diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /drivers/mtd/nand/gpmi-nand/gpmi-nand.c | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'drivers/mtd/nand/gpmi-nand/gpmi-nand.c')
-rw-r--r-- | drivers/mtd/nand/gpmi-nand/gpmi-nand.c | 1620 |
1 files changed, 1620 insertions, 0 deletions
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c new file mode 100644 index 00000000..9ec51cec --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c @@ -0,0 +1,1620 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#include <linux/clk.h> +#include <linux/slab.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/mtd/gpmi-nand.h> +#include <linux/mtd/partitions.h> +#include "gpmi-nand.h" + +/* add our owner bbt descriptor */ +static uint8_t scan_ff_pattern[] = { 0xff }; +static struct nand_bbt_descr gpmi_bbt_descr = { + .options = 0, + .offs = 0, + .len = 1, + .pattern = scan_ff_pattern +}; + +/* We will use all the (page + OOB). */ +static struct nand_ecclayout gpmi_hw_ecclayout = { + .eccbytes = 0, + .eccpos = { 0, }, + .oobfree = { {.offset = 0, .length = 0} } +}; + +static irqreturn_t bch_irq(int irq, void *cookie) +{ + struct gpmi_nand_data *this = cookie; + + gpmi_clear_bch(this); + complete(&this->bch_done); + return IRQ_HANDLED; +} + +/* + * Calculate the ECC strength by hand: + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * O : the oobsize of the NAND chip. + * M : the metasize of per page. + * + * The formula is : + * E * G * N + * ------------ <= (O - M) + * 8 + * + * So, we get E by: + * (O - M) * 8 + * E <= ------------- + * G * N + */ +static inline int get_ecc_strength(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = &this->mtd; + int ecc_strength; + + ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) + / (geo->gf_len * geo->ecc_chunk_count); + + /* We need the minor even number. */ + return round_down(ecc_strength, 2); +} + +int common_nfc_set_geometry(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = &this->mtd; + unsigned int metadata_size; + unsigned int status_size; + unsigned int block_mark_bit_offset; + + /* + * The size of the metadata can be changed, though we set it to 10 + * bytes now. But it can't be too large, because we have to save + * enough space for BCH. + */ + geo->metadata_size = 10; + + /* The default for the length of Galois Field. */ + geo->gf_len = 13; + + /* The default for chunk size. There is no oobsize greater then 512. */ + geo->ecc_chunk_size = 512; + while (geo->ecc_chunk_size < mtd->oobsize) + geo->ecc_chunk_size *= 2; /* keep C >= O */ + + geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; + + /* We use the same ECC strength for all chunks. */ + geo->ecc_strength = get_ecc_strength(this); + if (!geo->ecc_strength) { + pr_err("We get a wrong ECC strength.\n"); + return -EINVAL; + } + + geo->page_size = mtd->writesize + mtd->oobsize; + geo->payload_size = mtd->writesize; + + /* + * The auxiliary buffer contains the metadata and the ECC status. The + * metadata is padded to the nearest 32-bit boundary. The ECC status + * contains one byte for every ECC chunk, and is also padded to the + * nearest 32-bit boundary. + */ + metadata_size = ALIGN(geo->metadata_size, 4); + status_size = ALIGN(geo->ecc_chunk_count, 4); + + geo->auxiliary_size = metadata_size + status_size; + geo->auxiliary_status_offset = metadata_size; + + if (!this->swap_block_mark) + return 0; + + /* + * We need to compute the byte and bit offsets of + * the physical block mark within the ECC-based view of the page. + * + * NAND chip with 2K page shows below: + * (Block Mark) + * | | + * | D | + * |<---->| + * V V + * +---+----------+-+----------+-+----------+-+----------+-+ + * | M | data |E| data |E| data |E| data |E| + * +---+----------+-+----------+-+----------+-+----------+-+ + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * With the formula to compute the ECC strength, and the condition + * : C >= O (C is the ecc chunk size) + * + * It's easy to deduce to the following result: + * + * E * G (O - M) C - M C - M + * ----------- <= ------- <= -------- < --------- + * 8 N N (N - 1) + * + * So, we get: + * + * E * G * (N - 1) + * D = (---------------- + M) < C + * 8 + * + * The above inequality means the position of block mark + * within the ECC-based view of the page is still in the data chunk, + * and it's NOT in the ECC bits of the chunk. + * + * Use the following to compute the bit position of the + * physical block mark within the ECC-based view of the page: + * (page_size - D) * 8 + * + * --Huang Shijie + */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return 0; +} + +struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) +{ + int chipnr = this->current_chip; + + return this->dma_chans[chipnr]; +} + +/* Can we use the upper's buffer directly for DMA? */ +void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) +{ + struct scatterlist *sgl = &this->data_sgl; + int ret; + + this->direct_dma_map_ok = true; + + /* first try to map the upper buffer directly */ + sg_init_one(sgl, this->upper_buf, this->upper_len); + ret = dma_map_sg(this->dev, sgl, 1, dr); + if (ret == 0) { + /* We have to use our own DMA buffer. */ + sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE); + + if (dr == DMA_TO_DEVICE) + memcpy(this->data_buffer_dma, this->upper_buf, + this->upper_len); + + ret = dma_map_sg(this->dev, sgl, 1, dr); + if (ret == 0) + pr_err("map failed.