diff options
author | Kevin | 2014-11-15 09:58:27 +0800 |
---|---|---|
committer | Kevin | 2014-11-15 09:58:27 +0800 |
commit | 392e8802486cb573b916e746010e141a75f507e6 (patch) | |
tree | 50029aca02c81f087b90336e670b44e510782330 /ANDROID_3.4.5/fs/xfs/xfs_log_priv.h | |
download | FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.gz FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.bz2 FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.zip |
init android origin source code
Diffstat (limited to 'ANDROID_3.4.5/fs/xfs/xfs_log_priv.h')
-rw-r--r-- | ANDROID_3.4.5/fs/xfs/xfs_log_priv.h | 668 |
1 files changed, 668 insertions, 0 deletions
diff --git a/ANDROID_3.4.5/fs/xfs/xfs_log_priv.h b/ANDROID_3.4.5/fs/xfs/xfs_log_priv.h new file mode 100644 index 00000000..2152900b --- /dev/null +++ b/ANDROID_3.4.5/fs/xfs/xfs_log_priv.h @@ -0,0 +1,668 @@ +/* + * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ +#ifndef __XFS_LOG_PRIV_H__ +#define __XFS_LOG_PRIV_H__ + +struct xfs_buf; +struct log; +struct xlog_ticket; +struct xfs_mount; + +/* + * Macros, structures, prototypes for internal log manager use. + */ + +#define XLOG_MIN_ICLOGS 2 +#define XLOG_MAX_ICLOGS 8 +#define XLOG_HEADER_MAGIC_NUM 0xFEEDbabe /* Invalid cycle number */ +#define XLOG_VERSION_1 1 +#define XLOG_VERSION_2 2 /* Large IClogs, Log sunit */ +#define XLOG_VERSION_OKBITS (XLOG_VERSION_1 | XLOG_VERSION_2) +#define XLOG_MIN_RECORD_BSIZE (16*1024) /* eventually 32k */ +#define XLOG_BIG_RECORD_BSIZE (32*1024) /* 32k buffers */ +#define XLOG_MAX_RECORD_BSIZE (256*1024) +#define XLOG_HEADER_CYCLE_SIZE (32*1024) /* cycle data in header */ +#define XLOG_MIN_RECORD_BSHIFT 14 /* 16384 == 1 << 14 */ +#define XLOG_BIG_RECORD_BSHIFT 15 /* 32k == 1 << 15 */ +#define XLOG_MAX_RECORD_BSHIFT 18 /* 256k == 1 << 18 */ +#define XLOG_BTOLSUNIT(log, b) (((b)+(log)->l_mp->m_sb.sb_logsunit-1) / \ + (log)->l_mp->m_sb.sb_logsunit) +#define XLOG_LSUNITTOB(log, su) ((su) * (log)->l_mp->m_sb.sb_logsunit) + +#define XLOG_HEADER_SIZE 512 + +#define XLOG_REC_SHIFT(log) \ + BTOBB(1 << (xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? \ + XLOG_MAX_RECORD_BSHIFT : XLOG_BIG_RECORD_BSHIFT)) +#define XLOG_TOTAL_REC_SHIFT(log) \ + BTOBB(XLOG_MAX_ICLOGS << (xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? \ + XLOG_MAX_RECORD_BSHIFT : XLOG_BIG_RECORD_BSHIFT)) + +static inline xfs_lsn_t xlog_assign_lsn(uint cycle, uint block) +{ + return ((xfs_lsn_t)cycle << 32) | block; +} + +static inline uint xlog_get_cycle(char *ptr) +{ + if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM) + return be32_to_cpu(*((__be32 *)ptr + 1)); + else + return be32_to_cpu(*(__be32 *)ptr); +} + +#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) + +#ifdef __KERNEL__ + +/* + * get client id from packed copy. + * + * this hack is here because the xlog_pack code copies four bytes + * of xlog_op_header containing the fields oh_clientid, oh_flags + * and oh_res2 into the packed copy. + * + * later on this four byte chunk is treated as an int and the + * client id is pulled out. + * + * this has endian issues, of course. + */ +static inline uint xlog_get_client_id(__be32 i) +{ + return be32_to_cpu(i) >> 24; +} + +/* + * In core log state + */ +#define XLOG_STATE_ACTIVE 0x0001 /* Current IC log being written to */ +#define XLOG_STATE_WANT_SYNC 0x0002 /* Want to sync this iclog; no more writes */ +#define XLOG_STATE_SYNCING 0x0004 /* This IC log is syncing */ +#define XLOG_STATE_DONE_SYNC 0x0008 /* Done syncing to disk */ +#define XLOG_STATE_DO_CALLBACK \ + 0x0010 /* Process callback functions */ +#define XLOG_STATE_CALLBACK 0x0020 /* Callback functions now */ +#define XLOG_STATE_DIRTY 0x0040 /* Dirty IC log, not ready for ACTIVE status*/ +#define XLOG_STATE_IOERROR 0x0080 /* IO error happened in sync'ing log */ +#define XLOG_STATE_ALL 0x7FFF /* All possible valid flags */ +#define XLOG_STATE_NOTUSED 0x8000 /* This IC log not being used */ +#endif /* __KERNEL__ */ + +/* + * Flags to log operation header + * + * The first write of a new transaction will be preceded with a start + * record, XLOG_START_TRANS. Once a transaction is committed, a commit + * record is written, XLOG_COMMIT_TRANS. If a single region can not fit into + * the remainder of the current active in-core log, it is split up into + * multiple regions. Each partial region will be marked with a + * XLOG_CONTINUE_TRANS until the last one, which gets marked with XLOG_END_TRANS. + * + */ +#define XLOG_START_TRANS 0x01 /* Start a new transaction */ +#define XLOG_COMMIT_TRANS 0x02 /* Commit this transaction */ +#define XLOG_CONTINUE_TRANS 0x04 /* Cont this trans into new region */ +#define XLOG_WAS_CONT_TRANS 0x08 /* Cont this trans into new region */ +#define XLOG_END_TRANS 0x10 /* End a continued transaction */ +#define XLOG_UNMOUNT_TRANS 0x20 /* Unmount a filesystem transaction */ + +#ifdef __KERNEL__ +/* + * Flags to log ticket + */ +#define XLOG_TIC_INITED 0x1 /* has been initialized */ +#define XLOG_TIC_PERM_RESERV 0x2 /* permanent reservation */ + +#define XLOG_TIC_FLAGS \ + { XLOG_TIC_INITED, "XLOG_TIC_INITED" }, \ + { XLOG_TIC_PERM_RESERV, "XLOG_TIC_PERM_RESERV" } + +#endif /* __KERNEL__ */ + +#define XLOG_UNMOUNT_TYPE 0x556e /* Un for Unmount */ + +/* + * Flags for log structure + */ +#define XLOG_CHKSUM_MISMATCH 0x1 /* used only during recovery */ +#define XLOG_ACTIVE_RECOVERY 0x2 /* in the middle of recovery */ +#define XLOG_RECOVERY_NEEDED 0x4 /* log was recovered */ +#define XLOG_IO_ERROR 0x8 /* log hit an I/O error, and being + shutdown */ +#define XLOG_TAIL_WARN 0x10 /* log tail verify warning issued */ + +typedef __uint32_t xlog_tid_t; + +#ifdef __KERNEL__ +/* + * Below are states for covering allocation transactions. + * By covering, we mean changing the h_tail_lsn in the last on-disk + * log write such that no allocation transactions will be re-done during + * recovery after a system crash. Recovery starts at the last on-disk + * log write. + * + * These states are used to insert dummy log entries to cover + * space allocation transactions which can undo non-transactional changes + * after a crash. Writes to a file with space + * already allocated do not result in any transactions. Allocations + * might include space beyond the EOF. So if we just push the EOF a + * little, the last transaction for the file could contain the wrong + * size. If there is no file system activity, after an allocation + * transaction, and the system crashes, the allocation transaction + * will get replayed and the file will be truncated. This could + * be hours/days/... after the allocation occurred. + * + * The fix for this is to do two dummy transactions when the + * system is idle. We need two dummy transaction because the h_tail_lsn + * in the log record header needs to point beyond the last possible + * non-dummy transaction. The first dummy changes the h_tail_lsn to + * the first transaction before the dummy. The second dummy causes + * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn. + * + * These dummy transactions get committed when everything + * is idle (after there has been some activity). + * + * There are 5 states used to control this. + * + * IDLE -- no logging has been done on the file system or + * we are done covering previous transactions. + * NEED -- logging