ i += 16;
+ lines++;
+ /* Limit to 5 lines */
+ if (lines > 5)
+ break;
+ }
+ }
+ if (lines != 0) {
+ /* Print some data about the neighboring objects, if they
+ * exist:
+ */
+ struct slab *slabp = virt_to_slab(objp);
+ unsigned int objnr;
+
+ objnr = obj_to_index(cachep, slabp, objp);
+ if (objnr) {
+ objp = index_to_obj(cachep, slabp, objnr - 1);
+ realobj = (char *)objp + obj_offset(cachep);
+ printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
+ realobj, size);
+ print_objinfo(cachep, objp, 2);
+ }
+ if (objnr + 1 < cachep->num) {
+ objp = index_to_obj(cachep, slabp, objnr + 1);
+ realobj = (char *)objp + obj_offset(cachep);
+ printk(KERN_ERR "Next obj: start=%p, len=%d\n",
+ realobj, size);
+ print_objinfo(cachep, objp, 2);
+ }
+ }
+}
+#endif
+
+#if DEBUG
+static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
+{
+ int i;
+ for (i = 0; i < cachep->num; i++) {
+ void *objp = index_to_obj(cachep, slabp, i);
+
+ if (cachep->flags & SLAB_POISON) {
+#ifdef CONFIG_DEBUG_PAGEALLOC
+ if (cachep->buffer_size % PAGE_SIZE == 0 &&
+ OFF_SLAB(cachep))
+ kernel_map_pages(virt_to_page(objp),
+ cachep->buffer_size / PAGE_SIZE, 1);
+ else
+ check_poison_obj(cachep, objp);
+#else
+ check_poison_obj(cachep, objp);
+#endif
+ }
+ if (cachep->flags & SLAB_RED_ZONE) {
+ if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
+ slab_error(cachep, "start of a freed object "
+ "was overwritten");
+ if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
+ slab_error(cachep, "end of a freed object "
+ "was overwritten");
+ }
+ }
+}
+#else
+static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
+{
+}
+#endif
+
+/**
+ * slab_destroy - destroy and release all objects in a slab
+ * @cachep: cache pointer being destroyed
+ * @slabp: slab pointer being destroyed
+ *
+ * Destroy all the objs in a slab, and release the mem back to the system.
+ * Before calling the slab must have been unlinked from the cache. The
+ * cache-lock is not held/needed.
+ */
+static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
+{
+ void *addr = slabp->s_mem - slabp->colouroff;
+
+ slab_destroy_debugcheck(cachep, slabp);
+ if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
+ struct slab_rcu *slab_rcu;
+
+ slab_rcu = (struct slab_rcu *)slabp;
+ slab_rcu->cachep = cachep;
+ slab_rcu->addr = addr;
+ call_rcu(&slab_rcu->head, kmem_rcu_free);
+ } else {
+ kmem_freepages(cachep, addr);
+ if (OFF_SLAB(cachep))
+ kmem_cache_free(cachep->slabp_cache, slabp);
+ }
+}
+
+static void __kmem_cache_destroy(struct kmem_cache *cachep)
+{
+ int i;
+ struct kmem_list3 *l3;
+
+ for_each_online_cpu(i)
+ kfree(cachep->array[i]);
+
+ /* NUMA: free the list3 structures */
+ for_each_online_node(i) {
+ l3 = cachep->nodelists[i];
+ if (l3) {
+ kfree(l3->shared);
+ free_alien_cache(l3->alien);
+ kfree(l3);
+ }
+ }
+ kmem_cache_free(&cache_cache, cachep);
+}
+
+
+/**
+ * calculate_slab_order - calculate size (page order) of slabs
+ * @cachep: pointer to the cache that is being created
+ * @size: size of objects to be created in this cache.
+ * @align: required alignment for the objects.
+ * @flags: slab allocation flags
+ *
+ * Also calculates the number of objects per slab.
+ *
+ * This could be made much more intelligent. For now, try to avoid using
+ * high order pages for slabs. When the gfp() functions are more friendly
+ * towards high-order requests, this should be changed.
+ */
+static size_t calculate_slab_order(struct kmem_cache *cachep,
+ size_t size, size_t align, unsigned long flags)
+{
+ unsigned long offslab_limit;
+ size_t left_over = 0;
+ int gfporder;
+
+ for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
+ unsigned int num;
+ size_t remainder;
+
+ cache_estimate(gfporder, size, align, flags, &remainder, &num);
+ if (!num)
+ continue;
+
+ if (flags & CFLGS_OFF_SLAB) {
+ /*
+ * Max number of objs-per-slab for caches which
+ * use off-slab slabs. Needed to avoid a possible
+ * looping condition in cache_grow().
+ */
+ offslab_limit = size - sizeof(struct slab);
+ offslab_limit /= sizeof(kmem_bufctl_t);
+
+ if (num > offslab_limit)
+ break;
+ }
+
+ /* Found something acceptable - save it away */
+ cachep->num = num;
+ cachep->gfporder = gfporder;
+ left_over = remainder;
+
+ /*
+ * A VFS-reclaimable slab tends to have most allocations
+ * as GFP_NOFS and we really don't want to have to be allocating
+ * higher-order pages when we are unable to shrink dcache.
+ */
+ if (flags & SLAB_RECLAIM_ACCOUNT)
+ break;
+
+ /*
+ * Large number of objects is good, but very large slabs are
+ * currently bad for the gfp()s.
+ */
+ if (gfporder >= slab_max_order)
+ break;
+
+ /*
+ * Acceptable internal fragmentation?
+ */
+ if (left_over * 8 <= (PAGE_SIZE << gfporder))
+ break;
+ }
+ return left_over;
+}
+
+static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
+{
+ if (g_cpucache_up == FULL)
+ return enable_cpucache(cachep, gfp);
+
+ if (g_cpucache_up == NONE) {
+ /*
+ * Note: the first kmem_cache_create must create the cache
+ * that's used by kmalloc(24), otherwise the creation of
+ * further caches will BUG().
+ */
+ cachep->array[smp_processor_id()] = &initarray_generic.cache;
+
+ /*
+ * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
+ * the first cache, then we need to set up all its list3s,
+ * otherwise the creation of further caches will BUG().
+ */
+ set_up_list3s(cachep, SIZE_AC);
+ if (INDEX_AC == INDEX_L3)
+ g_cpucache_up = PARTIAL_L3;
+ else
+ g_cpucache_up = PARTIAL_AC;
+ } else {
+ cachep->array[smp_processor_id()] =
+ kmalloc(sizeof(struct arraycache_init), gfp);
+
+ if (g_cpucache_up == PARTIAL_AC) {
+ set_up_list3s(cachep, SIZE_L3);
+ g_cpucache_up = PARTIAL_L3;
+ } else {
+ int node;
+ for_each_online_node(node) {
+ cachep->nodelists[node] =
+ kmalloc_node(sizeof(struct kmem_list3),
+ gfp, node);
+ BUG_ON(!cachep->nodelists[node]);
+ kmem_list3_init(cachep->nodelists[node]);
+ }
+ }
+ }
+ cachep->nodelists[numa_mem_id()]->next_reap =
+ jiffies + REAPTIMEOUT_LIST3 +
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+
+ cpu_cache_get(cachep)->avail = 0;
+ cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
+ cpu_cache_get(cachep)->batchcount = 1;
+ cpu_cache_get(cachep)->touched = 0;
+ cachep->batchcount = 1;
+ cachep->limit = BOOT_CPUCACHE_ENTRIES;
+ return 0;
+}
+
+/**
+ * kmem_cache_create - Create a cache.
+ * @name: A string which is used in /proc/slabinfo to identify this cache.
+ * @size: The size of objects to be created in this cache.
+ * @align: The required alignment for the objects.
+ * @flags: SLAB flags
+ * @ctor: A constructor for the objects.
+ *
+ * Returns a ptr to the cache on success, NULL on failure.
+ * Cannot be called within a int, but can be interrupted.
+ * The @ctor is run when new pages are allocated by the cache.
+ *
+ * @name must be valid until the cache is destroyed. This implies that
+ * the module calling this has to destroy the cache before getting unloaded.
+ *
+ * The flags are
+ *
+ * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
+ * to catch references to uninitialised memory.
+ *
+ * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
+ * for buffer overruns.
+ *
+ * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
+ * cacheline. This can be beneficial if you're counting cycles as closely
+ * as davem.
+ */
+struct kmem_cache *
+kmem_cache_create (const char *name, size_t size, size_t align,
+ unsigned long flags, void (*ctor)(void *))
+{
+ size_t left_over, slab_size, ralign;
+ struct kmem_cache *cachep = NULL, *pc;
+ gfp_t gfp;
+
+ /*
+ * Sanity checks... these are all serious usage bugs.
+ */
+ if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
+ size > KMALLOC_MAX_SIZE) {
+ printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
+ name);
+ BUG();
+ }
+
+ /*
+ * We use cache_chain_mutex to ensure a consistent view of
+ * cpu_online_mask as well. Please see cpuup_callback
+ */
+ if (slab_is_available()) {
+ get_online_cpus();
+ mutex_lock(&cache_chain_mutex);
+ }
+
+ list_for_each_entry(pc, &cache_chain, next) {
+ char tmp;
+ int res;
+
+ /*
+ * This happens when the module gets unloaded and doesn't
+ * destroy its slab cache and no-one else reuses the vmalloc
+ * area of the module. Print a warning.