\n"); + + this->direct_dma_map_ok = false; + } +} + +/* This will be called after the DMA operation is finished. */ +static void dma_irq_callback(void *param) +{ + struct gpmi_nand_data *this = param; + struct completion *dma_c = &this->dma_done; + + complete(dma_c); + + switch (this->dma_type) { + case DMA_FOR_COMMAND: + dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); + break; + + case DMA_FOR_READ_DATA: + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); + if (this->direct_dma_map_ok == false) + memcpy(this->upper_buf, this->data_buffer_dma, + this->upper_len); + break; + + case DMA_FOR_WRITE_DATA: + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); + break; + + case DMA_FOR_READ_ECC_PAGE: + case DMA_FOR_WRITE_ECC_PAGE: + /* We have to wait the BCH interrupt to finish. */ + break; + + default: + pr_err("in wrong DMA operation.\n"); + } +} + +int start_dma_without_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *dma_c = &this->dma_done; + int err; + + init_completion(dma_c); + + desc->callback = dma_irq_callback; + desc->callback_param = this; + dmaengine_submit(desc); + dma_async_issue_pending(get_dma_chan(this)); + + /* Wait for the interrupt from the DMA block. */ + err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); + if (!err) { + pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +/* + * This function is used in BCH reading or BCH writing pages. + * It will wait for the BCH interrupt as long as ONE second. + * Actually, we must wait for two interrupts : + * [1] firstly the DMA interrupt and + * [2] secondly the BCH interrupt. + */ +int start_dma_with_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *bch_c = &this->bch_done; + int err; + + /* Prepare to receive an interrupt from the BCH block. */ + init_completion(bch_c); + + /* start the DMA */ + start_dma_without_bch_irq(this, desc); + + /* Wait for the interrupt from the BCH block. */ + err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); + if (!err) { + pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +static int __devinit +acquire_register_block(struct gpmi_nand_data *this, const char *res_name) +{ + struct platform_device *pdev = this->pdev; + struct resources *res = &this->resources; + struct resource *r; + void *p; + + r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); + if (!r) { + pr_err("Can't get resource for %s\n", res_name); + return -ENXIO; + } + + p = ioremap(r->start, resource_size(r)); + if (!p) { + pr_err("Can't remap %s\n", res_name); + return -ENOMEM; + } + + if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) + res->gpmi_regs = p; + else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) + res->bch_regs = p; + else + pr_err("unknown resource name : %s\n", res_name); + + return 0; +} + +static void release_register_block(struct gpmi_nand_data *this) +{ + struct resources *res = &this->resources; + if (res->gpmi_regs) + iounmap(res->gpmi_regs); + if (res->bch_regs) + iounmap(res->bch_regs); + res->gpmi_regs = NULL; + res->bch_regs = NULL; +} + +static int __devinit +acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) +{ + struct platform_device *pdev = this->pdev; + struct resources *res = &this->resources; + const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; + struct resource *r; + int err; + + r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); + if (!r) { + pr_err("Can't get resource for %s\n", res_name); + return -ENXIO; + } + + err = request_irq(r->start, irq_h, 0, res_name, this); + if (err) { + pr_err("Can't own %s\n", res_name); + return err; + } + + res->bch_low_interrupt = r->start; + res->bch_high_interrupt = r->end; + return 0; +} + +static void release_bch_irq(struct gpmi_nand_data *this) +{ + struct resources *res = &this->resources; + int i = res->bch_low_interrupt; + + for (; i <= res->bch_high_interrupt; i++) + free_irq(i, this); +} + +static bool gpmi_dma_filter(struct dma_chan *chan, void *param) +{ + struct gpmi_nand_data *this = param; + struct resource *r = this->private; + + if (!mxs_dma_is_apbh(chan)) + return false; + /* + * only catch the GPMI dma channels : + * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3 + * (These four channels share the same IRQ!) + * + * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7 + * (These eight channels share the same IRQ!) + */ + if (r->start <= chan->chan_id && chan->chan_id <= r->end) { + chan->private = &this->dma_data; + return true; + } + return false; +} + +static void release_dma_channels(struct gpmi_nand_data *this) +{ + unsigned int i; + for (i = 0; i < DMA_CHANS; i++) + if (this->dma_chans[i]) { + dma_release_channel(this->dma_chans[i]); + this->dma_chans[i] = NULL; + } +} + +static int __devinit acquire_dma_channels(struct gpmi_nand_data *this) +{ + struct platform_device *pdev = this->pdev; + struct