summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/security/keys/key.c
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-11 12:28:04 +0530
committerSrikant Patnaik2015-01-11 12:28:04 +0530
commit871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch)
tree8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/security/keys/key.c
parent9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff)
downloadFOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/security/keys/key.c')
-rw-r--r--ANDROID_3.4.5/security/keys/key.c1031
1 files changed, 0 insertions, 1031 deletions
diff --git a/ANDROID_3.4.5/security/keys/key.c b/ANDROID_3.4.5/security/keys/key.c
deleted file mode 100644
index 06783cff..00000000
--- a/ANDROID_3.4.5/security/keys/key.c
+++ /dev/null
@@ -1,1031 +0,0 @@
-/* Basic authentication token and access key management
- *
- * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
- * Written by David Howells (dhowells@redhat.com)
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
-
-#include <linux/module.h>
-#include <linux/init.h>
-#include <linux/poison.h>
-#include <linux/sched.h>
-#include <linux/slab.h>
-#include <linux/security.h>
-#include <linux/workqueue.h>
-#include <linux/random.h>
-#include <linux/err.h>
-#include <linux/user_namespace.h>
-#include "internal.h"
-
-struct kmem_cache *key_jar;
-struct rb_root key_serial_tree; /* tree of keys indexed by serial */
-DEFINE_SPINLOCK(key_serial_lock);
-
-struct rb_root key_user_tree; /* tree of quota records indexed by UID */
-DEFINE_SPINLOCK(key_user_lock);
-
-unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
-unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
-unsigned int key_quota_maxkeys = 200; /* general key count quota */
-unsigned int key_quota_maxbytes = 20000; /* general key space quota */
-
-static LIST_HEAD(key_types_list);
-static DECLARE_RWSEM(key_types_sem);
-
-/* We serialise key instantiation and link */
-DEFINE_MUTEX(key_construction_mutex);
-
-#ifdef KEY_DEBUGGING
-void __key_check(const struct key *key)
-{
- printk("__key_check: key %p {%08x} should be {%08x}\n",
- key, key->magic, KEY_DEBUG_MAGIC);
- BUG();
-}
-#endif
-
-/*
- * Get the key quota record for a user, allocating a new record if one doesn't
- * already exist.
- */
-struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
-{
- struct key_user *candidate = NULL, *user;
- struct rb_node *parent = NULL;
- struct rb_node **p;
-
-try_again:
- p = &key_user_tree.rb_node;
- spin_lock(&key_user_lock);
-
- /* search the tree for a user record with a matching UID */
- while (*p) {
- parent = *p;
- user = rb_entry(parent, struct key_user, node);
-
- if (uid < user->uid)
- p = &(*p)->rb_left;
- else if (uid > user->uid)
- p = &(*p)->rb_right;
- else if (user_ns < user->user_ns)
- p = &(*p)->rb_left;
- else if (user_ns > user->user_ns)
- p = &(*p)->rb_right;
- else
- goto found;
- }
-
- /* if we get here, we failed to find a match in the tree */
- if (!candidate) {
- /* allocate a candidate user record if we don't already have
- * one */
- spin_unlock(&key_user_lock);
-
- user = NULL;
- candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
- if (unlikely(!candidate))
- goto out;
-
- /* the allocation may have scheduled, so we need to repeat the
- * search lest someone else added the record whilst we were
- * asleep */
- goto try_again;
- }
-
- /* if we get here, then the user record still hadn't appeared on the
- * second pass - so we use the candidate record */
- atomic_set(&candidate->usage, 1);
- atomic_set(&candidate->nkeys, 0);
- atomic_set(&candidate->nikeys, 0);
- candidate->uid = uid;
- candidate->user_ns = get_user_ns(user_ns);
- candidate->qnkeys = 0;
- candidate->qnbytes = 0;
- spin_lock_init(&candidate->lock);
- mutex_init(&candidate->cons_lock);
-
- rb_link_node(&candidate->node, parent, p);
- rb_insert_color(&candidate->node, &key_user_tree);
- spin_unlock(&key_user_lock);
- user = candidate;
- goto out;
-
- /* okay - we found a user record for this UID */
-found:
- atomic_inc(&user->usage);
- spin_unlock(&key_user_lock);
- kfree(candidate);
-out:
- return user;
-}
-
-/*
- * Dispose of a user structure
- */
-void key_user_put(struct key_user *user)
-{
- if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
- rb_erase(&user->node, &key_user_tree);
- spin_unlock(&key_user_lock);
- put_user_ns(user->user_ns);
-
- kfree(user);
- }
-}
-
-/*
- * Allocate a serial number for a key. These are assigned randomly to avoid
- * security issues through covert channel problems.