+ */
+ res = probe_kernel_address(pc->name, tmp);
+ if (res) {
+ printk(KERN_ERR
+ "SLAB: cache with size %d has lost its name\n",
+ pc->buffer_size);
+ continue;
+ }
+
+ if (!strcmp(pc->name, name)) {
+ printk(KERN_ERR
+ "kmem_cache_create: duplicate cache %s\n", name);
+ dump_stack();
+ goto oops;
+ }
+ }
+
+#if DEBUG
+ WARN_ON(strchr(name, ' ')); /* It confuses parsers */
+#if FORCED_DEBUG
+ /*
+ * Enable redzoning and last user accounting, except for caches with
+ * large objects, if the increased size would increase the object size
+ * above the next power of two: caches with object sizes just above a
+ * power of two have a significant amount of internal fragmentation.
+ */
+ if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
+ 2 * sizeof(unsigned long long)))
+ flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
+ if (!(flags & SLAB_DESTROY_BY_RCU))
+ flags |= SLAB_POISON;
+#endif
+ if (flags & SLAB_DESTROY_BY_RCU)
+ BUG_ON(flags & SLAB_POISON);
+#endif
+ /*
+ * Always checks flags, a caller might be expecting debug support which
+ * isn't available.
+ */
+ BUG_ON(flags & ~CREATE_MASK);
+
+ /*
+ * Check that size is in terms of words. This is needed to avoid
+ * unaligned accesses for some archs when redzoning is used, and makes
+ * sure any on-slab bufctl's are also correctly aligned.
+ */
+ if (size & (BYTES_PER_WORD - 1)) {
+ size += (BYTES_PER_WORD - 1);
+ size &= ~(BYTES_PER_WORD - 1);
+ }
+
+ /* calculate the final buffer alignment: */
+
+ /* 1) arch recommendation: can be overridden for debug */
+ if (flags & SLAB_HWCACHE_ALIGN) {
+ /*
+ * Default alignment: as specified by the arch code. Except if
+ * an object is really small, then squeeze multiple objects into
+ * one cacheline.
+ */
+ ralign = cache_line_size();
+ while (size <= ralign / 2)
+ ralign /= 2;
+ } else {
+ ralign = BYTES_PER_WORD;
+ }
+
+ /*
+ * Redzoning and user store require word alignment or possibly larger.
+ * Note this will be overridden by architecture or caller mandated
+ * alignment if either is greater than BYTES_PER_WORD.
+ */
+ if (flags & SLAB_STORE_USER)
+ ralign = BYTES_PER_WORD;
+
+ if (flags & SLAB_RED_ZONE) {
+ ralign = REDZONE_ALIGN;
+ /* If redzoning, ensure that the second redzone is suitably
+ * aligned, by adjusting the object size accordingly. */
+ size += REDZONE_ALIGN - 1;
+ size &= ~(REDZONE_ALIGN - 1);
+ }
+
+ /* 2) arch mandated alignment */
+ if (ralign < ARCH_SLAB_MINALIGN) {
+ ralign = ARCH_SLAB_MINALIGN;
+ }
+ /* 3) caller mandated alignment */
+ if (ralign < align) {
+ ralign = align;
+ }
+ /* disable debug if necessary */
+ if (ralign > __alignof__(unsigned long long))
+ flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
+ /*
+ * 4) Store it.
+ */
+ align = ralign;
+
+ if (slab_is_available())
+ gfp = GFP_KERNEL;
+ else
+ gfp = GFP_NOWAIT;
+
+ /* Get cache's description obj. */
+ cachep = kmem_cache_zalloc(&cache_cache, gfp);
+ if (!cachep)
+ goto oops;
+
+ cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
+#if DEBUG
+ cachep->obj_size = size;
+
+ /*
+ * Both debugging options require word-alignment which is calculated
+ * into align above.
+ */
+ if (flags & SLAB_RED_ZONE) {
+ /* add space for red zone words */
+ cachep->obj_offset += sizeof(unsigned long long);
+ size += 2 * sizeof(unsigned long long);
+ }
+ if (flags & SLAB_STORE_USER) {
+ /* user store requires one word storage behind the end of
+ * the real object. But if the second red zone needs to be
+ * aligned to 64 bits, we must allow that much space.
+ */
+ if (flags & SLAB_RED_ZONE)
+ size += REDZONE_ALIGN;
+ else
+ size += BYTES_PER_WORD;
+ }
+#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
+ if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
+ && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
+ cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
+ size = PAGE_SIZE;
+ }
+#endif
+#endif
+
+ /*
+ * Determine if the slab management is 'on' or 'off' slab.
+ * (bootstrapping cannot cope with offslab caches so don't do
+ * it too early on. Always use on-slab management when
+ * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
+ */
+ if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
+ !(flags & SLAB_NOLEAKTRACE))
+ /*
+ * Size is large, assume best to place the slab management obj
+ * off-slab (should allow better packing of objs).
+ */
+ flags |= CFLGS_OFF_SLAB;
+
+ size = ALIGN(size, align);
+
+ left_over = calculate_slab_order(cachep, size, align, flags);
+
+ if (!cachep->num) {
+ printk(KERN_ERR
+ "kmem_cache_create: couldn't create cache %s.\n", name);
+ kmem_cache_free(&cache_cache, cachep);
+ cachep = NULL;
+ goto oops;
+ }
+ slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
+ + sizeof(struct slab), align);
+
+ /*
+ * If the slab has been placed off-slab, and we have enough space then
+ * move it on-slab. This is at the expense of any extra colouring.
+ */
+ if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
+ flags &= ~CFLGS_OFF_SLAB;
+ left_over -= slab_size;
+ }
+
+ if (flags & CFLGS_OFF_SLAB) {
+ /* really off slab. No need for manual alignment */
+ slab_size =
+ cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
+
+#ifdef CONFIG_PAGE_POISONING
+ /* If we're going to use the generic kernel_map_pages()
+ * poisoning, then it's going to smash the contents of
+ * the redzone and userword anyhow, so switch them off.
+ */
+ if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
+ flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
+#endif
+ }
+
+ cachep->colour_off = cache_line_size();
+ /* Offset must be a multiple of the alignment. */
+ if (cachep->colour_off < align)
+ cachep->colour_off = align;
+ cachep->colour = left_over / cachep->colour_off;
+ cachep->slab_size = slab_size;
+ cachep->flags = flags;
+ cachep->gfpflags = 0;
+ if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
+ cachep->gfpflags |= GFP_DMA;
+ cachep->buffer_size = size;
+ cachep->reciprocal_buffer_size = reciprocal_value(size);
+
+ if (flags & CFLGS_OFF_SLAB) {
+ cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
+ /*
+ * This is a possibility for one of the malloc_sizes caches.
+ * But since we go off slab only for object size greater than
+ * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
+ * this should not happen at all.
+ * But leave a BUG_ON for some lucky dude.
+ */
+ BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
+ }
+ cachep->ctor = ctor;
+ cachep->name = name;
+
+ if (setup_cpu_cache(cachep, gfp)) {
+ __kmem_cache_destroy(cachep);
+ cachep = NULL;
+ goto oops;
+ }
+
+ if (flags & SLAB_DEBUG_OBJECTS) {
+ /*
+ * Would deadlock through slab_destroy()->call_rcu()->
+ * debug_object_activate()->kmem_cache_alloc().
+ */
+ WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
+
+ slab_set_debugobj_lock_classes(cachep);
+ }
+
+ /* cache setup completed, link it into the list */
+ list_add(&cachep->next, &cache_chain);
+oops:
+ if (!cachep && (flags & SLAB_PANIC))
+ panic("kmem_cache_create(): failed to create slab `%s'\n",
+ name);
+ if (slab_is_available()) {
+ mutex_unlock(&cache_chain_mutex);
+ put_online_cpus();
+ }
+ return cachep;
+}
+EXPORT_SYMBOL(kmem_cache_create);
+
+#if DEBUG
+static void check_irq_off(void)
+{
+ BUG_ON(!irqs_disabled());
+}
+
+static void check_irq_on(void)
+{
+ BUG_ON(irqs_disabled());
+}
+
+static void check_spinlock_acquired(struct kmem_cache *cachep)
+{
+#ifdef CONFIG_SMP
+ check_irq_off();
+ assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
+#endif
+}
+
+static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
+{
+#ifdef CONFIG_SMP
+ check_irq_off();
+ assert_spin_locked(&cachep->nodelists[node]->list_lock);
+#endif
+}
+
+#else
+#define check_irq_off() do { } while(0)
+#define check_irq_on() do { } while(0)
+#define check_spinlock_acquired(x) do { } while(0)
+#define check_spinlock_acquired_node(x, y) do { } while(0)
+#endif
+
+static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+ struct array_cache *ac,
+ int force, int node);
+
+static void do_drain(void *arg)
+{
+ struct kmem_cache *cachep = arg;
+ struct array_cache *ac;
+ int node = numa_mem_id();
+
+ check_irq_off();
+ ac = cpu_cache_get(cachep);
+ spin_lock(&cachep->nodelists[node]->list_lock);
+ free_block(cachep, ac->entry, ac->avail, node);
+ spin_unlock(&cachep->nodelists[node]->list_lock);
+ ac->avail = 0;
+}
+
+static void drain_cpu_caches(struct kmem_cache *cachep)
+{
+ struct kmem_list3 *l3;
+ int node;
+
+ on_each_cpu(do_drain, cachep, 1);
+ check_irq_on();
+ for_each_online_node(node) {
+ l3 = cachep->nodelists[node];
+ if (l3 && l3->alien)
+ drain_alien_cache(cachep, l3->alien);
+ }
+
+ for_each_online_node(node) {
+ l3 = cachep->nodelists[node];
+ if (l3)
+ drain_array(cachep, l3, l3->shared, 1, node);
+ }
+}
+
+/*
+ * Remove slabs from the list of free slabs.
+ * Specify the number of slabs to drain in tofree.
+ *
+ * Returns the actual number of slabs released.
