diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /kernel/pid.c | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'kernel/pid.c')
-rw-r--r-- | kernel/pid.c | 573 |
1 files changed, 573 insertions, 0 deletions
diff --git a/kernel/pid.c b/kernel/pid.c new file mode 100644 index 00000000..9f08dfab --- /dev/null +++ b/kernel/pid.c @@ -0,0 +1,573 @@ +/* + * Generic pidhash and scalable, time-bounded PID allocator + * + * (C) 2002-2003 William Irwin, IBM + * (C) 2004 William Irwin, Oracle + * (C) 2002-2004 Ingo Molnar, Red Hat + * + * pid-structures are backing objects for tasks sharing a given ID to chain + * against. There is very little to them aside from hashing them and + * parking tasks using given ID's on a list. + * + * The hash is always changed with the tasklist_lock write-acquired, + * and the hash is only accessed with the tasklist_lock at least + * read-acquired, so there's no additional SMP locking needed here. + * + * We have a list of bitmap pages, which bitmaps represent the PID space. + * Allocating and freeing PIDs is completely lockless. The worst-case + * allocation scenario when all but one out of 1 million PIDs possible are + * allocated already: the scanning of 32 list entries and at most PAGE_SIZE + * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). + * + * Pid namespaces: + * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. + * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM + * Many thanks to Oleg Nesterov for comments and help + * + */ + +#include <linux/mm.h> +#include <linux/export.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/rculist.h> +#include <linux/bootmem.h> +#include <linux/hash.h> +#include <linux/pid_namespace.h> +#include <linux/init_task.h> +#include <linux/syscalls.h> + +#define pid_hashfn(nr, ns) \ + hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) +static struct hlist_head *pid_hash; +static unsigned int pidhash_shift = 4; +struct pid init_struct_pid = INIT_STRUCT_PID; + +int pid_max = PID_MAX_DEFAULT; + +#define RESERVED_PIDS 300 + +int pid_max_min = RESERVED_PIDS + 1; +int pid_max_max = PID_MAX_LIMIT; + +#define BITS_PER_PAGE (PAGE_SIZE*8) +#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) + +static inline int mk_pid(struct pid_namespace *pid_ns, + struct pidmap *map, int off) +{ + return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; +} + +#define find_next_offset(map, off) \ + find_next_zero_bit((map)->page, BITS_PER_PAGE, off) + +/* + * PID-map pages start out as NULL, they get allocated upon + * first use and are never deallocated. This way a low pid_max + * value does not cause lots of bitmaps to be allocated, but + * the scheme scales to up to 4 million PIDs, runtime. + */ +struct pid_namespace init_pid_ns = { + .kref = { + .refcount = ATOMIC_INIT(2), + }, + .pidmap = { + [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } + }, + .last_pid = 0, + .level = 0, + .child_reaper = &init_task, +}; +EXPORT_SYMBOL_GPL(init_pid_ns); + +int is_container_init(struct task_struct *tsk) +{ + int ret = 0; + struct pid *pid; + + rcu_read_lock(); + pid = task_pid(tsk); + if (pid != NULL && pid->numbers[pid->level].nr == 1) + ret = 1; + rcu_read_unlock(); + + return ret; +} +EXPORT_SYMBOL(is_container_init); + +/* + * Note: disable interrupts while the pidmap_lock is held as an + * interrupt might come in and do read_lock(&tasklist_lock). + * + * If we don't disable interrupts there is a nasty deadlock between + * detach_pid()->free_pid() and another cpu that does + * spin_lock(&pidmap_lock) followed by an interrupt routine that does + * read_lock(&tasklist_lock); + * + * After we clean up the tasklist_lock and know there are no + * irq handlers that take it we can