gpmi_nand_platform_data *pdata = this->pdata; + struct resources *res = &this->resources; + struct resource *r, *r_dma; + unsigned int i; + + r = platform_get_resource_byname(pdev, IORESOURCE_DMA, + GPMI_NAND_DMA_CHANNELS_RES_NAME); + r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ, + GPMI_NAND_DMA_INTERRUPT_RES_NAME); + if (!r || !r_dma) { + pr_err("Can't get resource for DMA\n"); + return -ENXIO; + } + + /* used in gpmi_dma_filter() */ + this->private = r; + + for (i = r->start; i <= r->end; i++) { + struct dma_chan *dma_chan; + dma_cap_mask_t mask; + + if (i - r->start >= pdata->max_chip_count) + break; + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + + /* get the DMA interrupt */ + if (r_dma->start == r_dma->end) { + /* only register the first. */ + if (i == r->start) + this->dma_data.chan_irq = r_dma->start; + else + this->dma_data.chan_irq = NO_IRQ; + } else + this->dma_data.chan_irq = r_dma->start + (i - r->start); + + dma_chan = dma_request_channel(mask, gpmi_dma_filter, this); + if (!dma_chan) + goto acquire_err; + + /* fill the first empty item */ + this->dma_chans[i - r->start] = dma_chan; + } + + res->dma_low_channel = r->start; + res->dma_high_channel = i; + return 0; + +acquire_err: + pr_err("Can't acquire DMA channel %u\n", i); + release_dma_channels(this); + return -EINVAL; +} + +static int __devinit acquire_resources(struct gpmi_nand_data *this) +{ + struct resources *res = &this->resources; + int ret; + + ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_bch_irq(this, bch_irq); + if (ret) + goto exit_regs; + + ret = acquire_dma_channels(this); + if (ret) + goto exit_dma_channels; + + res->clock = clk_get(&this->pdev->dev, NULL); + if (IS_ERR(res->clock)) { + pr_err("can not get the clock\n"); + ret = -ENOENT; + goto exit_clock; + } + return 0; + +exit_clock: + release_dma_channels(this); +exit_dma_channels: + release_bch_irq(this); +exit_regs: + release_register_block(this); + return ret; +} + +static void release_resources(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + + clk_put(r->clock); + release_register_block(this); + release_bch_irq(this); + release_dma_channels(this); +} + +static int __devinit init_hardware(struct gpmi_nand_data *this) +{ + int ret; + + /* + * This structure contains the "safe" GPMI timing that should succeed + * with any NAND Flash device + * (although, with less-than-optimal performance). + */ + struct nand_timing safe_timing = { + .data_setup_in_ns = 80, + .data_hold_in_ns = 60, + .address_setup_in_ns = 25, + .gpmi_sample_delay_in_ns = 6, + .tREA_in_ns = -1, + .tRLOH_in_ns = -1, + .tRHOH_in_ns = -1, + }; + + /* Initialize the hardwares. */ + ret = gpmi_init(this); + if (ret) + return ret; + + this->timing = safe_timing; + return 0; +} + +static int read_page_prepare(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + + if (virt_addr_valid(destination)) { + dma_addr_t dest_phys; + + dest_phys = dma_map_single(dev, destination, + length, DMA_FROM_DEVICE); + if (dma_mapping_error(dev, dest_phys)) { + if (alt_size < length) { + pr_err("Alternate buffer is too small\n"); + return -ENOMEM; + } + goto map_failed; + } + *use_virt = destination; + *use_phys = dest_phys; + this->direct_dma_map_ok = true; + return 0; + } + +map_failed: + *use_virt = alt_virt; + *use_phys = alt_phys; + this->direct_dma_map_ok = false; + return 0; +} + +static inline void read_page_end(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void *used_virt, dma_addr_t used_phys) +{ + if (this->direct_dma_map_ok) + dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); +} + +static inline void read_page_swap_end(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void *used_virt, dma_addr_t used_phys) +{ + if (!this->direct_dma_map_ok) + memcpy(destination, alt_virt, length); +} + +static int send_page_prepare(struct gpmi_nand_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + + if (virt_addr_valid(source)) { + dma_addr_t source_phys; + + source_phys = dma_map_single(dev, (void *)source, length, + DMA_TO_DEVICE); + if (dma_mapping_error(dev, source_phys)) { + if (alt_size < length) { + pr_err("Alternate buffer is too small\n"); + return -ENOMEM; + } + goto map_failed; + } + *use_virt = source; + *use_phys = source_phys; + return 0; + } +map_failed: + /* + * Copy the content of the source buffer into the alternate + * buffer and set up the return values accordingly. + */ + memcpy(alt_virt, source, length); + + *use_virt = alt_virt; + *use_phys = alt_phys; + return 0; +} + +static void send_page_end(struct gpmi_nand_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void *used_virt, dma_addr_t used_phys) +{ + struct device *dev = this->dev; + if (used_virt == source) + dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); +} + +static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + + if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) + dma_free_coherent(dev, this->page_buffer_size, + this->page_buffer_virt, + this->page_buffer_phys); + kfree(this->cmd_buffer); + kfree(this->data_buffer_dma); + + this->cmd_buffer = NULL; + this->data_buffer_dma = NULL; + this->page_buffer_virt = NULL; + this->page_buffer_size = 0; +} + +/* Allocate the DMA buffers */ +static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct device *dev = this->dev; + + /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ + this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA); + if (this->cmd_buffer == NULL) + goto error_alloc; + + /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */ + this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA); + if (this->data_buffer_dma == NULL) + goto error_alloc; + + /* + * [3] Allocate the page buffer. + * + * Both the payload buffer and the auxiliary buffer must appear on + * 32-bit boundaries. We presume the size of the payload buffer is a + * power of two and is much larger than four, which guarantees the + * auxiliary buffer will appear on a 32-bit boundary. + */ + this->page_buffer_size = geo->payload_size + geo->auxiliary_size; + this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, + &this->page_buffer_phys, GFP_DMA); + if (!this->page_buffer_virt) + goto error_alloc; + + + /* Slice up the page buffer. */ + this->payload_virt = this->page_buffer_virt; + this->payload_phys = this->page_buffer_phys; + this->auxiliary_virt = this->payload_virt + geo->payload_size; + this->auxiliary_phys = this->payload_phys + geo->payload_size; + return 0; + +error_alloc: + gpmi_free_dma_buffer(this); + pr_err("allocate DMA buffer ret!!\n"); + return -ENOMEM; +} + +static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + int ret; + + /* + * Every operation begins with a command byte and a series of zero or + * more address bytes. These are distinguished by either the Address + * Latch Enable (ALE) or Command Latch Enable (CLE) signals being + * asserted. When MTD is ready to execute the command, it will deassert + * both latch enables. + * + * Rather than run a separate DMA operation for every single byte, we + * queue them up and run a single DMA operation for the entire series + * of command and data bytes. NAND_CMD_NONE means the END of the queue. + */ + if ((ctrl & (NAND_ALE | NAND_CLE))) { + if (data != NAND_CMD_NONE) + this->cmd_buffer[this->command_length++] = data; + return; + } + + if (!this->command_length) + return; + + ret = gpmi_send_command(this); + if (ret) + pr_err("Chip: %u, Error %d\n", this->current_chip, ret); + + this->command_length = 0; +} + +static int gpmi_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + return gpmi_is_ready(this, this->current_chip); +} + +static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + if ((this->current_chip < 0) && (chipnr >= 0)) + gpmi_begin(this); + else if ((this->current_chip >= 0) && (chipnr < 0)) + gpmi_end(this); + + this->current_chip = chipnr; +} + +static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + pr_debug("len is %d\n", len); + this->upper_buf = buf; + this->upper_len = len; + + gpmi_read_data(this); +} + +static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + pr_debug("len is %d\n", len); + this->upper_buf = (uint8_t *)buf; + this->upper_len = len; + + gpmi_send_data(this); +} + +static uint8_t gpmi_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + uint8_t *buf = this->data_buffer_dma; + + gpmi_read_buf(mtd, buf, 1); + return buf[0]; +} + +/* + * Handles block mark swapping. + * It can be called in swapping the block mark, or swapping it back, + * because the the operations are the same. + */ +static void block_mark_swapping(struct gpmi_nand_data *this, + void *payload, void *auxiliary) +{ + struct bch_geometry *nfc_geo = &this->bch_geometry; + unsigned char *p; + unsigned char *a; + unsigned int bit; + unsigned char mask; + unsigned char from_data; + unsigned char from_oob; + + if (!this->swap_block_mark) + return; + + /* + * If control arrives here, we're swapping. Make some convenience + * variables. + */ + bit = nfc_geo->block_mark_bit_offset; + p = payload + nfc_geo->block_mark_byte_offset; + a = auxiliary; + + /* + * Get the byte from the data area that overlays the block mark. Since + * the ECC engine applies its own view to the bits in the page, the + * physical block mark won't (in general) appear on a byte boundary in + * the data. + */ + from_data = (p[0] >> bit) | (p[1] << (8 - bit)); + + /* Get the byte from the OOB. */ + from_oob = a[0]; + + /* Swap them. */ + a[0] = from_data; + + mask = (0x1 << bit) - 1; + p[0] = (p[0] & mask) | (from_oob << bit); + + mask = ~0 << bit; + p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); +} + +static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int page) +{ + struct gpmi_nand_data *this = chip->priv; + struct bch_geometry *nfc_geo = &this->bch_geometry; + void *payload_virt; + dma_addr_t payload_phys; + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + unsigned int i; + unsigned char *status; + unsigned int failed; + unsigned int corrected; + int ret; + + pr_debug("page number is : %d\n", page); + ret = read_page_prepare(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + &payload_virt, &payload_phys); + if (ret) { + pr_err("Inadequate DMA buffer\n"); + ret = -ENOMEM; + return ret; + } + auxiliary_virt = this->auxiliary_virt; + auxiliary_phys = this->auxiliary_phys; + + /* go! */ + ret = gpmi_read_page(this, payload_phys, auxiliary_phys); + read_page_end(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + if (ret) { + pr_err("Error in ECC-based read: %d\n", ret); + goto exit_nfc; + } + + /* handle the block mark swapping */ + block_mark_swapping(this, payload_virt, auxiliary_virt); + + /* Loop over status bytes, accumulating ECC status. */ + failed = 0; + corrected = 0; + status = auxiliary_virt + nfc_geo->auxiliary_status_offset; + + for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { + if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) + continue; + + if (*status == STATUS_UNCORRECTABLE) { + failed++; + continue; + } + corrected += *status; + } + + /* + * Propagate ECC status to the owning MTD only when failed or + * corrected times nearly reaches our ECC correction threshold. + */ + if (failed || corrected >= (nfc_geo->ecc_strength - 1)) { + mtd->ecc_stats.failed += failed; + mtd->ecc_stats.corrected += corrected; + } + + /* + * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for + * details about our policy for delivering the OOB. + * + * We fill the caller's buffer with set bits, and then copy the block + * mark to th caller's buffer. Note that, if block mark swapping was + * necessary, it has already been done, so we can rely on the first + * byte of the auxiliary buffer to contain the block mark. + */ + memset(chip->oob_poi, ~0, mtd->oobsize); + chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; + + read_page_swap_end(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); +exit_nfc: + return ret; +} + +static void gpmi_ecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf) +{ + struct gpmi_nand_data *this = chip->priv; + struct bch_geometry *nfc_geo = &this->bch_geometry; + const void *payload_virt; + dma_addr_t payload_phys; + const void *auxiliary_virt; + dma_addr_t auxiliary_phys; + int ret; + + pr_debug("ecc write page.\n"); + if (this->swap_block_mark) { + /* + * If control arrives here, we're doing block mark swapping. + * Since we can't modify the caller's buffers, we must copy them + * into our own. + */ + memcpy(this->payload_virt, buf, mtd->writesize); + payload_virt = this->payload_virt; + payload_phys = this->payload_phys; + + memcpy(this->auxiliary_virt, chip->oob_poi, + nfc_geo->auxiliary_size); + auxiliary_virt = this->auxiliary_virt; + auxiliary_phys = this->auxiliary_phys; + + /* Handle block mark swapping. */ + block_mark_swapping(this, + (void *) payload_virt, (void *) auxiliary_virt); + } else { + /* + * If control arrives here, we're not doing block mark swapping, + * so we can to try and use the caller's buffers. + */ + ret = send_page_prepare(this, + buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + &payload_virt, &payload_phys); + if (ret) { + pr_err("Inadequate payload DMA buffer\n"); + return; + } + + ret = send_page_prepare(this, + chip->oob_poi, mtd->oobsize, + this->auxiliary_virt, this->auxiliary_phys, + nfc_geo->auxiliary_size, + &auxiliary_virt, &auxiliary_phys); + if (ret) { + pr_err("Inadequate auxiliary DMA buffer\n"); + goto exit_auxiliary; + } + } + + /* Ask the NFC. */ + ret = gpmi_send_page(this, payload_phys, auxiliary_phys); + if (ret) + pr_err("Error in ECC-based write: %d\n", ret); + + if (!this->swap_block_mark) { + send_page_end(this, chip->oob_poi, mtd->oobsize, + this->auxiliary_virt, this->auxiliary_phys, + nfc_geo->auxiliary_size, + auxiliary_virt, auxiliary_phys); +exit_auxiliary: + send_page_end(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + } +} + +/* + * There are several places in this driver where we have to handle the OOB and + * block marks. This is the function where things are the most complicated, so + * this is where we try to explain it all. All the other places refer back to + * here. + * + * These are the rules, in order of decreasing importance: + * + * 1) Nothing the caller does can be allowed to imperil the block mark. + * + * 2) In read operations, the first byte of the OOB we return must reflect the + * true state of the block mark, no matter where that block mark appears in + * the physical page. + * + * 3) ECC-based read operations return an OOB full of set bits (since we never + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads + * return). + * + * 4) "Raw" read operations return a direct view of the physical bytes in the + * page, using the conventional definition of which bytes are data and which + * are OOB. This gives the caller a way to see the actual, physical bytes + * in the page, without the distortions applied by our ECC engine. + * + * + * What we do for this specific read operation depends on two questions: + * + * 1) Are we doing a "raw" read, or an ECC-based read? + * + * 2) Are we using block mark swapping or transcription? + * + * There are four cases, illustrated by the following Karnaugh map: + * + * | Raw | ECC-based | + * -------------+-------------------------+-------------------------+ + * | Read the conventional | | + * | OOB at the end of the | | + * Swapping | page