+ */
+static int drain_freelist(struct kmem_cache *cache,
+ struct kmem_list3 *l3, int tofree)
+{
+ struct list_head *p;
+ int nr_freed;
+ struct slab *slabp;
+
+ nr_freed = 0;
+ while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
+
+ spin_lock_irq(&l3->list_lock);
+ p = l3->slabs_free.prev;
+ if (p == &l3->slabs_free) {
+ spin_unlock_irq(&l3->list_lock);
+ goto out;
+ }
+
+ slabp = list_entry(p, struct slab, list);
+#if DEBUG
+ BUG_ON(slabp->inuse);
+#endif
+ list_del(&slabp->list);
+ /*
+ * Safe to drop the lock. The slab is no longer linked
+ * to the cache.
+ */
+ l3->free_objects -= cache->num;
+ spin_unlock_irq(&l3->list_lock);
+ slab_destroy(cache, slabp);
+ nr_freed++;
+ }
+out:
+ return nr_freed;
+}
+
+/* Called with cache_chain_mutex held to protect against cpu hotplug */
+static int __cache_shrink(struct kmem_cache *cachep)
+{
+ int ret = 0, i = 0;
+ struct kmem_list3 *l3;
+
+ drain_cpu_caches(cachep);
+
+ check_irq_on();
+ for_each_online_node(i) {
+ l3 = cachep->nodelists[i];
+ if (!l3)
+ continue;
+
+ drain_freelist(cachep, l3, l3->free_objects);
+
+ ret += !list_empty(&l3->slabs_full) ||
+ !list_empty(&l3->slabs_partial);
+ }
+ return (ret ? 1 : 0);
+}
+
+/**
+ * kmem_cache_shrink - Shrink a cache.
+ * @cachep: The cache to shrink.
+ *
+ * Releases as many slabs as possible for a cache.
+ * To help debugging, a zero exit status indicates all slabs were released.
+ */
+int kmem_cache_shrink(struct kmem_cache *cachep)
+{
+ int ret;
+ BUG_ON(!cachep || in_interrupt());
+
+ get_online_cpus();
+ mutex_lock(&cache_chain_mutex);
+ ret = __cache_shrink(cachep);
+ mutex_unlock(&cache_chain_mutex);
+ put_online_cpus();
+ return ret;
+}
+EXPORT_SYMBOL(kmem_cache_shrink);
+
+/**
+ * kmem_cache_destroy - delete a cache
+ * @cachep: the cache to destroy
+ *
+ * Remove a &struct kmem_cache object from the slab cache.
+ *
+ * It is expected this function will be called by a module when it is
+ * unloaded. This will remove the cache completely, and avoid a duplicate
+ * cache being allocated each time a module is loaded and unloaded, if the
+ * module doesn't have persistent in-kernel storage across loads and unloads.
+ *
+ * The cache must be empty before calling this function.
+ *
+ * The caller must guarantee that no one will allocate memory from the cache
+ * during the kmem_cache_destroy().
+ */
+void kmem_cache_destroy(struct kmem_cache *cachep)
+{
+ BUG_ON(!cachep || in_interrupt());
+
+ /* Find the cache in the chain of caches. */
+ get_online_cpus();
+ mutex_lock(&cache_chain_mutex);
+ /*
+ * the chain is never empty, cache_cache is never destroyed
+ */
+ list_del(&cachep->next);
+ if (__cache_shrink(cachep)) {
+ slab_error(cachep, "Can't free all objects");
+ list_add(&cachep->next, &cache_chain);
+ mutex_unlock(&cache_chain_mutex);
+ put_online_cpus();
+ return;
+ }
+
+ if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
+ rcu_barrier();
+
+ __kmem_cache_destroy(cachep);
+ mutex_unlock(&cache_chain_mutex);
+ put_online_cpus();
+}
+EXPORT_SYMBOL(kmem_cache_destroy);
+
+/*
+ * Get the memory for a slab management obj.
+ * For a slab cache when the slab descriptor is off-slab, slab descriptors
+ * always come from malloc_sizes caches. The slab descriptor cannot
+ * come from the same cache which is getting created because,
+ * when we are searching for an appropriate cache for these
+ * descriptors in kmem_cache_create, we search through the malloc_sizes array.
+ * If we are creating a malloc_sizes cache here it would not be visible to
+ * kmem_find_general_cachep till the initialization is complete.
+ * Hence we cannot have slabp_cache same as the original cache.
+ */
+static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
+ int colour_off, gfp_t local_flags,
+ int nodeid)
+{
+ struct slab *slabp;
+
+ if (OFF_SLAB(cachep)) {
+ /* Slab management obj is off-slab. */
+ slabp = kmem_cache_alloc_node(cachep->slabp_cache,
+ local_flags, nodeid);
+ /*
+ * If the first object in the slab is leaked (it's allocated
+ * but no one has a reference to it), we want to make sure
+ * kmemleak does not treat the ->s_mem pointer as a reference
+ * to the object. Otherwise we will not report the leak.
+ */
+ kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
+ local_flags);
+ if (!slabp)
+ return NULL;
+ } else {
+ slabp = objp + colour_off;
+ colour_off += cachep->slab_size;
+ }
+ slabp->inuse = 0;
+ slabp->colouroff = colour_off;
+ slabp->s_mem = objp + colour_off;
+ slabp->nodeid = nodeid;
+ slabp->free = 0;
+ return slabp;
+}
+
+static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
+{
+ return (kmem_bufctl_t *) (slabp + 1);
+}
+
+static void cache_init_objs(struct kmem_cache *cachep,
+ struct slab *slabp)
+{
+ int i;
+
+ for (i = 0; i < cachep->num; i++) {
+ void *objp = index_to_obj(cachep, slabp, i);
+#if DEBUG
+ /* need to poison the objs? */
+ if (cachep->flags & SLAB_POISON)
+ poison_obj(cachep, objp, POISON_FREE);
+ if (cachep->flags & SLAB_STORE_USER)
+ *dbg_userword(cachep, objp) = NULL;
+
+ if (cachep->flags & SLAB_RED_ZONE) {
+ *dbg_redzone1(cachep, objp) = RED_INACTIVE;
+ *dbg_redzone2(cachep, objp) = RED_INACTIVE;
+ }
+ /*
+ * Constructors are not allowed to allocate memory from the same
+ * cache which they are a constructor for. Otherwise, deadlock.
+ * They must also be threaded.
+ */
+ if (cachep->ctor && !(cachep->flags & SLAB_POISON))
+ cachep->ctor(objp + obj_offset(cachep));
+
+ if (cachep->flags & SLAB_RED_ZONE) {
+ if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
+ slab_error(cachep, "constructor overwrote the"
+ " end of an object");
+ if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
+ slab_error(cachep, "constructor overwrote the"
+ " start of an object");
+ }
+ if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
+ OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
+ kernel_map_pages(virt_to_page(objp),
+ cachep->buffer_size / PAGE_SIZE, 0);
+#else
+ if (cachep->ctor)
+ cachep->ctor(objp);
+#endif
+ slab_bufctl(slabp)[i] = i + 1;
+ }
+ slab_bufctl(slabp)[i - 1] = BUFCTL_END;
+}
+
+static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
+{
+ if (CONFIG_ZONE_DMA_FLAG) {
+ if (flags & GFP_DMA)
+ BUG_ON(!(cachep->gfpflags & GFP_DMA));
+ else
+ BUG_ON(cachep->gfpflags & GFP_DMA);
+ }
+}
+
+static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
+ int nodeid)
+{
+ void *objp = index_to_obj(cachep, slabp, slabp->free);
+ kmem_bufctl_t next;
+
+ slabp->inuse++;
+ next = slab_bufctl(slabp)[slabp->free];
+#if DEBUG
+ slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
+ WARN_ON(slabp->nodeid != nodeid);
+#endif
+ slabp->free = next;
+
+ return objp;
+}
+
+static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
+ void *objp, int nodeid)
+{
+ unsigned int objnr = obj_to_index(cachep, slabp, objp);
+
+#if DEBUG
+ /* Verify that the slab belongs to the intended node */
+ WARN_ON(slabp->nodeid != nodeid);
+
+ if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
+ printk(KERN_ERR "slab: double free detected in cache "
+ "'%s', objp %p\n", cachep->name, objp);
+ BUG();
+ }
+#endif
+ slab_bufctl(slabp)[objnr] = slabp->free;
+ slabp->free = objnr;
+ slabp->inuse--;
+}
+
+/*
+ * Map pages beginning at addr to the given cache and slab. This is required
+ * for the slab allocator to be able to lookup the cache and slab of a
+ * virtual address for kfree, ksize, and slab debugging.
+ */
+static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
+ void *addr)
+{
+ int nr_pages;
+ struct page *page;
+
+ page = virt_to_page(addr);
+
+ nr_pages = 1;
+ if (likely(!PageCompound(page)))
+ nr_pages <<= cache->gfporder;
+
+ do {
+ page_set_cache(page, cache);
+ page_set_slab(page, slab);
+ page++;
+ } while (--nr_pages);
+}
+
+/*
+ * Grow (by 1) the number of slabs within a cache. This is called by
+ * kmem_cache_alloc() when there are no active objs left in a cache.
+ */
+static int cache_grow(struct kmem_cache *cachep,
+ gfp_t flags, int nodeid, void *objp)
+{
+ struct slab *slabp;
+ size_t offset;
+ gfp_t local_flags;
+ struct kmem_list3 *l3;
+
+ /*
+ * Be lazy and only check for valid flags here, keeping it out of the
+ * critical path in kmem_cache_alloc().