- */
-static inline void key_alloc_serial(struct key *key)
-{
- struct rb_node *parent, **p;
- struct key *xkey;
-
- /* propose a random serial number and look for a hole for it in the
- * serial number tree */
- do {
- get_random_bytes(&key->serial, sizeof(key->serial));
-
- key->serial >>= 1; /* negative numbers are not permitted */
- } while (key->serial < 3);
-
- spin_lock(&key_serial_lock);
-
-attempt_insertion:
- parent = NULL;
- p = &key_serial_tree.rb_node;
-
- while (*p) {
- parent = *p;
- xkey = rb_entry(parent, struct key, serial_node);
-
- if (key->serial < xkey->serial)
- p = &(*p)->rb_left;
- else if (key->serial > xkey->serial)
- p = &(*p)->rb_right;
- else
- goto serial_exists;
- }
-
- /* we've found a suitable hole - arrange for this key to occupy it */
- rb_link_node(&key->serial_node, parent, p);
- rb_insert_color(&key->serial_node, &key_serial_tree);
-
- spin_unlock(&key_serial_lock);
- return;
-
- /* we found a key with the proposed serial number - walk the tree from
- * that point looking for the next unused serial number */
-serial_exists:
- for (;;) {
- key->serial++;
- if (key->serial < 3) {
- key->serial = 3;
- goto attempt_insertion;
- }
-
- parent = rb_next(parent);
- if (!parent)
- goto attempt_insertion;
-
- xkey = rb_entry(parent, struct key, serial_node);
- if (key->serial < xkey->serial)
- goto attempt_insertion;
- }
-}
-
-/**
- * key_alloc - Allocate a key of the specified type.
- * @type: The type of key to allocate.
- * @desc: The key description to allow the key to be searched out.
- * @uid: The owner of the new key.
- * @gid: The group ID for the new key's group permissions.
- * @cred: The credentials specifying UID namespace.
- * @perm: The permissions mask of the new key.
- * @flags: Flags specifying quota properties.
- *
- * Allocate a key of the specified type with the attributes given. The key is
- * returned in an uninstantiated state and the caller needs to instantiate the
- * key before returning.
- *
- * The user's key count quota is updated to reflect the creation of the key and
- * the user's key data quota has the default for the key type reserved. The
- * instantiation function should amend this as necessary. If insufficient
- * quota is available, -EDQUOT will be returned.
- *
- * The LSM security modules can prevent a key being created, in which case
- * -EACCES will be returned.
- *
- * Returns a pointer to the new key if successful and an error code otherwise.
- *
- * Note that the caller needs to ensure the key type isn't uninstantiated.
- * Internally this can be done by locking key_types_sem. Externally, this can
- * be done by either never unregistering the key type, or making sure
- * key_alloc() calls don't race with module unloading.
- */
-struct key *key_alloc(struct key_type *type, const char *desc,
- uid_t uid, gid_t gid, const struct cred *cred,
- key_perm_t perm, unsigned long flags)
-{
- struct key_user *user = NULL;
- struct key *key;
- size_t desclen, quotalen;
- int ret;
-
- key = ERR_PTR(-EINVAL);
- if (!desc || !*desc)
- goto error;
-
- if (type->vet_description) {
- ret = type->vet_description(desc);
- if (ret < 0) {
- key = ERR_PTR(ret);
- goto error;
- }
- }
-
- desclen = strlen(desc) + 1;
- quotalen = desclen + type->def_datalen;
-
- /* get hold of the key tracking for this user */
- user = key_user_lookup(uid, cred->user->user_ns);
- if (!user)
- goto no_memory_1;
-
- /* check that the user's quota permits allocation of another key and
- * its description */
- if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
- unsigned maxkeys = (uid == 0) ?