and return it. It | | + * | contains exactly what | | + * | we want. | Read the block mark and | + * -------------+-------------------------+ return it in a buffer | + * | Read the conventional | full of set bits. | + * | OOB at the end of the | | + * | page and also the block | | + * Transcribing | mark in the metadata. | | + * | Copy the block mark | | + * | into the first byte of | | + * | the OOB. | | + * -------------+-------------------------+-------------------------+ + * + * Note that we break rule #4 in the Transcribing/Raw case because we're not + * giving an accurate view of the actual, physical bytes in the page (we're + * overwriting the block mark). That's OK because it's more important to follow + * rule #2. + * + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not + * easy. When reading a page, for example, the NAND Flash MTD code calls our + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an + * ECC-based or raw view of the page is implicit in which function it calls + * (there is a similar pair of ECC-based/raw functions for writing). + * + * Since MTD assumes the OOB is not covered by ECC, there is no pair of + * ECC-based/raw functions for reading or or writing the OOB. The fact that the + * caller wants an ECC-based or raw view of the page is not propagated down to + * this driver. + */ +static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page, int sndcmd) +{ + struct gpmi_nand_data *this = chip->priv; + + pr_debug("page number is %d\n", page); + /* clear the OOB buffer */ + memset(chip->oob_poi, ~0, mtd->oobsize); + + /* Read out the conventional OOB. */ + chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* + * Now, we want to make sure the block mark is correct. In the + * Swapping/Raw case, we already have it. Otherwise, we need to + * explicitly read it. + */ + if (!this->swap_block_mark) { + /* Read the block mark into the first byte of the OOB buffer. */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + chip->oob_poi[0] = chip->read_byte(mtd); + } + + /* + * Return true, indicating that the next call to this function must send + * a command. + */ + return true; +} + +static int +gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) +{ + /* + * The BCH will use all the (page + oob). + * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob. + * But it can not stop some ioctls such MEMWRITEOOB which uses + * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit + * these ioctls too. + */ + return -EPERM; +} + +static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + int block, ret = 0; + uint8_t *block_mark; + int column, page, status, chipnr; + + /* Get block number */ + block = (int)(ofs >> chip->bbt_erase_shift); + if (chip->bbt) + chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + + /* Do we have a flash based bad block table ? */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + ret = nand_update_bbt(mtd, ofs); + else { + chipnr = (int)(ofs >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + column = this->swap_block_mark ? mtd->writesize : 0; + + /* Write the block mark. */ + block_mark = this->data_buffer_dma; + block_mark[0] = 0; /* bad block marker */ + + /* Shift to get page */ + page = (int)(ofs >> chip->page_shift); + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); + chip->write_buf(mtd, block_mark, 1); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + ret = -EIO; + + chip->select_chip(mtd, -1); + } + if (!ret) + mtd->ecc_stats.badblocks++; + + return ret; +} + +static int nand_boot_set_geometry(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *geometry = &this->rom_geometry; + + /* + * Set the boot block stride size. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->stride_size_in_pages = 64; + + /* + * Set the search area stride exponent. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->search_area_stride_exponent = 2; + return 0; +} + +static const char *fingerprint = "STMP"; +static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct device *dev = this->dev; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->nand; + unsigned int search_area_size_in_strides; + unsigned int stride; + unsigned int page; + loff_t byte; + uint8_t *buffer = chip->buffers->databuf; + int saved_chip_number; + int found_an_ncb_fingerprint = false; + + /* Compute the number of strides in a search area. */ + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + + saved_chip_number = this->current_chip; + chip->select_chip(mtd, 0); + + /* + * Loop through the first search area, looking for the NCB fingerprint. + */ + dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); + + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page and byte addresses. */ + page = stride * rom_geo->stride_size_in_pages; + byte = page * mtd->writesize; + + dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); + + /* + * Read the NCB fingerprint. The fingerprint is four bytes long + * and starts in the 12th byte of the page. + */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page); + chip->read_buf(mtd, buffer, strlen(fingerprint)); + + /* Look