+ */
+ BUG_ON(flags & GFP_SLAB_BUG_MASK);
+ local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
+
+ /* Take the l3 list lock to change the colour_next on this node */
+ check_irq_off();
+ l3 = cachep->nodelists[nodeid];
+ spin_lock(&l3->list_lock);
+
+ /* Get colour for the slab, and cal the next value. */
+ offset = l3->colour_next;
+ l3->colour_next++;
+ if (l3->colour_next >= cachep->colour)
+ l3->colour_next = 0;
+ spin_unlock(&l3->list_lock);
+
+ offset *= cachep->colour_off;
+
+ if (local_flags & __GFP_WAIT)
+ local_irq_enable();
+
+ /*
+ * The test for missing atomic flag is performed here, rather than
+ * the more obvious place, simply to reduce the critical path length
+ * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
+ * will eventually be caught here (where it matters).
+ */
+ kmem_flagcheck(cachep, flags);
+
+ /*
+ * Get mem for the objs. Attempt to allocate a physical page from
+ * 'nodeid'.
+ */
+ if (!objp)
+ objp = kmem_getpages(cachep, local_flags, nodeid);
+ if (!objp)
+ goto failed;
+
+ /* Get slab management. */
+ slabp = alloc_slabmgmt(cachep, objp, offset,
+ local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
+ if (!slabp)
+ goto opps1;
+
+ slab_map_pages(cachep, slabp, objp);
+
+ cache_init_objs(cachep, slabp);
+
+ if (local_flags & __GFP_WAIT)
+ local_irq_disable();
+ check_irq_off();
+ spin_lock(&l3->list_lock);
+
+ /* Make slab active. */
+ list_add_tail(&slabp->list, &(l3->slabs_free));
+ STATS_INC_GROWN(cachep);
+ l3->free_objects += cachep->num;
+ spin_unlock(&l3->list_lock);
+ return 1;
+opps1:
+ kmem_freepages(cachep, objp);
+failed:
+ if (local_flags & __GFP_WAIT)
+ local_irq_disable();
+ return 0;
+}
+
+#if DEBUG
+
+/*
+ * Perform extra freeing checks:
+ * - detect bad pointers.
+ * - POISON/RED_ZONE checking
+ */
+static void kfree_debugcheck(const void *objp)
+{
+ if (!virt_addr_valid(objp)) {
+ printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
+ (unsigned long)objp);
+ BUG();
+ }
+}
+
+static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
+{
+ unsigned long long redzone1, redzone2;
+
+ redzone1 = *dbg_redzone1(cache, obj);
+ redzone2 = *dbg_redzone2(cache, obj);
+
+ /*
+ * Redzone is ok.
+ */
+ if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
+ return;
+
+ if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
+ slab_error(cache, "double free detected");
+ else
+ slab_error(cache, "memory outside object was overwritten");
+
+ printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
+ obj, redzone1, redzone2);
+}
+
+static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
+ void *caller)
+{
+ struct page *page;
+ unsigned int objnr;
+ struct slab *slabp;
+
+ BUG_ON(virt_to_cache(objp) != cachep);
+
+ objp -= obj_offset(cachep);
+ kfree_debugcheck(objp);
+ page = virt_to_head_page(objp);
+
+ slabp = page_get_slab(page);
+
+ if (cachep->flags & SLAB_RED_ZONE) {
+ verify_redzone_free(cachep, objp);
+ *dbg_redzone1(cachep, objp) = RED_INACTIVE;
+ *dbg_redzone2(cachep, objp) = RED_INACTIVE;
+ }
+ if (cachep->flags & SLAB_STORE_USER)
+ *dbg_userword(cachep, objp) = caller;
+
+ objnr = obj_to_index(cachep, slabp, objp);
+
+ BUG_ON(objnr >= cachep->num);
+ BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
+
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+ slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
+#endif
+ if (cachep->flags & SLAB_POISON) {
+#ifdef CONFIG_DEBUG_PAGEALLOC
+ if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
+ store_stackinfo(cachep, objp, (unsigned long)caller);
+ kernel_map_pages(virt_to_page(objp),
+ cachep->buffer_size / PAGE_SIZE, 0);
+ } else {
+ poison_obj(cachep, objp, POISON_FREE);
+ }
+#else
+ poison_obj(cachep, objp, POISON_FREE);
+#endif
+ }
+ return objp;
+}
+
+static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
+{
+ kmem_bufctl_t i;
+ int entries = 0;
+
+ /* Check slab's freelist to see if this obj is there. */
+ for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
+ entries++;
+ if (entries > cachep->num || i >= cachep->num)
+ goto bad;
+ }
+ if (entries != cachep->num - slabp->inuse) {
+bad:
+ printk(KERN_ERR "slab: Internal list corruption detected in "
+ "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
+ cachep->name, cachep->num, slabp, slabp->inuse,
+ print_tainted());
+ print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
+ sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
+ 1);
+ BUG();
+ }
+}
+#else
+#define kfree_debugcheck(x) do { } while(0)
+#define cache_free_debugcheck(x,objp,z) (objp)
+#define check_slabp(x,y) do { } while(0)
+#endif
+
+static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
+{
+ int batchcount;
+ struct kmem_list3 *l3;
+ struct array_cache *ac;
+ int node;
+
+retry:
+ check_irq_off();
+ node = numa_mem_id();
+ ac = cpu_cache_get(cachep);
+ batchcount = ac->batchcount;
+ if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
+ /*
+ * If there was little recent activity on this cache, then
+ * perform only a partial refill. Otherwise we could generate
+ * refill bouncing.
+ */
+ batchcount = BATCHREFILL_LIMIT;
+ }
+ l3 = cachep->nodelists[node];
+
+ BUG_ON(ac->avail > 0 || !l3);
+ spin_lock(&l3->list_lock);
+
+ /* See if we can refill from the shared array */
+ if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
+ l3->shared->touched = 1;
+ goto alloc_done;
+ }
+
+ while (batchcount > 0) {
+ struct list_head *entry;
+ struct slab *slabp;
+ /* Get slab alloc is to come from. */
+ entry = l3->slabs_partial.next;
+ if (entry == &l3->slabs_partial) {
+ l3->free_touched = 1;
+ entry = l3->slabs_free.next;
+ if (entry == &l3->slabs_free)
+ goto must_grow;
+ }
+
+ slabp = list_entry(entry, struct slab, list);
+ check_slabp(cachep, slabp);
+ check_spinlock_acquired(cachep);
+
+ /*
+ * The slab was either on partial or free list so
+ * there must be at least one object available for
+ * allocation.
+ */
+ BUG_ON(slabp->inuse >= cachep->num);
+
+ while (slabp->inuse < cachep->num && batchcount--) {
+ STATS_INC_ALLOCED(cachep);
+ STATS_INC_ACTIVE(cachep);
+ STATS_SET_HIGH(cachep);
+
+ ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
+ node);
+ }
+ check_slabp(cachep, slabp);
+
+ /* move slabp to correct slabp list: */
+ list_del(&slabp->list);
+ if (slabp->free == BUFCTL_END)
+ list_add(&slabp->list, &l3->slabs_full);
+ else
+ list_add(&slabp->list, &l3->slabs_partial);
+ }
+
+must_grow:
+ l3->free_objects -= ac->avail;
+alloc_done:
+ spin_unlock(&l3->list_lock);
+
+ if (unlikely(!ac->avail)) {
+ int x;
+ x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
+
+ /* cache_grow can reenable interrupts, then ac could change. */
+ ac = cpu_cache_get(cachep);
+ if (!x && ac->avail == 0) /* no objects in sight? abort */
+ return NULL;
+
+ if (!ac->avail) /* objects refilled by interrupt? */
+ goto retry;
+ }
+ ac->touched = 1;
+ return ac->entry[--ac->avail];
+}
+
+static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
+ gfp_t flags)
+{
+ might_sleep_if(flags & __GFP_WAIT);
+#if DEBUG
+ kmem_flagcheck(cachep, flags);
+#endif
+}
+
+#if DEBUG
+static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
+ gfp_t flags, void *objp, void *caller)
+{
+ if (!objp)
+ return objp;
+ if (cachep->flags & SLAB_POISON) {
+#ifdef CONFIG_DEBUG_PAGEALLOC
+ if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
+ kernel_map_pages(virt_to_page(objp),
+ cachep->buffer_size / PAGE_SIZE, 1);
+ else
+ check_poison_obj(cachep, objp);
+#else
+ check_poison_obj(cachep, objp);
+#endif
+ poison_obj(cachep, objp, POISON_INUSE);
+ }
+ if (cachep->flags & SLAB_STORE_USER)
+ *dbg_userword(cachep, objp) = caller;
+
+ if (cachep->flags & SLAB_RED_ZONE) {
+ if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
+ *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
+ slab_error(cachep, "double free, or memory outside"
+ " object was overwritten");
+ printk(KERN_ERR
+ "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
+ objp, *dbg_redzone1(cachep, objp),
+ *dbg_redzone2(cachep, objp));
+ }
+ *dbg_redzone1(cachep, objp) = RED_ACTIVE;
+ *dbg_redzone2(cachep, objp) = RED_ACTIVE;
+ }
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+ {
+ struct slab *slabp;
+ unsigned objnr;
+
+ slabp = page_get_slab(virt_to_head_page(objp));
+ objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
+ slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
+ }
+#endif
+ objp += obj_offset(cachep);
+ if (cachep->ctor && cachep->flags & SLAB_POISON)
+ cachep->ctor(objp);
+ if (ARCH_SLAB_MINALIGN &&
+ ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
+ printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
+ objp, (int)ARCH_SLAB_MINALIGN);
+ }
+ return objp;
+}
+#else
+#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
+#endif
+
+static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
+{
+ if (cachep == &cache_cache)
+ return false;
+
+ return should_failslab(obj_size(cachep), flags, cachep->flags);
+}
+
+static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+ void *objp;
+ struct array_cache *ac;
+
+ check_irq_off();
+
+ ac = cpu_cache_get(cachep);
+ if (likely(ac->avail)) {
+ STATS_INC_ALLOCHIT(cachep);
+ ac->touched = 1;
+ objp = ac->entry[--ac->avail];
+ } else {
+ STATS_INC_ALLOCMISS(cachep);
+ objp = cache_alloc_refill(cachep, flags);
+ /*
+ * the 'ac' may be updated by cache_alloc_refill(),
+ * and kmemleak_erase() requires its correct value.
