diff options
author | Kevin | 2014-11-15 09:58:27 +0800 |
---|---|---|
committer | Kevin | 2014-11-15 09:58:27 +0800 |
commit | 392e8802486cb573b916e746010e141a75f507e6 (patch) | |
tree | 50029aca02c81f087b90336e670b44e510782330 /ANDROID_3.4.5/include/linux/cnt32_to_63.h | |
download | FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.gz FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.bz2 FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.zip |
init android origin source code
Diffstat (limited to 'ANDROID_3.4.5/include/linux/cnt32_to_63.h')
-rw-r--r-- | ANDROID_3.4.5/include/linux/cnt32_to_63.h | 107 |
1 files changed, 107 insertions, 0 deletions
diff --git a/ANDROID_3.4.5/include/linux/cnt32_to_63.h b/ANDROID_3.4.5/include/linux/cnt32_to_63.h new file mode 100644 index 00000000..aa629bce --- /dev/null +++ b/ANDROID_3.4.5/include/linux/cnt32_to_63.h @@ -0,0 +1,107 @@ +/* + * Extend a 32-bit counter to 63 bits + * + * Author: Nicolas Pitre + * Created: December 3, 2006 + * Copyright: MontaVista Software, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 + * as published by the Free Software Foundation. + */ + +#ifndef __LINUX_CNT32_TO_63_H__ +#define __LINUX_CNT32_TO_63_H__ + +#include <linux/compiler.h> +#include <linux/types.h> +#include <asm/byteorder.h> + +/* this is used only to give gcc a clue about good code generation */ +union cnt32_to_63 { + struct { +#if defined(__LITTLE_ENDIAN) + u32 lo, hi; +#elif defined(__BIG_ENDIAN) + u32 hi, lo; +#endif + }; + u64 val; +}; + + +/** + * cnt32_to_63 - Expand a 32-bit counter to a 63-bit counter + * @cnt_lo: The low part of the counter + * + * Many hardware clock counters are only 32 bits wide and therefore have + * a relatively short period making wrap-arounds rather frequent. This + * is a problem when implementing sched_clock() for example, where a 64-bit + * non-wrapping monotonic value is expected to be returned. + * + * To overcome that limitation, let's extend a 32-bit counter to 63 bits + * in a completely lock free fashion. Bits 0 to 31 of the clock are provided + * by the hardware while bits 32 to 62 are stored in memory. The top bit in + * memory is used to synchronize with the hardware clock half-period. When + * the top bit of both counters (hardware and in memory) differ then the + * memory is updated with a new value, incrementing it when the hardware + * counter wraps around. + * + * Because a word store in memory is atomic then the incremented value will + * always be in synch with the top bit indicating to any potential concurrent + * reader if the value in memory is up to date or not with regards to the + * needed increment. And any race in updating the value in memory is harmless + * as the same value would simply be stored more than once. + * + * The restrictions for the algorithm to work properly are: + * + * 1) this code must be called at least once per each half period of the + * 32-bit counter; + * + * 2) this code must not be preempted for a duration longer than the + * 32-bit counter half period minus the longest period between two + * calls to this code; + * + * Those requirements ensure proper update to the state bit in memory. + * This is usually not a problem in practice, but if it is then a kernel + * timer should be scheduled to manage for this code to be executed often + * enough. + * + * And finally: + * + * 3) the cnt_lo argument must be seen as a globally incrementing value, + * meaning that it should be a direct reference to the counter data which + * can be evaluated according to a specific ordering within the macro, + * and not the result of a previous evaluation stored in a variable. + * + * For example, this is wrong: + * + * u32 partial = get_hw_count(); + * u64 full = cnt32_to_63(partial); + * return full; + * + * This is fine: + * + * u64 full = cnt32_to_63(get_hw_count()); + * return full; + * + * Note that the top bit (bit 63) in the returned value should be considered + * as garbage. It is not cleared here because callers are likely to use a + * multiplier on the returned value which can get rid of the top bit + * implicitly by making the multiplier even, therefore saving on a runtime + * clear-bit instruction. Otherwise caller must remember to clear the top + * bit explicitly. + */ +#define cnt32_to_63(cnt_lo) \ +({ \ + static u32 __m_cnt_hi; \ + union cnt32_to_63 __x; \ + __x.hi = __m_cnt_hi; \ + smp_rmb(); \ + __x.lo = (cnt_lo); \ + if (unlikely((s32)(__x.hi ^ __x.lo) < 0)) \ + __m_cnt_hi = __x.hi = (__x.hi ^ 0x80000000) + (__x.hi >> 31); \ + __x.val; \ +}) + +#endif |