has occurred and we need a dummy transaction + * when the log becomes idle. + * DONE -- we were in the NEED state and have committed a dummy + * transaction. + * NEED2 -- we detected that a dummy transaction has gone to the + * on disk log with no other transactions. + * DONE2 -- we committed a dummy transaction when in the NEED2 state. + * + * There are two places where we switch states: + * + * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2. + * We commit the dummy transaction and switch to DONE or DONE2, + * respectively. In all other states, we don't do anything. + * + * 2.) When we finish writing the on-disk log (xlog_state_clean_log). + * + * No matter what state we are in, if this isn't the dummy + * transaction going out, the next state is NEED. + * So, if we aren't in the DONE or DONE2 states, the next state + * is NEED. We can't be finishing a write of the dummy record + * unless it was committed and the state switched to DONE or DONE2. + * + * If we are in the DONE state and this was a write of the + * dummy transaction, we move to NEED2. + * + * If we are in the DONE2 state and this was a write of the + * dummy transaction, we move to IDLE. + * + * + * Writing only one dummy transaction can get appended to + * one file space allocation. When this happens, the log recovery + * code replays the space allocation and a file could be truncated. + * This is why we have the NEED2 and DONE2 states before going idle. + */ + +#define XLOG_STATE_COVER_IDLE 0 +#define XLOG_STATE_COVER_NEED 1 +#define XLOG_STATE_COVER_DONE 2 +#define XLOG_STATE_COVER_NEED2 3 +#define XLOG_STATE_COVER_DONE2 4 + +#define XLOG_COVER_OPS 5 + + +/* Ticket reservation region accounting */ +#define XLOG_TIC_LEN_MAX 15 + +/* + * Reservation region + * As would be stored in xfs_log_iovec but without the i_addr which + * we don't care about. + */ +typedef struct xlog_res { + uint r_len; /* region length :4 */ + uint r_type; /* region's transaction type :4 */ +} xlog_res_t; + +typedef struct xlog_ticket { + struct list_head t_queue; /* reserve/write queue */ + struct task_struct *t_task; /* task that owns this ticket */ + xlog_tid_t t_tid; /* transaction identifier : 4 */ + atomic_t t_ref; /* ticket reference count : 4 */ + int t_curr_res; /* current reservation in bytes : 4 */ + int t_unit_res; /* unit reservation in bytes : 4 */ + char t_ocnt; /* original count : 1 */ + char t_cnt; /* current count : 1 */ + char t_clientid; /* who does this belong to; : 1 */ + char t_flags; /* properties of reservation : 1 */ + uint t_trans_type; /* transaction type : 4 */ + + /* reservation array fields */ + uint t_res_num; /* num in array : 4 */ + uint t_res_num_ophdrs; /* num op hdrs : 4 */ + uint t_res_arr_sum; /* array sum : 4 */ + uint t_res_o_flow; /* sum overflow : 4 */ + xlog_res_t t_res_arr[XLOG_TIC_LEN_MAX]; /* array of res : 8 * 15 */ +} xlog_ticket_t; + +#endif + + +typedef struct xlog_op_header { + __be32 oh_tid; /* transaction id of operation : 4 b */ + __be32 oh_len; /* bytes in data region : 4 b */ + __u8 oh_clientid; /* who sent me this : 1 b */ + __u8 oh_flags; /* : 1 b */ + __u16 oh_res2; /* 32 bit align : 2 b */ +} xlog_op_header_t; + + +/* valid values for h_fmt */ +#define XLOG_FMT_UNKNOWN 0 +#define XLOG_FMT_LINUX_LE 1 +#define XLOG_FMT_LINUX_BE 2 +#define XLOG_FMT_IRIX_BE 3 + +/* our fmt */ +#ifdef XFS_NATIVE_HOST +#define XLOG_FMT XLOG_FMT_LINUX_BE +#else +#define XLOG_FMT XLOG_FMT_LINUX_LE +#endif + +typedef struct xlog_rec_header { + __be32 h_magicno; /* log record (LR) identifier : 4 */ + __be32 h_cycle; /* write cycle of log : 4 */ + __be32 h_version; /* LR version : 4 */ + __be32 