+ */
+ ac = cpu_cache_get(cachep);
+ }
+ /*
+ * To avoid a false negative, if an object that is in one of the
+ * per-CPU caches is leaked, we need to make sure kmemleak doesn't
+ * treat the array pointers as a reference to the object.
+ */
+ if (objp)
+ kmemleak_erase(&ac->entry[ac->avail]);
+ return objp;
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
+ *
+ * If we are in_interrupt, then process context, including cpusets and
+ * mempolicy, may not apply and should not be used for allocation policy.
+ */
+static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+ int nid_alloc, nid_here;
+
+ if (in_interrupt() || (flags & __GFP_THISNODE))
+ return NULL;
+ nid_alloc = nid_here = numa_mem_id();
+ if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
+ nid_alloc = cpuset_slab_spread_node();
+ else if (current->mempolicy)
+ nid_alloc = slab_node(current->mempolicy);
+ if (nid_alloc != nid_here)
+ return ____cache_alloc_node(cachep, flags, nid_alloc);
+ return NULL;
+}
+
+/*
+ * Fallback function if there was no memory available and no objects on a
+ * certain node and fall back is permitted. First we scan all the
+ * available nodelists for available objects. If that fails then we
+ * perform an allocation without specifying a node. This allows the page
+ * allocator to do its reclaim / fallback magic. We then insert the
+ * slab into the proper nodelist and then allocate from it.
+ */
+static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
+{
+ struct zonelist *zonelist;
+ gfp_t local_flags;
+ struct zoneref *z;
+ struct zone *zone;
+ enum zone_type high_zoneidx = gfp_zone(flags);
+ void *obj = NULL;
+ int nid;
+ unsigned int cpuset_mems_cookie;
+
+ if (flags & __GFP_THISNODE)
+ return NULL;
+
+ local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
+
+retry_cpuset:
+ cpuset_mems_cookie = get_mems_allowed();
+ zonelist = node_zonelist(slab_node(current->mempolicy), flags);
+
+retry:
+ /*
+ * Look through allowed nodes for objects available
+ * from existing per node queues.
+ */
+ for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
+ nid = zone_to_nid(zone);
+
+ if (cpuset_zone_allowed_hardwall(zone, flags) &&
+ cache->nodelists[nid] &&
+ cache->nodelists[nid]->free_objects) {
+ obj = ____cache_alloc_node(cache,
+ flags | GFP_THISNODE, nid);
+ if (obj)
+ break;
+ }
+ }
+
+ if (!obj) {
+ /*
+ * This allocation will be performed within the constraints
+ * of the current cpuset / memory policy requirements.
+ * We may trigger various forms of reclaim on the allowed
+ * set and go into memory reserves if necessary.
+ */
+ if (local_flags & __GFP_WAIT)
+ local_irq_enable();
+ kmem_flagcheck(cache, flags);
+ obj = kmem_getpages(cache, local_flags, numa_mem_id());
+ if (local_flags & __GFP_WAIT)
+ local_irq_disable();
+ if (obj) {
+ /*
+ * Insert into the appropriate per node queues
+ */
+ nid = page_to_nid(virt_to_page(obj));
+ if (cache_grow(cache, flags, nid, obj)) {
+ obj = ____cache_alloc_node(cache,
+ flags | GFP_THISNODE, nid);
+ if (!obj)
+ /*
+ * Another processor may allocate the
+ * objects in the slab since we are
+ * not holding any locks.
+ */
+ goto retry;
+ } else {
+ /* cache_grow already freed obj */
+ obj = NULL;
+ }
+ }
+ }
+
+ if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
+ goto retry_cpuset;
+ return obj;
+}
+
+/*
+ * A interface to enable slab creation on nodeid
+ */
+static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
+ int nodeid)
+{
+ struct list_head *entry;
+ struct slab *slabp;
+ struct kmem_list3 *l3;
+ void *obj;
+ int x;
+
+ l3 = cachep->nodelists[nodeid];
+ BUG_ON(!l3);
+
+retry:
+ check_irq_off();
+ spin_lock(&l3->list_lock);
+ entry = l3->slabs_partial.next;
+ if (entry == &l3->slabs_partial) {
+ l3->free_touched = 1;
+ entry = l3->slabs_free.next;
+ if (entry == &l3->slabs_free)
+ goto must_grow;
+ }
+
+ slabp = list_entry(entry, struct slab, list);
+ check_spinlock_acquired_node(cachep, nodeid);
+ check_slabp(cachep, slabp);
+
+ STATS_INC_NODEALLOCS(cachep);
+ STATS_INC_ACTIVE(cachep);
+ STATS_SET_HIGH(cachep);
+
+ BUG_ON(slabp->inuse == cachep->num);
+
+ obj = slab_get_obj(cachep, slabp, nodeid);
+ check_slabp(cachep, slabp);
+ l3->free_objects--;
+ /* move slabp to correct slabp list: */
+ list_del(&slabp->list);
+
+ if (slabp->free == BUFCTL_END)
+ list_add(&slabp->list, &l3->slabs_full);
+ else
+ list_add(&slabp->list, &l3->slabs_partial);
+
+ spin_unlock(&l3->list_lock);
+ goto done;
+
+must_grow:
+ spin_unlock(&l3->list_lock);
+ x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
+ if (x)
+ goto retry;
+
+ return fallback_alloc(cachep, flags);
+
+done:
+ return obj;
+}
+
+/**
+ * kmem_cache_alloc_node - Allocate an object on the specified node
+ * @cachep: The cache to allocate from.
+ * @flags: See kmalloc().
+ * @nodeid: node number of the target node.
+ * @caller: return address of caller, used for debug information
+ *
+ * Identical to kmem_cache_alloc but it will allocate memory on the given
+ * node, which can improve the performance for cpu bound structures.
+ *
+ * Fallback to other node is possible if __GFP_THISNODE is not set.
+ */
+static __always_inline void *
+__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
+ void *caller)
+{
+ unsigned long save_flags;
+ void *ptr;
+ int slab_node = numa_mem_id();
+
+ flags &= gfp_allowed_mask;
+
+ lockdep_trace_alloc(flags);
+
+ if (slab_should_failslab(cachep, flags))
+ return NULL;
+
+ cache_alloc_debugcheck_before(cachep, flags);
+ local_irq_save(save_flags);
+
+ if (nodeid == NUMA_NO_NODE)
+ nodeid = slab_node;
+
+ if (unlikely(!cachep->nodelists[nodeid])) {
+ /* Node not bootstrapped yet */
+ ptr = fallback_alloc(cachep, flags);
+ goto out;
+ }
+
+ if (nodeid == slab_node) {
+ /*
+ * Use the locally cached objects if possible.
+ * However ____cache_alloc does not allow fallback
+ * to other nodes. It may fail while we still have
+ * objects on other nodes available.
+ */
+ ptr = ____cache_alloc(cachep, flags);
+ if (ptr)
+ goto out;
+ }
+ /* ___cache_alloc_node can fall back to other nodes */
+ ptr = ____cache_alloc_node(cachep, flags, nodeid);
+ out:
+ local_irq_restore(save_flags);
+ ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
+ kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
+ flags);
+
+ if (likely(ptr))
+ kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
+
+ if (unlikely((flags & __GFP_ZERO) && ptr))
+ memset(ptr, 0, obj_size(cachep));
+
+ return ptr;
+}
+
+static __always_inline void *
+__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
+{
+ void *objp;
+
+ if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
+ objp = alternate_node_alloc(cache, flags);
+ if (objp)
+ goto out;
+ }
+ objp = ____cache_alloc(cache, flags);
+
+ /*
+ * We may just have run out of memory on the local node.
+ * ____cache_alloc_node() knows how to locate memory on other nodes
+ */
+ if (!objp)
+ objp = ____cache_alloc_node(cache, flags, numa_mem_id());
+
+ out:
+ return objp;
+}
+#else
+
+static __always_inline void *
+__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+ return ____cache_alloc(cachep, flags);
+}
+
+#endif /* CONFIG_NUMA */
+
+static __always_inline void *
+__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
+{
+ unsigned long save_flags;
+ void *objp;
+
+ flags &= gfp_allowed_mask;
+
+ lockdep_trace_alloc(flags);
+
+ if (slab_should_failslab(cachep, flags))
+ return NULL;
+
+ cache_alloc_debugcheck_before(cachep, flags);
+ local_irq_save(save_flags);
+ objp = __do_cache_alloc(cachep, flags);
+ local_irq_restore(save_flags);
+ objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
+ kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
+ flags);
+ prefetchw(objp);
+
+ if (likely(objp))
+ kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
+
+ if (unlikely((flags & __GFP_ZERO) && objp))
+ memset(objp, 0, obj_size(cachep));
+
+ return objp;
+}
+
+/*
+ * Caller needs to acquire correct kmem_list's list_lock
+ */
+static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
+ int node)
+{
+ int i;
+ struct kmem_list3 *l3;
+
+ for (i = 0; i < nr_objects; i++) {
+ void *objp = objpp[i];
+ struct slab *slabp;
+
+ slabp = virt_to_slab(objp);
+ l3 = cachep->nodelists[node];
+ list_del(&slabp->list);
+ check_spinlock_acquired_node(cachep, node);
+ check_slabp(cachep, slabp);
+ slab_put_obj(cachep, slabp, objp, node);
+ STATS_DEC_ACTIVE(cachep);
+ l3->free_objects++;
+ check_slabp(cachep, slabp);
+
+ /* fixup slab chains */
+ if (slabp->inuse == 0) {
+ if (l3->free_objects > l3->free_limit) {
+ l3->free_objects -= cachep->num;
+ /* No need to drop any previously held
+ * lock here, even if we have a off-slab slab
+ * descriptor it is guaranteed to come from
+ * a different cache, refer to comments before
+ * alloc_slabmgmt.