leave the interrupts enabled. + * For now it is easier to be safe than to prove it can't happen. + */ + +static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); + +static void free_pidmap(struct upid *upid) +{ + int nr = upid->nr; + struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; + int offset = nr & BITS_PER_PAGE_MASK; + + clear_bit(offset, map->page); + atomic_inc(&map->nr_free); +} + +/* + * If we started walking pids at 'base', is 'a' seen before 'b'? + */ +static int pid_before(int base, int a, int b) +{ + /* + * This is the same as saying + * + * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT + * and that mapping orders 'a' and 'b' with respect to 'base'. + */ + return (unsigned)(a - base) < (unsigned)(b - base); +} + +/* + * We might be racing with someone else trying to set pid_ns->last_pid + * at the pid allocation time (there's also a sysctl for this, but racing + * with this one is OK, see comment in kernel/pid_namespace.c about it). + * We want the winner to have the "later" value, because if the + * "earlier" value prevails, then a pid may get reused immediately. + * + * Since pids rollover, it is not sufficient to just pick the bigger + * value. We have to consider where we started counting from. + * + * 'base' is the value of pid_ns->last_pid that we observed when + * we started looking for a pid. + * + * 'pid' is the pid that we eventually found. + */ +static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) +{ + int prev; + int last_write = base; + do { + prev = last_write; + last_write = cmpxchg(&pid_ns->last_pid, prev, pid); + } while ((prev != last_write) && (pid_before(base, last_write, pid))); +} + +static int alloc_pidmap(struct pid_namespace *pid_ns) +{ + int i, offset, max_scan, pid, last = pid_ns->last_pid; + struct pidmap *map; + + pid = last + 1; + if (pid >= pid_max) + pid = RESERVED_PIDS; + offset = pid & BITS_PER_PAGE_MASK; + map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; + /* + * If last_pid points into the middle of the map->page we + * want to scan this bitmap block twice, the second time + * we start with offset == 0 (or RESERVED_PIDS). + */ + max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; + for (i = 0; i <= max_scan; ++i) { + if (unlikely(!map->page)) { + void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); + /* + * Free the page if someone raced with us + * installing it: + */ + spin_lock_irq(&pidmap_lock); + if (!map->page) { + map->page = page; + page = NULL; + } + spin_unlock_irq(&pidmap_lock); + kfree(page); + if (unlikely(!map->page)) + break; + } + if (likely(atomic_read(&map->nr_free))) { + do { + if (!test_and_set_bit(offset, map->page)) { + atomic_dec(&map->nr_free); + set_last_pid(pid_ns, last, pid); + return pid; + } + offset = find_next_offset(map, offset); + pid = mk_pid(pid_ns, map, offset); + } while (offset < BITS_PER_PAGE && pid < pid_max); + } + if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { + ++map; + offset = 0; + } else { + map = &pid_ns->pidmap[0]; + offset = RESERVED_PIDS; + if (unlikely(last == offset)) + break; + } + pid = mk_pid(pid_ns, map, offset); + } + return -1; +} + +int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) +{ + int offset; + struct pidmap *map, *end; + + if (last >= PID_MAX_LIMIT) + return -1; + + offset = (last + 1) & BITS_PER_PAGE_MASK; + map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; + end = &pid_ns->pidmap[PIDMAP_ENTRIES]; + for (; map < end; map++, offset = 0) { + if (unlikely(!map->page)) + continue; + offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); + if (offset < BITS_PER_PAGE) + return mk_pid(pid_ns, map, offset); + } + return -1; +} + +void put_pid(struct pid *pid) +{ + struct