h_len; /* len in bytes; should be 64-bit aligned: 4 */ + __be64 h_lsn; /* lsn of this LR : 8 */ + __be64 h_tail_lsn; /* lsn of 1st LR w/ buffers not committed: 8 */ + __be32 h_chksum; /* may not be used; non-zero if used : 4 */ + __be32 h_prev_block; /* block number to previous LR : 4 */ + __be32 h_num_logops; /* number of log operations in this LR : 4 */ + __be32 h_cycle_data[XLOG_HEADER_CYCLE_SIZE / BBSIZE]; + /* new fields */ + __be32 h_fmt; /* format of log record : 4 */ + uuid_t h_fs_uuid; /* uuid of FS : 16 */ + __be32 h_size; /* iclog size : 4 */ +} xlog_rec_header_t; + +typedef struct xlog_rec_ext_header { + __be32 xh_cycle; /* write cycle of log : 4 */ + __be32 xh_cycle_data[XLOG_HEADER_CYCLE_SIZE / BBSIZE]; /* : 256 */ +} xlog_rec_ext_header_t; + +#ifdef __KERNEL__ + +/* + * Quite misnamed, because this union lays out the actual on-disk log buffer. + */ +typedef union xlog_in_core2 { + xlog_rec_header_t hic_header; + xlog_rec_ext_header_t hic_xheader; + char hic_sector[XLOG_HEADER_SIZE]; +} xlog_in_core_2_t; + +/* + * - A log record header is 512 bytes. There is plenty of room to grow the + * xlog_rec_header_t into the reserved space. + * - ic_data follows, so a write to disk can start at the beginning of + * the iclog. + * - ic_forcewait is used to implement synchronous forcing of the iclog to disk. + * - ic_next is the pointer to the next iclog in the ring. + * - ic_bp is a pointer to the buffer used to write this incore log to disk. + * - ic_log is a pointer back to the global log structure. + * - ic_callback is a linked list of callback function/argument pairs to be + * called after an iclog finishes writing. + * - ic_size is the full size of the header plus data. + * - ic_offset is the current number of bytes written to in this iclog. + * - ic_refcnt is bumped when someone is writing to the log. + * - ic_state is the state of the iclog. + * + * Because of cacheline contention on large machines, we need to separate + * various resources onto different cachelines. To start with, make the + * structure cacheline aligned. The following fields can be contended on + * by independent processes: + * + * - ic_callback_* + * - ic_refcnt + * - fields protected by the global l_icloglock + * + * so we need to ensure that these fields are located in separate cachelines. + * We'll put all the read-only and l_icloglock fields in the first cacheline, + * and move everything else out to subsequent cachelines. + */ +typedef struct xlog_in_core { + wait_queue_head_t ic_force_wait; + wait_queue_head_t ic_write_wait; + struct xlog_in_core *ic_next; + struct xlog_in_core *ic_prev; + struct xfs_buf *ic_bp; + struct log *ic_log; + int ic_size; + int ic_offset; + int ic_bwritecnt; + unsigned short ic_state; + char *ic_datap; /* pointer to iclog data */ + + /* Callback structures need their own cacheline */ + spinlock_t ic_callback_lock ____cacheline_aligned_in_smp; + xfs_log_callback_t *ic_callback; + xfs_log_callback_t **ic_callback_tail; + + /* reference counts need their own cacheline */ + atomic_t ic_refcnt ____cacheline_aligned_in_smp; + xlog_in_core_2_t *ic_data; +#define ic_header ic_data->hic_header +} xlog_in_core_t; + +/* + * The CIL context is used to aggregate per-transaction details as well be + * passed to the iclog for checkpoint post-commit processing. After being + * passed to the iclog, another context needs to be allocated for tracking the + * next set of transactions to be aggregated into a checkpoint. + */ +struct xfs_cil; + +struct xfs_cil_ctx { + struct xfs_cil *cil; + xfs_lsn_t sequence; /* chkpt sequence # */ + xfs_lsn_t start_lsn; /* first LSN of chkpt commit */ + xfs_lsn_t