+ */
+ slab_destroy(cachep, slabp);
+ } else {
+ list_add(&slabp->list, &l3->slabs_free);
+ }
+ } else {
+ /* Unconditionally move a slab to the end of the
+ * partial list on free - maximum time for the
+ * other objects to be freed, too.
+ */
+ list_add_tail(&slabp->list, &l3->slabs_partial);
+ }
+ }
+}
+
+static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
+{
+ int batchcount;
+ struct kmem_list3 *l3;
+ int node = numa_mem_id();
+
+ batchcount = ac->batchcount;
+#if DEBUG
+ BUG_ON(!batchcount || batchcount > ac->avail);
+#endif
+ check_irq_off();
+ l3 = cachep->nodelists[node];
+ spin_lock(&l3->list_lock);
+ if (l3->shared) {
+ struct array_cache *shared_array = l3->shared;
+ int max = shared_array->limit - shared_array->avail;
+ if (max) {
+ if (batchcount > max)
+ batchcount = max;
+ memcpy(&(shared_array->entry[shared_array->avail]),
+ ac->entry, sizeof(void *) * batchcount);
+ shared_array->avail += batchcount;
+ goto free_done;
+ }
+ }
+
+ free_block(cachep, ac->entry, batchcount, node);
+free_done:
+#if STATS
+ {
+ int i = 0;
+ struct list_head *p;
+
+ p = l3->slabs_free.next;
+ while (p != &(l3->slabs_free)) {
+ struct slab *slabp;
+
+ slabp = list_entry(p, struct slab, list);
+ BUG_ON(slabp->inuse);
+
+ i++;
+ p = p->next;
+ }
+ STATS_SET_FREEABLE(cachep, i);
+ }
+#endif
+ spin_unlock(&l3->list_lock);
+ ac->avail -= batchcount;
+ memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
+}
+
+/*
+ * Release an obj back to its cache. If the obj has a constructed state, it must
+ * be in this state _before_ it is released. Called with disabled ints.
+ */
+static inline void __cache_free(struct kmem_cache *cachep, void *objp,
+ void *caller)
+{
+ struct array_cache *ac = cpu_cache_get(cachep);
+
+ check_irq_off();
+ kmemleak_free_recursive(objp, cachep->flags);
+ objp = cache_free_debugcheck(cachep, objp, caller);
+
+ kmemcheck_slab_free(cachep, objp, obj_size(cachep));
+
+ /*
+ * Skip calling cache_free_alien() when the platform is not numa.
+ * This will avoid cache misses that happen while accessing slabp (which
+ * is per page memory reference) to get nodeid. Instead use a global
+ * variable to skip the call, which is mostly likely to be present in
+ * the cache.
+ */
+ if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
+ return;
+
+ if (likely(ac->avail < ac->limit)) {
+ STATS_INC_FREEHIT(cachep);
+ } else {
+ STATS_INC_FREEMISS(cachep);
+ cache_flusharray(cachep, ac);
+ }
+
+ ac->entry[ac->avail++] = objp;
+}
+
+/**
+ * kmem_cache_alloc - Allocate an object
+ * @cachep: The cache to allocate from.
+ * @flags: See kmalloc().
+ *
+ * Allocate an object from this cache. The flags are only relevant
+ * if the cache has no available objects.
+ */
+void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+ void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
+
+ trace_kmem_cache_alloc(_RET_IP_, ret,
+ obj_size(cachep), cachep->buffer_size, flags);
+
+ return ret;
+}
+EXPORT_SYMBOL(kmem_cache_alloc);
+
+#ifdef CONFIG_TRACING
+void *
+kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
+{
+ void *ret;
+
+ ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
+
+ trace_kmalloc(_RET_IP_, ret,
+ size, slab_buffer_size(cachep), flags);
+ return ret;
+}
+EXPORT_SYMBOL(kmem_cache_alloc_trace);
+#endif
+
+#ifdef CONFIG_NUMA
+void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
+{
+ void *ret = __cache_alloc_node(cachep, flags, nodeid,
+ __builtin_return_address(0));
+
+ trace_kmem_cache_alloc_node(_RET_IP_, ret,
+ obj_size(cachep), cachep->buffer_size,
+ flags, nodeid);
+
+ return ret;
+}
+EXPORT_SYMBOL(kmem_cache_alloc_node);
+
+#ifdef CONFIG_TRACING
+void *kmem_cache_alloc_node_trace(size_t size,
+ struct kmem_cache *cachep,
+ gfp_t flags,
+ int nodeid)
+{
+ void *ret;
+
+ ret = __cache_alloc_node(cachep, flags, nodeid,
+ __builtin_return_address(0));
+ trace_kmalloc_node(_RET_IP_, ret,
+ size, slab_buffer_size(cachep),
+ flags, nodeid);
+ return ret;
+}
+EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
+#endif
+
+static __always_inline void *
+__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
+{
+ struct kmem_cache *cachep;
+
+ cachep = kmem_find_general_cachep(size, flags);
+ if (unlikely(ZERO_OR_NULL_PTR(cachep)))
+ return cachep;
+ return kmem_cache_alloc_node_trace(size, cachep, flags, node);
+}
+
+#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
+void *__kmalloc_node(size_t size, gfp_t flags, int node)
+{
+ return __do_kmalloc_node(size, flags, node,
+ __builtin_return_address(0));
+}
+EXPORT_SYMBOL(__kmalloc_node);
+
+void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
+ int node, unsigned long caller)
+{
+ return __do_kmalloc_node(size, flags, node, (void *)caller);
+}
+EXPORT_SYMBOL(__kmalloc_node_track_caller);
+#else
+void *__kmalloc_node(size_t size, gfp_t flags, int node)
+{
+ return __do_kmalloc_node(size, flags, node, NULL);
+}
+EXPORT_SYMBOL(__kmalloc_node);
+#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
+#endif /* CONFIG_NUMA */
+
+/**
+ * __do_kmalloc - allocate memory
+ * @size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate (see kmalloc).
+ * @caller: function caller for debug tracking of the caller
+ */
+static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
+ void *caller)
+{
+ struct kmem_cache *cachep;
+ void *ret;
+
+ /* If you want to save a few bytes .text space: replace
+ * __ with kmem_.
+ * Then kmalloc uses the uninlined functions instead of the inline
+ * functions.
+ */
+ cachep = __find_general_cachep(size, flags);
+ if (unlikely(ZERO_OR_NULL_PTR(cachep)))
+ return cachep;
+ ret = __cache_alloc(cachep, flags, caller);
+
+ trace_kmalloc((unsigned long) caller, ret,
+ size, cachep->buffer_size, flags);
+
+ return ret;
+}
+
+
+#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
+void *__kmalloc(size_t size, gfp_t flags)
+{
+ return __do_kmalloc(size, flags, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(__kmalloc);
+
+void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
+{
+ return __do_kmalloc(size, flags, (void *)caller);
+}
+EXPORT_SYMBOL(__kmalloc_track_caller);
+
+#else
+void *__kmalloc(size_t size, gfp_t flags)
+{
+ return __do_kmalloc(size, flags, NULL);
+}
+EXPORT_SYMBOL(__kmalloc);
+#endif
+
+/**
+ * kmem_cache_free - Deallocate an object
+ * @cachep: The cache the allocation was from.
+ * @objp: The previously allocated object.
+ *
+ * Free an object which was previously allocated from this
+ * cache.
+ */
+void kmem_cache_free(struct kmem_cache *cachep, void *objp)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ debug_check_no_locks_freed(objp, obj_size(cachep));
+ if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
+ debug_check_no_obj_freed(objp, obj_size(cachep));
+ __cache_free(cachep, objp, __builtin_return_address(0));
+ local_irq_restore(flags);
+
+ trace_kmem_cache_free(_RET_IP_, objp);
+}
+EXPORT_SYMBOL(kmem_cache_free);
+
+/**
+ * kfree - free previously allocated memory
+ * @objp: pointer returned by kmalloc.
+ *
+ * If @objp is NULL, no operation is performed.
+ *
+ * Don't free memory not originally allocated by kmalloc()
+ * or you will run into trouble.
+ */
+void kfree(const void *objp)
+{
+ struct kmem_cache *c;
+ unsigned long flags;
+
+ trace_kfree(_RET_IP_, objp);
+
+ if (unlikely(ZERO_OR_NULL_PTR(objp)))
+ return;
+ local_irq_save(flags);
+ kfree_debugcheck(objp);
+ c = virt_to_cache(objp);
+ debug_check_no_locks_freed(objp, obj_size(c));
+ debug_check_no_obj_freed(objp, obj_size(c));
+ __cache_free(c, (void *)objp, __builtin_return_address(0));
+ local_irq_restore(flags);
+}
+EXPORT_SYMBOL(kfree);
+
+unsigned int kmem_cache_size(struct kmem_cache *cachep)
+{
+ return obj_size(cachep);
+}
+EXPORT_SYMBOL(kmem_cache_size);
+
+/*
+ * This initializes kmem_list3 or resizes various caches for all nodes.