- key_quota_root_maxkeys : key_quota_maxkeys;
- unsigned maxbytes = (uid == 0) ?
- key_quota_root_maxbytes : key_quota_maxbytes;
-
- spin_lock(&user->lock);
- if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
- if (user->qnkeys + 1 >= maxkeys ||
- user->qnbytes + quotalen >= maxbytes ||
- user->qnbytes + quotalen < user->qnbytes)
- goto no_quota;
- }
-
- user->qnkeys++;
- user->qnbytes += quotalen;
- spin_unlock(&user->lock);
- }
-
- /* allocate and initialise the key and its description */
- key = kmem_cache_alloc(key_jar, GFP_KERNEL);
- if (!key)
- goto no_memory_2;
-
- if (desc) {
- key->description = kmemdup(desc, desclen, GFP_KERNEL);
- if (!key->description)
- goto no_memory_3;
- }
-
- atomic_set(&key->usage, 1);
- init_rwsem(&key->sem);
- lockdep_set_class(&key->sem, &type->lock_class);
- key->type = type;
- key->user = user;
- key->quotalen = quotalen;
- key->datalen = type->def_datalen;
- key->uid = uid;
- key->gid = gid;
- key->perm = perm;
- key->flags = 0;
- key->expiry = 0;
- key->payload.data = NULL;
- key->security = NULL;
-
- if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
- key->flags |= 1 << KEY_FLAG_IN_QUOTA;
-
- memset(&key->type_data, 0, sizeof(key->type_data));
-
-#ifdef KEY_DEBUGGING
- key->magic = KEY_DEBUG_MAGIC;
-#endif
-
- /* let the security module know about the key */
- ret = security_key_alloc(key, cred, flags);
- if (ret < 0)
- goto security_error;
-
- /* publish the key by giving it a serial number */
- atomic_inc(&user->nkeys);
- key_alloc_serial(key);
-
-error:
- return key;
-
-security_error:
- kfree(key->description);
- kmem_cache_free(key_jar, key);
- if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
- spin_lock(&user->lock);
- user->qnkeys--;
- user->qnbytes -= quotalen;
- spin_unlock(&user->lock);
- }
- key_user_put(user);
- key = ERR_PTR(ret);
- goto error;
-
-no_memory_3:
- kmem_cache_free(key_jar, key);
-no_memory_2:
- if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
- spin_lock(&user->lock);
- user->qnkeys--;
- user->qnbytes -= quotalen;
- spin_unlock(&user->lock);
- }
- key_user_put(user);
-no_memory_1:
- key = ERR_PTR(-ENOMEM);
- goto error;
-
-no_quota:
- spin_unlock(&user->lock);
- key_user_put(user);
- key = ERR_PTR(-EDQUOT);
- goto error;
-}
-EXPORT_SYMBOL(key_alloc);
-
-/**
- * key_payload_reserve - Adjust data quota reservation for the key's payload
- * @key: The key to make the reservation for.
- * @datalen: The amount of data payload the caller now wants.
- *
- * Adjust the amount of the owning user's key data quota that a key reserves.
- * If the amount is increased, then -EDQUOT may be returned if there isn't
- * enough free quota available.
- *
- * If successful, 0 is returned.
- */
-int key_payload_reserve(struct key *key, size_t datalen)
-{
- int delta = (int)datalen - key->datalen;
- int ret = 0;
-
- key_check(key);
-
- /* contemplate the quota adjustment */
- if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
- unsigned maxbytes = (key->user->uid == 0) ?
- key_quota_root_maxbytes : key_quota_maxbytes;
-
- spin_lock(&key->user->lock);
-
- if (delta > 0 &&
- (key->user->qnbytes + delta >= maxbytes ||
- key->user->qnbytes + delta < key->user->qnbytes)) {
- ret = -EDQUOT;
- }
- else {
- key->user->qnbytes += delta;
- key->quotalen += delta;
- }
- spin_unlock(&key->user->lock);
- }
-
- /* change the recorded data length if that didn't generate an error */
- if (ret == 0)
- key->datalen = datalen;
-
- return ret;
-}
-EXPORT_SYMBOL(key_payload_reserve);
-
-/*
- * Instantiate a key and link it into the target keyring atomically. Must be
- * called with the target keyring's semaphore writelocked. The target key's
- * semaphore need not be locked as instantiation is serialised by
- * key_construction_mutex.