commit_lsn; /* chkpt commit record lsn */ + struct xlog_ticket *ticket; /* chkpt ticket */ + int nvecs; /* number of regions */ + int space_used; /* aggregate size of regions */ + struct list_head busy_extents; /* busy extents in chkpt */ + struct xfs_log_vec *lv_chain; /* logvecs being pushed */ + xfs_log_callback_t log_cb; /* completion callback hook. */ + struct list_head committing; /* ctx committing list */ +}; + +/* + * Committed Item List structure + * + * This structure is used to track log items that have been committed but not + * yet written into the log. It is used only when the delayed logging mount + * option is enabled. + * + * This structure tracks the list of committing checkpoint contexts so + * we can avoid the problem of having to hold out new transactions during a + * flush until we have a the commit record LSN of the checkpoint. We can + * traverse the list of committing contexts in xlog_cil_push_lsn() to find a + * sequence match and extract the commit LSN directly from there. If the + * checkpoint is still in the process of committing, we can block waiting for + * the commit LSN to be determined as well. This should make synchronous + * operations almost as efficient as the old logging methods. + */ +struct xfs_cil { + struct log *xc_log; + struct list_head xc_cil; + spinlock_t xc_cil_lock; + struct xfs_cil_ctx *xc_ctx; + struct rw_semaphore xc_ctx_lock; + struct list_head xc_committing; + wait_queue_head_t xc_commit_wait; + xfs_lsn_t xc_current_sequence; +}; + +/* + * The amount of log space we allow the CIL to aggregate is difficult to size. + * Whatever we choose, we have to make sure we can get a reservation for the + * log space effectively, that it is large enough to capture sufficient + * relogging to reduce log buffer IO significantly, but it is not too large for + * the log or induces too much latency when writing out through the iclogs. We + * track both space consumed and the number of vectors in the checkpoint + * context, so we need to decide which to use for limiting. + * + * Every log buffer we write out during a push needs a header reserved, which + * is at least one sector and more for v2 logs. Hence we need a reservation of + * at least 512 bytes per 32k of log space just for the LR headers. That means + * 16KB of reservation per megabyte of delayed logging space we will consume, + * plus various headers. The number of headers will vary based on the num of + * io vectors, so limiting on a specific number of vectors is going to result + * in transactions of varying size. IOWs, it is more consistent to track and + * limit space consumed in the log rather than by the number of objects being + * logged in order to prevent checkpoint ticket overruns. + * + * Further, use of static reservations through the log grant mechanism is + * problematic. It introduces a lot of complexity (e.g. reserve grant vs write + * grant) and a significant deadlock potential because regranting write space + * can block on log pushes. Hence if we have to regrant log space during a log + * push, we can deadlock. + * + * However, we can avoid this by use of a dynamic "reservation stealing" + * technique during transaction commit whereby unused reservation space in the + * transaction ticket is transferred to the CIL ctx commit ticket to cover the + * space needed by the checkpoint transaction. This means that we never need to + * specifically reserve space for the CIL checkpoint transaction, nor do we + * need to regrant space once the checkpoint completes. This also means the + * checkpoint transaction ticket is specific to the checkpoint context, rather + * than