+ */
+static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
+{
+ int node;
+ struct kmem_list3 *l3;
+ struct array_cache *new_shared;
+ struct array_cache **new_alien = NULL;
+
+ for_each_online_node(node) {
+
+ if (use_alien_caches) {
+ new_alien = alloc_alien_cache(node, cachep->limit, gfp);
+ if (!new_alien)
+ goto fail;
+ }
+
+ new_shared = NULL;
+ if (cachep->shared) {
+ new_shared = alloc_arraycache(node,
+ cachep->shared*cachep->batchcount,
+ 0xbaadf00d, gfp);
+ if (!new_shared) {
+ free_alien_cache(new_alien);
+ goto fail;
+ }
+ }
+
+ l3 = cachep->nodelists[node];
+ if (l3) {
+ struct array_cache *shared = l3->shared;
+
+ spin_lock_irq(&l3->list_lock);
+
+ if (shared)
+ free_block(cachep, shared->entry,
+ shared->avail, node);
+
+ l3->shared = new_shared;
+ if (!l3->alien) {
+ l3->alien = new_alien;
+ new_alien = NULL;
+ }
+ l3->free_limit = (1 + nr_cpus_node(node)) *
+ cachep->batchcount + cachep->num;
+ spin_unlock_irq(&l3->list_lock);
+ kfree(shared);
+ free_alien_cache(new_alien);
+ continue;
+ }
+ l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
+ if (!l3) {
+ free_alien_cache(new_alien);
+ kfree(new_shared);
+ goto fail;
+ }
+
+ kmem_list3_init(l3);
+ l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+ l3->shared = new_shared;
+ l3->alien = new_alien;
+ l3->free_limit = (1 + nr_cpus_node(node)) *
+ cachep->batchcount + cachep->num;
+ cachep->nodelists[node] = l3;
+ }
+ return 0;
+
+fail:
+ if (!cachep->next.next) {
+ /* Cache is not active yet. Roll back what we did */
+ node--;
+ while (node >= 0) {
+ if (cachep->nodelists[node]) {
+ l3 = cachep->nodelists[node];
+
+ kfree(l3->shared);
+ free_alien_cache(l3->alien);
+ kfree(l3);
+ cachep->nodelists[node] = NULL;
+ }
+ node--;
+ }
+ }
+ return -ENOMEM;
+}
+
+struct ccupdate_struct {
+ struct kmem_cache *cachep;
+ struct array_cache *new[0];
+};
+
+static void do_ccupdate_local(void *info)
+{
+ struct ccupdate_struct *new = info;
+ struct array_cache *old;
+
+ check_irq_off();
+ old = cpu_cache_get(new->cachep);
+
+ new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
+ new->new[smp_processor_id()] = old;
+}
+
+/* Always called with the cache_chain_mutex held */
+static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
+ int batchcount, int shared, gfp_t gfp)
+{
+ struct ccupdate_struct *new;
+ int i;
+
+ new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
+ gfp);
+ if (!new)
+ return -ENOMEM;
+
+ for_each_online_cpu(i) {
+ new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
+ batchcount, gfp);
+ if (!new->new[i]) {
+ for (i--; i >= 0; i--)
+ kfree(new->new[i]);
+ kfree(new);
+ return -ENOMEM;
+ }
+ }
+ new->cachep = cachep;
+
+ on_each_cpu(do_ccupdate_local, (void *)new, 1);
+
+ check_irq_on();
+ cachep->batchcount = batchcount;
+ cachep->limit = limit;
+ cachep->shared = shared;
+
+ for_each_online_cpu(i) {
+ struct array_cache *ccold = new->new[i];
+ if (!ccold)
+ continue;
+ spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
+ free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
+ spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
+ kfree(ccold);
+ }
+ kfree(new);
+ return alloc_kmemlist(cachep, gfp);
+}
+
+/* Called with cache_chain_mutex held always */
+static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
+{
+ int err;
+ int limit, shared;
+
+ /*
+ * The head array serves three purposes:
+ * - create a LIFO ordering, i.e. return objects that are cache-warm
+ * - reduce the number of spinlock operations.
+ * - reduce the number of linked list operations on the slab and
+ * bufctl chains: array operations are cheaper.
+ * The numbers are guessed, we should auto-tune as described by
+ * Bonwick.
+ */
+ if (cachep->buffer_size > 131072)
+ limit = 1;
+ else if (cachep->buffer_size > PAGE_SIZE)
+ limit = 8;
+ else if (cachep->buffer_size > 1024)
+ limit = 24;
+ else if (cachep->buffer_size > 256)
+ limit = 54;
+ else
+ limit = 120;
+
+ /*
+ * CPU bound tasks (e.g. network routing) can exhibit cpu bound
+ * allocation behaviour: Most allocs on one cpu, most free operations
+ * on another cpu. For these cases, an efficient object passing between
+ * cpus is necessary. This is provided by a shared array. The array
+ * replaces Bonwick's magazine layer.
+ * On uniprocessor, it's functionally equivalent (but less efficient)
+ * to a larger limit. Thus disabled by default.
+ */
+ shared = 0;
+ if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
+ shared = 8;
+
+#if DEBUG
+ /*
+ * With debugging enabled, large batchcount lead to excessively long
+ * periods with disabled local interrupts. Limit the batchcount
+ */
+ if (limit > 32)
+ limit = 32;
+#endif
+ err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
+ if (err)
+ printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
+ cachep->name, -err);
+ return err;
+}
+
+/*
+ * Drain an array if it contains any elements taking the l3 lock only if
+ * necessary. Note that the l3 listlock also protects the array_cache
+ * if drain_array() is used on the shared array.
+ */
+static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+ struct array_cache *ac, int force, int node)
+{
+ int tofree;
+
+ if (!ac || !ac->avail)
+ return;
+ if (ac->touched && !force) {
+ ac->touched = 0;
+ } else {
+ spin_lock_irq(&l3->list_lock);
+ if (ac->avail) {
+ tofree = force ? ac->avail : (ac->limit + 4) / 5;
+ if (tofree > ac->avail)
+ tofree = (ac->avail + 1) / 2;
+ free_block(cachep, ac->entry, tofree, node);
+ ac->avail -= tofree;
+ memmove(ac->entry, &(ac->entry[tofree]),
+ sizeof(void *) * ac->avail);
+ }
+ spin_unlock_irq(&l3->list_lock);
+ }
+}
+
+/**
+ * cache_reap - Reclaim memory from caches.
+ * @w: work descriptor
+ *
+ * Called from workqueue/eventd every few seconds.
+ * Purpose:
+ * - clear the per-cpu caches for this CPU.
+ * - return freeable pages to the main free memory pool.
+ *
+ * If we cannot acquire the cache chain mutex then just give up - we'll try
+ * again on the next iteration.
+ */
+static void cache_reap(struct work_struct *w)
+{
+ struct kmem_cache *searchp;
+ struct kmem_list3 *l3;
+ int node = numa_mem_id();
+ struct delayed_work *work = to_delayed_work(w);
+
+ if (!mutex_trylock(&cache_chain_mutex))
+ /* Give up. Setup the next iteration. */
+ goto out;
+
+ list_for_each_entry(searchp, &cache_chain, next) {
+ check_irq_on();
+
+ /*
+ * We only take the l3 lock if absolutely necessary and we
+ * have established with reasonable certainty that
+ * we can do some work if the lock was obtained.
+ */
+ l3 = searchp->nodelists[node];
+
+ reap_alien(searchp, l3);
+
+ drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
+
+ /*
+ * These are racy checks but it does not matter
+ * if we skip one check or scan twice.
+ */
+ if (time_after(l3->next_reap, jiffies))
+ goto next;
+
+ l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
+
+ drain_array(searchp, l3, l3->shared, 0, node);
+
+ if (l3->free_touched)
+ l3->free_touched = 0;
+ else {
+ int freed;
+
+ freed = drain_freelist(searchp, l3, (l3->free_limit +
+ 5 * searchp->num - 1) / (5 * searchp->num));
+ STATS_ADD_REAPED(searchp, freed);
+ }
+next:
+ cond_resched();
+ }
+ check_irq_on();
+ mutex_unlock(&cache_chain_mutex);
+ next_reap_node();
+out:
+ /* Set up the next iteration */
+ schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
+}
+
+#ifdef CONFIG_SLABINFO
+
+static void print_slabinfo_header(struct seq_file *m)
+{
+ /*
+ * Output format version, so at least we can change it
+ * without _too_ many complaints.