- */
-static int __key_instantiate_and_link(struct key *key,
- const void *data,
- size_t datalen,
- struct key *keyring,
- struct key *authkey,
- unsigned long *_prealloc)
-{
- int ret, awaken;
-
- key_check(key);
- key_check(keyring);
-
- awaken = 0;
- ret = -EBUSY;
-
- mutex_lock(&key_construction_mutex);
-
- /* can't instantiate twice */
- if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
- /* instantiate the key */
- ret = key->type->instantiate(key, data, datalen);
-
- if (ret == 0) {
- /* mark the key as being instantiated */
- atomic_inc(&key->user->nikeys);
- set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
-
- if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
- awaken = 1;
-
- /* and link it into the destination keyring */
- if (keyring)
- __key_link(keyring, key, _prealloc);
-
- /* disable the authorisation key */
- if (authkey)
- key_revoke(authkey);
- }
- }
-
- mutex_unlock(&key_construction_mutex);
-
- /* wake up anyone waiting for a key to be constructed */
- if (awaken)
- wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
-
- return ret;
-}
-
-/**
- * key_instantiate_and_link - Instantiate a key and link it into the keyring.
- * @key: The key to instantiate.
- * @data: The data to use to instantiate the keyring.
- * @datalen: The length of @data.
- * @keyring: Keyring to create a link in on success (or NULL).
- * @authkey: The authorisation token permitting instantiation.
- *
- * Instantiate a key that's in the uninstantiated state using the provided data
- * and, if successful, link it in to the destination keyring if one is
- * supplied.
- *
- * If successful, 0 is returned, the authorisation token is revoked and anyone
- * waiting for the key is woken up. If the key was already instantiated,
- * -EBUSY will be returned.
- */
-int key_instantiate_and_link(struct key *key,
- const void *data,
- size_t datalen,
- struct key *keyring,
- struct key *authkey)
-{
- unsigned long prealloc;
- int ret;
-
- if (keyring) {
- ret = __key_link_begin(keyring, key->type, key->description,
- &prealloc);
- if (ret < 0)
- return ret;
- }
-
- ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
- &prealloc);
-
- if (keyring)
- __key_link_end(keyring, key->type, prealloc);
-
- return ret;
-}
-
-EXPORT_SYMBOL(key_instantiate_and_link);
-
-/**
- * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
- * @key: The key to instantiate.
- * @timeout: The timeout on the negative key.
- * @error: The error to return when the key is hit.
- * @keyring: Keyring to create a link in on success (or NULL).
- * @authkey: The authorisation token permitting instantiation.
- *
- * Negatively instantiate a key that's in the uninstantiated state and, if
- * successful, set its timeout and stored error and link it in to the
- * destination keyring if one is supplied. The key and any links to the key
- * will be automatically garbage collected after the timeout expires.
- *
- * Negative keys are used to rate limit repeated request_key() calls by causing
- * them to return the stored error code (typically ENOKEY) until the negative
- * key expires.
- *
- * If successful, 0 is returned, the authorisation token is revoked and anyone
- * waiting for the key is woken up. If the key was already instantiated,
- * -EBUSY will be returned.
- */
-int key_reject_and_link(struct key *key,
- unsigned timeout,
- unsigned error,
- struct key *keyring,
- struct key *authkey)
-{
- unsigned long prealloc;
- struct timespec now;
- int ret, awaken, link_ret = 0;
-
- key_check(key);
- key_check(keyring);
-
- awaken = 0;
- ret = -EBUSY;
-
- if (keyring)
- link_ret = __key_link_begin(keyring, key->type,
- key->description, &prealloc);
-
- mutex_lock(&key_construction_mutex);
-
- /* can't instantiate twice */
- if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
- /* mark the key as being negatively instantiated */
- atomic_inc(&key->user->nikeys);
- set_bit(KEY_FLAG_NEGATIVE, &key->flags);
- set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
- key->type_data.reject_error = -error;
- now = current_kernel_time();
- key->expiry = now.tv_sec + timeout;
- key_schedule_gc(key->expiry + key_gc_delay);
-
- if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
- awaken = 1;
-
- ret = 0;
-
- /* and link it into the destination keyring */
- if (keyring && link_ret == 0)
- __key_link(keyring, key, &prealloc);
-
- /* disable the authorisation key */
- if (authkey)
- key_revoke(authkey);
- }
-
- mutex_unlock(&key_construction_mutex);
-
- if (keyring)
- __key_link_end(keyring, key->type, prealloc);
-
- /* wake up anyone waiting for a key to be constructed */
- if (awaken)
- wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
-
- return ret == 0 ? link_ret : ret;
-}
-EXPORT_SYMBOL(key_reject_and_link);
-
-/**
- * key_put - Discard a reference to a key.