the CIL itself. + * + * With dynamic reservations, we can effectively make up arbitrary limits for + * the checkpoint size so long as they don't violate any other size rules. + * Recovery imposes a rule that no transaction exceed half the log, so we are + * limited by that. Furthermore, the log transaction reservation subsystem + * tries to keep 25% of the log free, so we need to keep below that limit or we + * risk running out of free log space to start any new transactions. + * + * In order to keep background CIL push efficient, we will set a lower + * threshold at which background pushing is attempted without blocking current + * transaction commits. A separate, higher bound defines when CIL pushes are + * enforced to ensure we stay within our maximum checkpoint size bounds. + * threshold, yet give us plenty of space for aggregation on large logs. + */ +#define XLOG_CIL_SPACE_LIMIT(log) (log->l_logsize >> 3) +#define XLOG_CIL_HARD_SPACE_LIMIT(log) (3 * (log->l_logsize >> 4)) + +/* + * ticket grant locks, queues and accounting have their own cachlines + * as these are quite hot and can be operated on concurrently. + */ +struct xlog_grant_head { + spinlock_t lock ____cacheline_aligned_in_smp; + struct list_head waiters; + atomic64_t grant; +}; + +/* + * The reservation head lsn is not made up of a cycle number and block number. + * Instead, it uses a cycle number and byte number. Logs don't expect to + * overflow 31 bits worth of byte offset, so using a byte number will mean + * that round off problems won't occur when releasing partial reservations. + */ +typedef struct log { + /* The following fields don't need locking */ + struct xfs_mount *l_mp; /* mount point */ + struct xfs_ail *l_ailp; /* AIL log is working with */ + struct xfs_cil *l_cilp; /* CIL log is working with */ + struct xfs_buf *l_xbuf; /* extra buffer for log + * wrapping */ + struct xfs_buftarg *l_targ; /* buftarg of log */ + uint l_flags; + uint l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */ + struct list_head *l_buf_cancel_table; + int l_iclog_hsize; /* size of iclog header */ + int l_iclog_heads; /* # of iclog header sectors */ + uint l_sectBBsize; /* sector size in BBs (2^n) */ + int l_iclog_size; /* size of log in bytes */ + int l_iclog_size_log; /* log power size of log */ + int l_iclog_bufs; /* number of iclog buffers */ + xfs_daddr_t l_logBBstart; /* start block of log */ + int l_logsize; /* size of log in bytes */ + int l_logBBsize; /* size of log in BB chunks */ + + /* The following block of fields are changed while holding icloglock */ + wait_queue_head_t l_flush_wait ____cacheline_aligned_in_smp; + /* waiting for iclog flush */ + int l_covered_state;/* state of "covering disk + * log entries" */ + xlog_in_core_t *l_iclog; /* head log queue */ + spinlock_t l_icloglock; /* grab to change iclog state */ + int l_curr_cycle; /* Cycle number of log writes */ + int l_prev_cycle; /* Cycle number before last + * block increment */ + int l_curr_block; /* current logical log block */ + int l_prev_block; /* previous logical log block */ + + /* + * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and + * read without needing to hold specific locks. To avoid operations + * contending with other hot objects, place each of them on a separate + * cacheline. + */ + /* lsn of last LR on disk */ + atomic64_t l_last_sync_lsn ____cacheline_aligned_in_smp; + /* lsn of 1st LR with unflushed * buffers */ + atomic64_t l_tail_lsn ____cacheline_aligned_in_smp; + + struct xlog_grant_head l_reserve_head; + struct xlog_grant_head l_write_head; + + /* The following field are used for debugging; need to hold icloglock */ +#ifdef DEBUG + char *l_iclog_bak[XLOG_MAX_ICLOGS]; +#endif + +} xlog_t; + +#define XLOG_BUF_CANCEL_BUCKET(log, blkno) \ + ((log)->l_buf_cancel_table + ((__uint64_t)blkno % XLOG_BC_TABLE_SIZE)) + +#define XLOG_FORCED_SHUTDOWN(log) ((log)->l_flags & XLOG_IO_ERROR) + +/* common routines */ +extern int xlog_recover(xlog_t *log); +extern int xlog_recover_finish(xlog_t *log); +extern void xlog_pack_data(xlog_t *log, xlog_in_core_t *iclog, int); + +extern kmem_zone_t *xfs_log_ticket_zone; +struct xlog_ticket *xlog_ticket_alloc(struct log *log, int unit_bytes, + int count, char client, bool permanent, + int alloc_flags); + + +static inline void +xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes) +{ + *ptr += bytes; + *len -= bytes; + *off += bytes; +} + +void xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket); +int xlog_write(struct log *log, struct xfs_log_vec *log_vector, + struct xlog_ticket *tic, xfs_lsn_t *start_lsn, + xlog_in_core_t **commit_iclog, uint flags); + +/* + * When we crack an atomic LSN, we sample it first so that the value will not + * change while we are cracking it into the component values. This means we + * will always get consistent component values to work from. This should always + * be used to sample and crack LSNs that are stored and updated in atomic + * variables. + */ +static inline void +xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block) +{ + xfs_lsn_t val = atomic64_read(lsn); + + *cycle = CYCLE_LSN(val); + *block = BLOCK_LSN(val); +} + +/* + * Calculate and assign a value to an atomic LSN variable from component pieces. + */ +static inline void +xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block) +{ + atomic64_set(lsn, xlog_assign_lsn(cycle, block)); +} + +/* + * When we crack the grant head, we sample it first so that the value will not + * change while we are cracking it into the component values. This means we + * will always get consistent component values to work from. + */ +static inline void +xlog_crack_grant_head_val(int64_t val, int *cycle, int *space) +{ + *cycle = val >> 32; + *space = val & 0xffffffff; +} + +static inline void +xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space) +{ + xlog_crack_grant_head_val(atomic64_read(head), cycle, space); +} + +static inline int64_t +xlog_assign_grant_head_val(int cycle, int space) +{ + return ((int64_t)cycle << 32) | space; +} + +static inline void +xlog_assign_grant_head(atomic64_t *head, int cycle, int space) +{ + atomic64_set(head, xlog_assign_grant_head_val(cycle, space)); +} + +/* + * Committed Item List interfaces + */ +int xlog_cil_init(struct log *log); +void xlog_cil_init_post_recovery(struct log *log); +void xlog_cil_destroy(struct log *log); + +/* + * CIL force routines + */ +xfs_lsn_t xlog_cil_force_lsn(struct log *log, xfs_lsn_t sequence); + +static inline void +xlog_cil_force(struct log *log) +{ + xlog_cil_force_lsn(log, log->l_cilp->xc_current_sequence); +} + +/* + * Unmount record type is used as a pseudo transaction type for the ticket. + * It's value must be outside the range of XFS_TRANS_* values. + */ +#define XLOG_UNMOUNT_REC_TYPE (-1U) + +/* + * Wrapper function for waiting on a wait queue serialised against wakeups + * by a spinlock. This matches the semantics of all the wait queues used in the + * log code. + */ +static inline void xlog_wait(wait_queue_head_t *wq, spinlock_t *lock) +{ + DECLARE_WAITQUEUE(wait, current); + + add_wait_queue_exclusive(wq, &wait); + __set_current_state(TASK_UNINTERRUPTIBLE); + spin_unlock(lock); + schedule(); + remove_wait_queue(wq, &wait); +} +#endif /* __KERNEL__ */ + +#endif /* __XFS_LOG_PRIV_H__ */ |