pid_namespace *ns; + + if (!pid) + return; + + ns = pid->numbers[pid->level].ns; + if ((atomic_read(&pid->count) == 1) || + atomic_dec_and_test(&pid->count)) { + kmem_cache_free(ns->pid_cachep, pid); + put_pid_ns(ns); + } +} +EXPORT_SYMBOL_GPL(put_pid); + +static void delayed_put_pid(struct rcu_head *rhp) +{ + struct pid *pid = container_of(rhp, struct pid, rcu); + put_pid(pid); +} + +void free_pid(struct pid *pid) +{ + /* We can be called with write_lock_irq(&tasklist_lock) held */ + int i; + unsigned long flags; + + spin_lock_irqsave(&pidmap_lock, flags); + for (i = 0; i <= pid->level; i++) + hlist_del_rcu(&pid->numbers[i].pid_chain); + spin_unlock_irqrestore(&pidmap_lock, flags); + + for (i = 0; i <= pid->level; i++) + free_pidmap(pid->numbers + i); + + call_rcu(&pid->rcu, delayed_put_pid); +} + +struct pid *alloc_pid(struct pid_namespace *ns) +{ + struct pid *pid; + enum pid_type type; + int i, nr; + struct pid_namespace *tmp; + struct upid *upid; + + pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); + if (!pid) + goto out; + + tmp = ns; + for (i = ns->level; i >= 0; i--) { + nr = alloc_pidmap(tmp); + if (nr < 0) + goto out_free; + + pid->numbers[i].nr = nr; + pid->numbers[i].ns = tmp; + tmp = tmp->parent; + } + + get_pid_ns(ns); + pid->level = ns->level; + atomic_set(&pid->count, 1); + for (type = 0; type < PIDTYPE_MAX; ++type) + INIT_HLIST_HEAD(&pid->tasks[type]); + + upid = pid->numbers + ns->level; + spin_lock_irq(&pidmap_lock); + for ( ; upid >= pid->numbers; --upid) + hlist_add_head_rcu(&upid->pid_chain, + &pid_hash[pid_hashfn(upid->nr, upid->ns)]); + spin_unlock_irq(&pidmap_lock); + +out: + return pid; + +out_free: + while (++i <= ns->level) + free_pidmap(pid->numbers + i); + + kmem_cache_free(ns->pid_cachep, pid); + pid = NULL; + goto out; +} + +struct pid *find_pid_ns(int nr, struct pid_namespace *ns) +{ + struct hlist_node *elem; + struct upid *pnr; + + hlist_for_each_entry_rcu(pnr, elem, + &pid_hash[pid_hashfn(nr, ns)], pid_chain) + if (pnr->nr == nr && pnr->ns == ns) + return container_of(pnr, struct pid, + numbers[ns->level]); + + return NULL; +} +EXPORT_SYMBOL_GPL(find_pid_ns); + +struct pid *find_vpid(int nr) +{ + return find_pid_ns(nr, current->nsproxy->pid_ns); +} +EXPORT_SYMBOL_GPL(find_vpid); + +/* + * attach_pid() must be called with the tasklist_lock write-held. + */ +void attach_pid(struct task_struct *task, enum pid_type type, + struct pid *pid) +{ + struct pid_link *link; + + link = &task->pids[type]; + link->pid = pid; + hlist_add_head_rcu(&link->node, &pid->tasks[type]); +} + +static void __change_pid(struct task_struct *task, enum pid_type type, + struct pid *new) +{ + struct pid_link *link; + struct pid *pid; + int tmp; + + link = &task->pids[type]; + pid = link->pid; + + hlist_del_rcu(&link->node); + link->pid = new; + + for (tmp = PIDTYPE_MAX; --tmp >= 0; ) + if (!hlist_empty(&pid->tasks[tmp])) + return; + + free_pid(pid); +} + +void detach_pid(struct task_struct *task, enum pid_type type) +{ + __change_pid(task, type, NULL); +} + +void change_pid(struct task_struct *task, enum pid_type type, + struct pid *pid) +{ + __change_pid(task, type, pid); + attach_pid(task, type, pid); +} + +/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ +void transfer_pid(struct task_struct *old, struct task_struct *new, + enum pid_type type) +{ + new->pids[type].pid = old->pids[type].pid; + hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); +} + +struct task_struct *pid_task(struct pid *pid, enum pid_type type) +{ + struct task_struct *result = NULL; + if (pid) { + struct hlist_node *first; + first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), + lockdep_tasklist_lock_is_held()); + if (first) + result = hlist_entry(first, struct task_struct, pids[(type)].node); + } + return result; +} +EXPORT_SYMBOL(pid_task); + +/* + * Must be called under rcu_read_lock(). + */ +struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) +{ + rcu_lockdep_assert(rcu_read_lock_held(), + "find_task_by_pid_ns() needs rcu_read_lock()" + " protection"); + return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); +} + +struct task_struct *find_task_by_vpid(pid_t vnr) +{ + return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns); +} + +struct pid *get_task_pid(struct task_struct *task, enum pid_type type) +{ + struct pid *pid; + rcu_read_lock(); + if (type != PIDTYPE_PID) + task = task->group_leader; + pid = get_pid(task->pids[type].pid); + rcu_read_unlock(); + return pid; +} +EXPORT_SYMBOL_GPL(get_task_pid); + +struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) +{ + struct task_struct *result; + rcu_read_lock(); + result = pid_task(pid, type); + if (result) + get_task_struct(result); + rcu_read_unlock(); + return result; +} +EXPORT_SYMBOL_GPL(get_pid_task); + +struct pid *find_get_pid(pid_t nr) +{ + struct pid *pid; + + rcu_read_lock(); + pid = get_pid(find_vpid(nr)); + rcu_read_unlock(); + + return pid; +} +EXPORT_SYMBOL_GPL(find_get_pid); + +pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) +{ + struct upid *upid; + pid_t nr = 0; + + if (pid && ns->level <= pid->level) { + upid = &pid->numbers[ns->level]; + if (upid->ns == ns) + nr = upid->nr; + } + return nr; +} + +pid_t pid_vnr(struct pid *pid) +{ + return pid_nr_ns(pid, current->nsproxy->pid_ns); +} +EXPORT_SYMBOL_GPL(pid_vnr); + +pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, + struct pid_namespace *ns) +{ + pid_t nr = 0; + + rcu_read_lock(); + if (!ns) + ns = current->nsproxy->pid_ns; + if (likely(pid_alive(task))) { + if (type != PIDTYPE_PID) + task = task->group_leader; + nr = pid_nr_ns(task->pids[type].pid, ns); + } + rcu_read_unlock(); + + return nr; +} +EXPORT_SYMBOL(__task_pid_nr_ns); + +pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) +{ + return pid_nr_ns(task_tgid(tsk), ns); +} +EXPORT_SYMBOL(task_tgid_nr_ns); + +struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) +{ + return ns_of_pid(task_pid(tsk)); +} +EXPORT_SYMBOL_GPL(task_active_pid_ns); + +/* + * Used by proc to find the first pid that is greater than or equal to nr. + * + * If there is a pid at nr this function is exactly the same as find_pid_ns. + */ +struct pid *find_ge_pid(int nr, struct pid_namespace *ns) +{ + struct pid *pid; + + do { + pid = find_pid_ns(nr, ns); + if (pid) + break; + nr = next_pidmap(ns, nr); + } while (nr > 0); + + return pid; +} + +/* + * The pid hash table is scaled according to the amount of memory in the + * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or + * more. + */ +void __init pidhash_init(void) +{ + unsigned int i, pidhash_size; + + pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, + HASH_EARLY | HASH_SMALL, + &pidhash_shift, NULL, 4096); + pidhash_size = 1U << pidhash_shift; + + for (i = 0; i < pidhash_size; i++) + INIT_HLIST_HEAD(&pid_hash[i]); +} + +void __init pidmap_init(void) +{ + /* bump default and minimum pid_max based on number of cpus */ + pid_max = min(pid_max_max, max_t(int, pid_max, + PIDS_PER_CPU_DEFAULT * num_possible_cpus())); + pid_max_min = max_t(int, pid_max_min, + PIDS_PER_CPU_MIN * num_possible_cpus()); + pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); + + init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); + /* Reserve PID 0. We never call free_pidmap(0) */ + set_bit(0, init_pid_ns.pidmap[0].page); + atomic_dec(&init_pid_ns.pidmap[0].nr_free); + + init_pid_ns.pid_cachep = KMEM_CACHE(pid, + SLAB_HWCACHE_ALIGN | SLAB_PANIC); +} |