- * @key: The key to discard a reference from.
- *
- * Discard a reference to a key, and when all the references are gone, we
- * schedule the cleanup task to come and pull it out of the tree in process
- * context at some later time.
- */
-void key_put(struct key *key)
-{
- if (key) {
- key_check(key);
-
- if (atomic_dec_and_test(&key->usage))
- queue_work(system_nrt_wq, &key_gc_work);
- }
-}
-EXPORT_SYMBOL(key_put);
-
-/*
- * Find a key by its serial number.
- */
-struct key *key_lookup(key_serial_t id)
-{
- struct rb_node *n;
- struct key *key;
-
- spin_lock(&key_serial_lock);
-
- /* search the tree for the specified key */
- n = key_serial_tree.rb_node;
- while (n) {
- key = rb_entry(n, struct key, serial_node);
-
- if (id < key->serial)
- n = n->rb_left;
- else if (id > key->serial)
- n = n->rb_right;
- else
- goto found;
- }
-
-not_found:
- key = ERR_PTR(-ENOKEY);
- goto error;
-
-found:
- /* pretend it doesn't exist if it is awaiting deletion */
- if (atomic_read(&key->usage) == 0)
- goto not_found;
-
- /* this races with key_put(), but that doesn't matter since key_put()
- * doesn't actually change the key
- */
- atomic_inc(&key->usage);
-
-error:
- spin_unlock(&key_serial_lock);
- return key;
-}
-
-/*
- * Find and lock the specified key type against removal.
- *
- * We return with the sem read-locked if successful. If the type wasn't
- * available -ENOKEY is returned instead.
- */
-struct key_type *key_type_lookup(const char *type)
-{
- struct key_type *ktype;
-
- down_read(&key_types_sem);
-
- /* look up the key type to see if it's one of the registered kernel
- * types */
- list_for_each_entry(ktype, &key_types_list, link) {
- if (strcmp(ktype->name, type) == 0)
- goto found_kernel_type;
- }
-
- up_read(&key_types_sem);
- ktype = ERR_PTR(-ENOKEY);
-
-found_kernel_type:
- return ktype;
-}
-
-void key_set_timeout(struct key *key, unsigned timeout)
-{
- struct timespec now;
- time_t expiry = 0;
-
- /* make the changes with the locks held to prevent races */
- down_write(&key->sem);
-
- if (timeout > 0) {
- now = current_kernel_time();
- expiry = now.tv_sec + timeout;
- }
-
- key->expiry = expiry;
- key_schedule_gc(key->expiry + key_gc_delay);
-
- up_write(&key->sem);
-}
-EXPORT_SYMBOL_GPL(key_set_timeout);
-
-/*
- * Unlock a key type locked by key_type_lookup().
- */
-void key_type_put(struct key_type *ktype)
-{
- up_read(&key_types_sem);
-}
-
-/*
- * Attempt to update an existing key.
- *
- * The key is given to us with an incremented refcount that we need to discard
- * if we get an error.
- */
-static inline key_ref_t __key_update(key_ref_t key_ref,
- const void *payload, size_t plen)
-{
- struct key *key = key_ref_to_ptr(key_ref);
- int ret;
-
- /* need write permission on the key to update it */
- ret = key_permission(key_ref, KEY_WRITE);
- if (ret < 0)
- goto error;
-
- ret = -EEXIST;
- if (!key->type->update)
- goto error;
-
- down_write(&key->sem);
-
- ret = key->type->update(key, payload, plen);
- if (ret == 0)
- /* updating a negative key instantiates it */
- clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
-
- up_write(&key->sem);
-
- if (ret < 0)
- goto error;
-out:
- return key_ref;
-
-error:
- key_put(key);
- key_ref = ERR_PTR(ret);
- goto out;
-}
-
-/**
- * key_create_or_update - Update or create and instantiate a key.