for the fingerprint. */ + if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { + found_an_ncb_fingerprint = true; + break; + } + + } + + chip->select_chip(mtd, saved_chip_number); + + if (found_an_ncb_fingerprint) + dev_dbg(dev, "\tFound a fingerprint\n"); + else + dev_dbg(dev, "\tNo fingerprint found\n"); + return found_an_ncb_fingerprint; +} + +/* Writes a transcription stamp. */ +static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->nand; + unsigned int block_size_in_pages; + unsigned int search_area_size_in_strides; + unsigned int search_area_size_in_pages; + unsigned int search_area_size_in_blocks; + unsigned int block; + unsigned int stride; + unsigned int page; + loff_t byte; + uint8_t *buffer = chip->buffers->databuf; + int saved_chip_number; + int status; + + /* Compute the search area geometry. */ + block_size_in_pages = mtd->erasesize / mtd->writesize; + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + search_area_size_in_pages = search_area_size_in_strides * + rom_geo->stride_size_in_pages; + search_area_size_in_blocks = + (search_area_size_in_pages + (block_size_in_pages - 1)) / + block_size_in_pages; + + dev_dbg(dev, "Search Area Geometry :\n"); + dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); + dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); + dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); + + /* Select chip 0. */ + saved_chip_number = this->current_chip; + chip->select_chip(mtd, 0); + + /* Loop over blocks in the first search area, erasing them. */ + dev_dbg(dev, "Erasing the search area...\n"); + + for (block = 0; block < search_area_size_in_blocks; block++) { + /* Compute the page address. */ + page = block * block_size_in_pages; + + /* Erase this block. */ + dev_dbg(dev, "\tErasing block 0x%x\n", block); + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); + chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); + + /* Wait for the erase to finish. */ + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + dev_err(dev, "[%s] Erase failed.\n", __func__); + } + + /* Write the NCB fingerprint into the page buffer. */ + memset(buffer, ~0, mtd->writesize); + memset(chip->oob_poi, ~0, mtd->oobsize); + memcpy(buffer + 12, fingerprint, strlen(fingerprint)); + + /* Loop through the first search area, writing NCB fingerprints. */ + dev_dbg(dev, "Writing NCB fingerprints...\n"); + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page and byte addresses. */ + page = stride * rom_geo->stride_size_in_pages; + byte = page * mtd->writesize; + + /* Write the first page of the current stride. */ + dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); + chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); + chip->ecc.write_page_raw(mtd, chip, buffer); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + /* Wait for the write to finish. */ + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + dev_err(dev, "[%s] Write failed.\n", __func__); + } + + /* Deselect chip 0. */ + chip->select_chip(mtd, saved_chip_number); + return 0; +} + +static int mx23_boot_init(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = &this->mtd; + unsigned int block_count; + unsigned int block; + int chipnr; + int page; + loff_t byte; + uint8_t block_mark; + int ret = 0; + + /* + * If control arrives here, we can't use block mark swapping, which + * means we're forced to use transcription. First, scan for the + * transcription stamp. If we find it, then we don't have to do + * anything -- the block marks are already transcribed. + */ + if (mx23_check_transcription_stamp(this)) + return 0; + + /* + * If control arrives here, we couldn't find a transcription stamp, so + * so we presume the block marks are in the conventional location. + */ + dev_dbg(dev, "Transcribing bad block marks...\n"); + + /* Compute the number of blocks in the entire medium. */ + block_count = chip->chipsize >> chip->phys_erase_shift; + + /* + * Loop over all the blocks in the medium, transcribing block marks as + * we go. + */ + for (block = 0; block < block_count; block++) { + /* + * Compute the chip, page and byte addresses for this block's + * conventional mark. + */ + chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); + page = block << (chip->phys_erase_shift - chip->page_shift); + byte = block << chip->phys_erase_shift; + + /* Send the command to read the conventional block mark. */ + chip->select_chip(mtd, chipnr); + chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); + block_mark = chip->read_byte(mtd); + chip->select_chip(mtd, -1); + + /* + * Check if the block is marked bad. If so, we need to mark it + * again, but this time the result will be a mark in the + * location where we transcribe block marks. + */ + if (block_mark != 0xff) { + dev_dbg(dev, "Transcribing mark in block %u\n", block); + ret = chip->block_markbad(mtd, byte); + if (ret) + dev_err(dev, "Failed to mark block bad with " + "ret %d\n", ret); + } + } + + /* Write the stamp that indicates we've transcribed the block marks. */ + mx23_write_transcription_stamp(this); + return 0; +} + +static int nand_boot_init(struct