+ */
+#if STATS
+ seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
+#else
+ seq_puts(m, "slabinfo - version: 2.1\n");
+#endif
+ seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
+ "<objperslab> <pagesperslab>");
+ seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
+ seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
+#if STATS
+ seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
+ "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
+ seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
+#endif
+ seq_putc(m, '\n');
+}
+
+static void *s_start(struct seq_file *m, loff_t *pos)
+{
+ loff_t n = *pos;
+
+ mutex_lock(&cache_chain_mutex);
+ if (!n)
+ print_slabinfo_header(m);
+
+ return seq_list_start(&cache_chain, *pos);
+}
+
+static void *s_next(struct seq_file *m, void *p, loff_t *pos)
+{
+ return seq_list_next(p, &cache_chain, pos);
+}
+
+static void s_stop(struct seq_file *m, void *p)
+{
+ mutex_unlock(&cache_chain_mutex);
+}
+
+static int s_show(struct seq_file *m, void *p)
+{
+ struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
+ struct slab *slabp;
+ unsigned long active_objs;
+ unsigned long num_objs;
+ unsigned long active_slabs = 0;
+ unsigned long num_slabs, free_objects = 0, shared_avail = 0;
+ const char *name;
+ char *error = NULL;
+ int node;
+ struct kmem_list3 *l3;
+
+ active_objs = 0;
+ num_slabs = 0;
+ for_each_online_node(node) {
+ l3 = cachep->nodelists[node];
+ if (!l3)
+ continue;
+
+ check_irq_on();
+ spin_lock_irq(&l3->list_lock);
+
+ list_for_each_entry(slabp, &l3->slabs_full, list) {
+ if (slabp->inuse != cachep->num && !error)
+ error = "slabs_full accounting error";
+ active_objs += cachep->num;
+ active_slabs++;
+ }
+ list_for_each_entry(slabp, &l3->slabs_partial, list) {
+ if (slabp->inuse == cachep->num && !error)
+ error = "slabs_partial inuse accounting error";
+ if (!slabp->inuse && !error)
+ error = "slabs_partial/inuse accounting error";
+ active_objs += slabp->inuse;
+ active_slabs++;
+ }
+ list_for_each_entry(slabp, &l3->slabs_free, list) {
+ if (slabp->inuse && !error)
+ error = "slabs_free/inuse accounting error";
+ num_slabs++;
+ }
+ free_objects += l3->free_objects;
+ if (l3->shared)
+ shared_avail += l3->shared->avail;
+
+ spin_unlock_irq(&l3->list_lock);
+ }
+ num_slabs += active_slabs;
+ num_objs = num_slabs * cachep->num;
+ if (num_objs - active_objs != free_objects && !error)
+ error = "free_objects accounting error";
+
+ name = cachep->name;
+ if (error)
+ printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
+
+ seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
+ name, active_objs, num_objs, cachep->buffer_size,
+ cachep->num, (1 << cachep->gfporder));
+ seq_printf(m, " : tunables %4u %4u %4u",
+ cachep->limit, cachep->batchcount, cachep->shared);
+ seq_printf(m, " : slabdata %6lu %6lu %6lu",
+ active_slabs, num_slabs, shared_avail);
+#if STATS
+ { /* list3 stats */
+ unsigned long high = cachep->high_mark;
+ unsigned long allocs = cachep->num_allocations;
+ unsigned long grown = cachep->grown;
+ unsigned long reaped = cachep->reaped;
+ unsigned long errors = cachep->errors;
+ unsigned long max_freeable = cachep->max_freeable;
+ unsigned long node_allocs = cachep->node_allocs;
+ unsigned long node_frees = cachep->node_frees;
+ unsigned long overflows = cachep->node_overflow;
+
+ seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
+ "%4lu %4lu %4lu %4lu %4lu",
+ allocs, high, grown,
+ reaped, errors, max_freeable, node_allocs,
+ node_frees, overflows);
+ }
+ /* cpu stats */
+ {
+ unsigned long allochit = atomic_read(&cachep->allochit);
+ unsigned long allocmiss = atomic_read(&cachep->allocmiss);
+ unsigned long freehit = atomic_read(&cachep->freehit);
+ unsigned long freemiss = atomic_read(&cachep->freemiss);
+
+ seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
+ allochit, allocmiss, freehit, freemiss);
+ }
+#endif
+ seq_putc(m, '\n');
+ return 0;
+}
+
+/*
+ * slabinfo_op - iterator that generates /proc/slabinfo
+ *
+ * Output layout:
+ * cache-name
+ * num-active-objs
+ * total-objs
+ * object size
+ * num-active-slabs
+ * total-slabs
+ * num-pages-per-slab
+ * + further values on SMP and with statistics enabled
+ */
+
+static const struct seq_operations slabinfo_op = {
+ .start = s_start,
+ .next = s_next,
+ .stop = s_stop,
+ .show = s_show,
+};
+
+#define MAX_SLABINFO_WRITE 128
+/**
+ * slabinfo_write - Tuning for the slab allocator
+ * @file: unused
+ * @buffer: user buffer
+ * @count: data length
+ * @ppos: unused
+ */
+static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
+ size_t count, loff_t *ppos)
+{
+ char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
+ int limit, batchcount, shared, res;
+ struct kmem_cache *cachep;
+
+ if (count > MAX_SLABINFO_WRITE)
+ return -EINVAL;
+ if (copy_from_user(&kbuf, buffer, count))
+ return -EFAULT;
+ kbuf[MAX_SLABINFO_WRITE] = '\0';
+
+ tmp = strchr(kbuf, ' ');
+ if (!tmp)
+ return -EINVAL;
+ *tmp = '\0';
+ tmp++;
+ if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
+ return -EINVAL;
+
+ /* Find the cache in the chain of caches. */
+ mutex_lock(&cache_chain_mutex);
+ res = -EINVAL;
+ list_for_each_entry(cachep, &cache_chain, next) {
+ if (!strcmp(cachep->name, kbuf)) {
+ if (limit < 1 || batchcount < 1 ||
+ batchcount > limit || shared < 0) {
+ res = 0;
+ } else {
+ res = do_tune_cpucache(cachep, limit,
+ batchcount, shared,
+ GFP_KERNEL);
+ }
+ break;
+ }
+ }
+ mutex_unlock(&cache_chain_mutex);
+ if (res >= 0)
+ res = count;
+ return res;
+}
+
+static int slabinfo_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &slabinfo_op);
+}
+
+static const struct file_operations proc_slabinfo_operations = {
+ .open = slabinfo_open,
+ .read = seq_read,
+ .write = slabinfo_write,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+
+static void *leaks_start(struct seq_file *m, loff_t *pos)
+{
+ mutex_lock(&cache_chain_mutex);
+ return seq_list_start(&cache_chain, *pos);
+}
+
+static inline int add_caller(unsigned long *n, unsigned long v)
+{
+ unsigned long *p;
+ int l;
+ if (!v)
+ return 1;
+ l = n[1];
+ p = n + 2;
+ while (l) {
+ int i = l/2;
+ unsigned long *q = p + 2 * i;
+ if (*q == v) {
+ q[1]++;
+ return 1;
+ }
+ if (*q > v) {
+ l = i;
+ } else {
+ p = q + 2;
+ l -= i + 1;
+ }
+ }
+ if (++n[1] == n[0])
+ return 0;
+ memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
+ p[0] = v;
+ p[1] = 1;
+ return 1;
+}
+
+static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
+{
+ void *p;
+ int i;
+ if (n[0] == n[1])
+ return;
+ for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
+ if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
+ continue;
+ if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
+ return;
+ }
+}
+
+static void show_symbol(struct seq_file *m, unsigned long address)
+{
+#ifdef CONFIG_KALLSYMS
+ unsigned long offset, size;
+ char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
+
+ if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
+ seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
+ if (modname[0])
+ seq_printf(m, " [%s]", modname);
+ return;
+ }
+#endif
+ seq_printf(m, "%p", (void *)address);
+}
+
+static int leaks_show(struct seq_file *m, void *p)
+{
+ struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
+ struct slab *slabp;
+ struct kmem_list3 *l3;
+ const char *name;
+ unsigned long *n = m->private;
+ int node;
+ int i;
+
+ if (!(cachep->flags & SLAB_STORE_USER))
+ return 0;
+ if (!(cachep->flags & SLAB_RED_ZONE))
+ return 0;
+
+ /* OK, we can do it */
+
+ n[1] = 0;
+
+ for_each_online_node(node) {
+ l3 = cachep->nodelists[node];
+ if (!l3)
+ continue;
+
+ check_irq_on();
+ spin_lock_irq(&l3->list_lock);
+
+ list_for_each_entry(slabp, &l3->slabs_full, list)
+ handle_slab(n, cachep, slabp);
+ list_for_each_entry(slabp, &l3->slabs_partial, list)
+ handle_slab(n, cachep, slabp);
+ spin_unlock_irq(&l3->list_lock);
+ }
+ name = cachep->name;
+ if (n[0] == n[1]) {
+ /* Increase the buffer size */
+ mutex_unlock(&cache_chain_mutex);
+ m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
+ if (!m->private) {
+ /* Too bad, we are really out */
+ m->private = n;
+ mutex_lock(&cache_chain_mutex);
+ return -ENOMEM;
+ }
+ *(unsigned long *)m->private = n[0] * 2;
+ kfree(n);
+ mutex_lock(&cache_chain_mutex);
+ /* Now make sure this entry will be retried */
+ m->count = m->size;
+ return 0;
+ }
+ for (i = 0; i < n[1]; i++) {
+ seq_printf(m, "%s: %lu ", name, n[2*i+3]);
+ show_symbol(m, n[2*i+2]);
+ seq_putc(m, '\n');
+ }
+
+ return 0;
+}
+
+static const struct seq_operations slabstats_op = {
+ .start = leaks_start,
+ .next = s_next,
+ .stop = s_stop,
+ .show = leaks_show,
+};
+
+static int slabstats_open(struct inode *inode, struct file *file)
+{
+ unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
+ int ret = -ENOMEM;
+ if (n) {
+ ret = seq_open(file, &slabstats_op);
+ if (!ret) {
+ struct seq_file *m = file->private_data;
+ *n = PAGE_SIZE / (2 * sizeof(unsigned long));
+ m->private = n;
+ n = NULL;
+ }
+ kfree(n);
+ }
+ return ret;
+}
+
+static const struct file_operations proc_slabstats_operations = {
+ .open = slabstats_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release_private,
+};
+#endif
+
+static int __init slab_proc_init(void)
+{
+ proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+ proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
+#endif
+ return 0;
+}
+module_init(slab_proc_init);
+#endif
+
+/**
+ * ksize - get the actual amount of memory allocated for a given object
+ * @objp: Pointer to the object
+ *
+ * kmalloc may internally round up allocations and return more memory
+ * than requested. ksize() can be used to determine the actual amount of
+ * memory allocated. The caller may use this additional memory, even though
+ * a smaller amount of memory was initially specified with the kmalloc call.
+ * The caller must guarantee that objp points to a valid object previously
+ * allocated with either kmalloc() or kmem_cache_alloc(). The object
+ * must not be freed during the duration of the call.
+ */
+size_t ksize(const void *objp)
+{
+ BUG_ON(!objp);
+ if (unlikely(objp == ZERO_SIZE_PTR))
+ return 0;
+
+ return obj_size(virt_to_cache(objp));
+}
+EXPORT_SYMBOL(ksize);