- * @keyring_ref: A pointer to the destination keyring with possession flag.
- * @type: The type of key.
- * @description: The searchable description for the key.
- * @payload: The data to use to instantiate or update the key.
- * @plen: The length of @payload.
- * @perm: The permissions mask for a new key.
- * @flags: The quota flags for a new key.
- *
- * Search the destination keyring for a key of the same description and if one
- * is found, update it, otherwise create and instantiate a new one and create a
- * link to it from that keyring.
- *
- * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
- * concocted.
- *
- * Returns a pointer to the new key if successful, -ENODEV if the key type
- * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
- * caller isn't permitted to modify the keyring or the LSM did not permit
- * creation of the key.
- *
- * On success, the possession flag from the keyring ref will be tacked on to
- * the key ref before it is returned.
- */
-key_ref_t key_create_or_update(key_ref_t keyring_ref,
- const char *type,
- const char *description,
- const void *payload,
- size_t plen,
- key_perm_t perm,
- unsigned long flags)
-{
- unsigned long prealloc;
- const struct cred *cred = current_cred();
- struct key_type *ktype;
- struct key *keyring, *key = NULL;
- key_ref_t key_ref;
- int ret;
-
- /* look up the key type to see if it's one of the registered kernel
- * types */
- ktype = key_type_lookup(type);
- if (IS_ERR(ktype)) {
- key_ref = ERR_PTR(-ENODEV);
- goto error;
- }
-
- key_ref = ERR_PTR(-EINVAL);
- if (!ktype->match || !ktype->instantiate)
- goto error_2;
-
- keyring = key_ref_to_ptr(keyring_ref);
-
- key_check(keyring);
-
- key_ref = ERR_PTR(-ENOTDIR);
- if (keyring->type != &key_type_keyring)
- goto error_2;
-
- ret = __key_link_begin(keyring, ktype, description, &prealloc);
- if (ret < 0)
- goto error_2;
-
- /* if we're going to allocate a new key, we're going to have
- * to modify the keyring */
- ret = key_permission(keyring_ref, KEY_WRITE);
- if (ret < 0) {
- key_ref = ERR_PTR(ret);
- goto error_3;
- }
-
- /* if it's possible to update this type of key, search for an existing
- * key of the same type and description in the destination keyring and
- * update that instead if possible
- */
- if (ktype->update) {
- key_ref = __keyring_search_one(keyring_ref, ktype, description,
- 0);
- if (!IS_ERR(key_ref))
- goto found_matching_key;
- }
-
- /* if the client doesn't provide, decide on the permissions we want */
- if (perm == KEY_PERM_UNDEF) {
- perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
- perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
-
- if (ktype->read)
- perm |= KEY_POS_READ | KEY_USR_READ;
-
- if (ktype == &key_type_keyring || ktype->update)
- perm |= KEY_USR_WRITE;
- }
-
- /* allocate a new key */
- key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
- perm, flags);
- if (IS_ERR(key)) {
- key_ref = ERR_CAST(key);
- goto error_3;
- }
-
- /* instantiate it and link it into the target keyring */
- ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
- &prealloc);
- if (ret < 0) {
- key_put(key);
- key_ref = ERR_PTR(ret);
- goto error_3;
- }
-
- key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
-
- error_3:
- __key_link_end(keyring, ktype, prealloc);
- error_2:
- key_type_put(ktype);
- error:
- return key_ref;
-
- found_matching_key:
- /* we found a matching key, so we're going to try to update it
- * - we can drop the locks first as we have the key pinned
- */
- __key_link_end(keyring, ktype, prealloc);
- key_type_put(ktype);
-
- key_ref = __key_update(key_ref, payload, plen);
- goto error;
-}
-EXPORT_SYMBOL(key_create_or_update);
-
-/**
- * key_update - Update a key's contents.
- * @key_ref: The pointer (plus possession flag) to the key.
- * @payload: The data to be used to update the key.