gpmi_nand_data *this) +{ + nand_boot_set_geometry(this); + + /* This is ROM arch-specific initilization before the BBT scanning. */ + if (GPMI_IS_MX23(this)) + return mx23_boot_init(this); + return 0; +} + +static int gpmi_set_geometry(struct gpmi_nand_data *this) +{ + int ret; + + /* Free the temporary DMA memory for reading ID. */ + gpmi_free_dma_buffer(this); + + /* Set up the NFC geometry which is used by BCH. */ + ret = bch_set_geometry(this); + if (ret) { + pr_err("set geometry ret : %d\n", ret); + return ret; + } + + /* Alloc the new DMA buffers according to the pagesize and oobsize */ + return gpmi_alloc_dma_buffer(this); +} + +static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this) +{ + int ret; + + /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ + if (GPMI_IS_MX23(this)) + this->swap_block_mark = false; + else + this->swap_block_mark = true; + + /* Set up the medium geometry */ + ret = gpmi_set_geometry(this); + if (ret) + return ret; + + /* NAND boot init, depends on the gpmi_set_geometry(). */ + return nand_boot_init(this); +} + +static int gpmi_scan_bbt(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + int ret; + + /* Prepare for the BBT scan. */ + ret = gpmi_pre_bbt_scan(this); + if (ret) + return ret; + + /* use the default BBT implementation */ + return nand_default_bbt(mtd); +} + +void gpmi_nfc_exit(struct gpmi_nand_data *this) +{ + nand_release(&this->mtd); + gpmi_free_dma_buffer(this); +} + +static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) +{ + struct gpmi_nand_platform_data *pdata = this->pdata; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->nand; + int ret; + + /* init current chip */ + this->current_chip = -1; + + /* init the MTD data structures */ + mtd->priv = chip; + mtd->name = "gpmi-nand"; + mtd->owner = THIS_MODULE; + + /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ + chip->priv = this; + chip->select_chip = gpmi_select_chip; + chip->cmd_ctrl = gpmi_cmd_ctrl; + chip->dev_ready = gpmi_dev_ready; + chip->read_byte = gpmi_read_byte; + chip->read_buf = gpmi_read_buf; + chip->write_buf = gpmi_write_buf; + chip->ecc.read_page = gpmi_ecc_read_page; + chip->ecc.write_page = gpmi_ecc_write_page; + chip->ecc.read_oob = gpmi_ecc_read_oob; + chip->ecc.write_oob = gpmi_ecc_write_oob; + chip->scan_bbt = gpmi_scan_bbt; + chip->badblock_pattern = &gpmi_bbt_descr; + chip->block_markbad = gpmi_block_markbad; + chip->options |= NAND_NO_SUBPAGE_WRITE; + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.size = 1; + chip->ecc.layout = &gpmi_hw_ecclayout; + + /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */ + this->bch_geometry.payload_size = 1024; + this->bch_geometry.auxiliary_size = 128; + ret = gpmi_alloc_dma_buffer(this); + if (ret) + goto err_out; + + ret = nand_scan(mtd, pdata->max_chip_count); + if (ret) { + pr_err("Chip scan failed\n"); + goto err_out; + } + + ret = mtd_device_parse_register(mtd, NULL, NULL, + pdata->partitions, pdata->partition_count); + if (ret) + goto err_out; + return 0; + +err_out: + gpmi_nfc_exit(this); + return ret; +} + +static int __devinit gpmi_nand_probe(struct platform_device *pdev) +{ + struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data; + struct gpmi_nand_data *this; + int ret; + + this = kzalloc(sizeof(*this), GFP_KERNEL); + if (!this) { + pr_err("Failed to allocate per-device memory\n"); + return -ENOMEM; + } + + platform_set_drvdata(pdev, this); + this->pdev = pdev; + this->dev = &pdev->dev; + this->pdata = pdata; + + if (pdata->platform_init) { + ret = pdata->platform_init(); + if (ret) + goto platform_init_error; + } + + ret = acquire_resources(this); + if (ret) + goto exit_acquire_resources; + + ret = init_hardware(this); + if (ret) + goto exit_nfc_init; + + ret = gpmi_nfc_init(this); + if (ret) + goto exit_nfc_init; + + return 0; + +exit_nfc_init: + release_resources(this); +platform_init_error: +exit_acquire_resources: + platform_set_drvdata(pdev, NULL); + kfree(this); + return ret; +} + +static int __exit gpmi_nand_remove(struct platform_device *pdev) +{ + struct gpmi_nand_data *this = platform_get_drvdata(pdev); + + gpmi_nfc_exit(this); + release_resources(this); + platform_set_drvdata(pdev, NULL); + kfree(this); + return 0; +} + +static const struct platform_device_id gpmi_ids[] = { + { + .name = "imx23-gpmi-nand", + .driver_data = IS_MX23, + }, { + .name = "imx28-gpmi-nand", + .driver_data = IS_MX28, + }, {}, +}; + +static struct platform_driver gpmi_nand_driver = { + .driver = { + .name = "gpmi-nand", + }, + .probe = gpmi_nand_probe, + .remove = __exit_p(gpmi_nand_remove), + .id_table = gpmi_ids, +}; + +static int __init gpmi_nand_init(void) +{ + int err; + + err = platform_driver_register(&gpmi_nand_driver); + if (err == 0) + printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n"); + else + pr_err("i.MX GPMI NAND driver registration failed\n"); + return err; +} + +static void __exit gpmi_nand_exit(void) +{ + platform_driver_unregister(&gpmi_nand_driver); +} + +module_init(gpmi_nand_init); +module_exit(gpmi_nand_exit); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); +MODULE_LICENSE("GPL"); |