- * @plen: The length of @payload.
- *
- * Attempt to update the contents of a key with the given payload data. The
- * caller must be granted Write permission on the key. Negative keys can be
- * instantiated by this method.
- *
- * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
- * type does not support updating. The key type may return other errors.
- */
-int key_update(key_ref_t key_ref, const void *payload, size_t plen)
-{
- struct key *key = key_ref_to_ptr(key_ref);
- int ret;
-
- key_check(key);
-
- /* the key must be writable */
- ret = key_permission(key_ref, KEY_WRITE);
- if (ret < 0)
- goto error;
-
- /* attempt to update it if supported */
- ret = -EOPNOTSUPP;
- if (key->type->update) {
- down_write(&key->sem);
-
- ret = key->type->update(key, payload, plen);
- if (ret == 0)
- /* updating a negative key instantiates it */
- clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
-
- up_write(&key->sem);
- }
-
- error:
- return ret;
-}
-EXPORT_SYMBOL(key_update);
-
-/**
- * key_revoke - Revoke a key.
- * @key: The key to be revoked.
- *
- * Mark a key as being revoked and ask the type to free up its resources. The
- * revocation timeout is set and the key and all its links will be
- * automatically garbage collected after key_gc_delay amount of time if they
- * are not manually dealt with first.
- */
-void key_revoke(struct key *key)
-{
- struct timespec now;
- time_t time;
-
- key_check(key);
-
- /* make sure no one's trying to change or use the key when we mark it
- * - we tell lockdep that we might nest because we might be revoking an
- * authorisation key whilst holding the sem on a key we've just
- * instantiated
- */
- down_write_nested(&key->sem, 1);
- if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
- key->type->revoke)
- key->type->revoke(key);
-
- /* set the death time to no more than the expiry time */
- now = current_kernel_time();
- time = now.tv_sec;
- if (key->revoked_at == 0 || key->revoked_at > time) {
- key->revoked_at = time;
- key_schedule_gc(key->revoked_at + key_gc_delay);
- }
-
- up_write(&key->sem);
-}
-EXPORT_SYMBOL(key_revoke);
-
-/**
- * register_key_type - Register a type of key.
- * @ktype: The new key type.
- *
- * Register a new key type.
- *
- * Returns 0 on success or -EEXIST if a type of this name already exists.
- */
-int register_key_type(struct key_type *ktype)
-{
- struct key_type *p;
- int ret;
-
- memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
-
- ret = -EEXIST;
- down_write(&key_types_sem);
-
- /* disallow key types with the same name */
- list_for_each_entry(p, &key_types_list, link) {
- if (strcmp(p->name, ktype->name) == 0)
- goto out;
- }
-
- /* store the type */
- list_add(&ktype->link, &key_types_list);
- ret = 0;
-
-out:
- up_write(&key_types_sem);
- return ret;
-}
-EXPORT_SYMBOL(register_key_type);
-
-/**
- * unregister_key_type - Unregister a type of key.
- * @ktype: The key type.
- *
- * Unregister a key type and mark all the extant keys of this type as dead.
- * Those keys of this type are then destroyed to get rid of their payloads and
- * they and their links will be garbage collected as soon as possible.
- */
-void unregister_key_type(struct key_type *ktype)
-{
- down_write(&key_types_sem);
- list_del_init(&ktype->link);
- downgrade_write(&key_types_sem);
- key_gc_keytype(ktype);
- up_read(&key_types_sem);
-}
-EXPORT_SYMBOL(unregister_key_type);
-
-/*
- * Initialise the key management state.
- */
-void __init key_init(void)
-{
- /* allocate a slab in which we can store keys */
- key_jar = kmem_cache_create("key_jar", sizeof(struct key),
- 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
-
- /* add the special key types */
- list_add_tail(&key_type_keyring.link, &key_types_list);
- list_add_tail(&key_type_dead.link, &key_types_list);
- list_add_tail(&key_type_user.link, &key_types_list);
- list_add_tail(&key_type_logon.link, &key_types_list);
-
- /* record the root user tracking */
- rb_link_node(&root_key_user.node,
- NULL,
- &key_user_tree.rb_node);
-
- rb_insert_color(&root_key_user.node,
- &key_user_tree);
-}