summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/fs/xfs/xfs_inode_item.c
diff options
context:
space:
mode:
authorKevin2014-11-15 09:58:27 +0800
committerKevin2014-11-15 09:58:27 +0800
commit392e8802486cb573b916e746010e141a75f507e6 (patch)
tree50029aca02c81f087b90336e670b44e510782330 /ANDROID_3.4.5/fs/xfs/xfs_inode_item.c
downloadFOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.gz
FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.bz2
FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.zip
init android origin source code
Diffstat (limited to 'ANDROID_3.4.5/fs/xfs/xfs_inode_item.c')
-rw-r--r--ANDROID_3.4.5/fs/xfs/xfs_inode_item.c966
1 files changed, 966 insertions, 0 deletions
diff --git a/ANDROID_3.4.5/fs/xfs/xfs_inode_item.c b/ANDROID_3.4.5/fs/xfs/xfs_inode_item.c
new file mode 100644
index 00000000..05d924ef
--- /dev/null
+++ b/ANDROID_3.4.5/fs/xfs/xfs_inode_item.c
@@ -0,0 +1,966 @@
+/*
+ * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_types.h"
+#include "xfs_bit.h"
+#include "xfs_log.h"
+#include "xfs_inum.h"
+#include "xfs_trans.h"
+#include "xfs_sb.h"
+#include "xfs_ag.h"
+#include "xfs_mount.h"
+#include "xfs_trans_priv.h"
+#include "xfs_bmap_btree.h"
+#include "xfs_dinode.h"
+#include "xfs_inode.h"
+#include "xfs_inode_item.h"
+#include "xfs_error.h"
+#include "xfs_trace.h"
+
+
+kmem_zone_t *xfs_ili_zone; /* inode log item zone */
+
+static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
+{
+ return container_of(lip, struct xfs_inode_log_item, ili_item);
+}
+
+
+/*
+ * This returns the number of iovecs needed to log the given inode item.
+ *
+ * We need one iovec for the inode log format structure, one for the
+ * inode core, and possibly one for the inode data/extents/b-tree root
+ * and one for the inode attribute data/extents/b-tree root.
+ */
+STATIC uint
+xfs_inode_item_size(
+ struct xfs_log_item *lip)
+{
+ struct xfs_inode_log_item *iip = INODE_ITEM(lip);
+ struct xfs_inode *ip = iip->ili_inode;
+ uint nvecs = 2;
+
+ switch (ip->i_d.di_format) {
+ case XFS_DINODE_FMT_EXTENTS:
+ if ((iip->ili_fields & XFS_ILOG_DEXT) &&
+ ip->i_d.di_nextents > 0 &&
+ ip->i_df.if_bytes > 0)
+ nvecs++;
+ break;
+
+ case XFS_DINODE_FMT_BTREE:
+ if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
+ ip->i_df.if_broot_bytes > 0)
+ nvecs++;
+ break;
+
+ case XFS_DINODE_FMT_LOCAL:
+ if ((iip->ili_fields & XFS_ILOG_DDATA) &&
+ ip->i_df.if_bytes > 0)
+ nvecs++;
+ break;
+
+ case XFS_DINODE_FMT_DEV:
+ case XFS_DINODE_FMT_UUID:
+ break;
+
+ default:
+ ASSERT(0);
+ break;
+ }
+
+ if (!XFS_IFORK_Q(ip))
+ return nvecs;
+
+
+ /*
+ * Log any necessary attribute data.
+ */
+ switch (ip->i_d.di_aformat) {
+ case XFS_DINODE_FMT_EXTENTS:
+ if ((iip->ili_fields & XFS_ILOG_AEXT) &&
+ ip->i_d.di_anextents > 0 &&
+ ip->i_afp->if_bytes > 0)
+ nvecs++;
+ break;
+
+ case XFS_DINODE_FMT_BTREE:
+ if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
+ ip->i_afp->if_broot_bytes > 0)
+ nvecs++;
+ break;
+
+ case XFS_DINODE_FMT_LOCAL:
+ if ((iip->ili_fields & XFS_ILOG_ADATA) &&
+ ip->i_afp->if_bytes > 0)
+ nvecs++;
+ break;
+
+ default:
+ ASSERT(0);
+ break;
+ }
+
+ return nvecs;
+}
+
+/*
+ * xfs_inode_item_format_extents - convert in-core extents to on-disk form
+ *
+ * For either the data or attr fork in extent format, we need to endian convert
+ * the in-core extent as we place them into the on-disk inode. In this case, we
+ * need to do this conversion before we write the extents into the log. Because
+ * we don't have the disk inode to write into here, we allocate a buffer and
+ * format the extents into it via xfs_iextents_copy(). We free the buffer in
+ * the unlock routine after the copy for the log has been made.
+ *
+ * In the case of the data fork, the in-core and on-disk fork sizes can be
+ * different due to delayed allocation extents. We only log on-disk extents
+ * here, so always use the physical fork size to determine the size of the
+ * buffer we need to allocate.
+ */
+STATIC void
+xfs_inode_item_format_extents(
+ struct xfs_inode *ip,
+ struct xfs_log_iovec *vecp,
+ int whichfork,
+ int type)
+{
+ xfs_bmbt_rec_t *ext_buffer;
+
+ ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
+ if (whichfork == XFS_DATA_FORK)
+ ip->i_itemp->ili_extents_buf = ext_buffer;
+ else
+ ip->i_itemp->ili_aextents_buf = ext_buffer;
+
+ vecp->i_addr = ext_buffer;
+ vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
+ vecp->i_type = type;
+}
+
+/*
+ * This is called to fill in the vector of log iovecs for the
+ * given inode log item. It fills the first item with an inode
+ * log format structure, the second with the on-disk inode structure,
+ * and a possible third and/or fourth with the inode data/extents/b-tree
+ * root and inode attributes data/extents/b-tree root.
+ */
+STATIC void
+xfs_inode_item_format(
+ struct xfs_log_item *lip,
+ struct xfs_log_iovec *vecp)
+{
+ struct xfs_inode_log_item *iip = INODE_ITEM(lip);
+ struct xfs_inode *ip = iip->ili_inode;
+ uint nvecs;
+ size_t data_bytes;
+ xfs_mount_t *mp;
+
+ vecp->i_addr = &iip->ili_format;
+ vecp->i_len = sizeof(xfs_inode_log_format_t);
+ vecp->i_type = XLOG_REG_TYPE_IFORMAT;
+ vecp++;
+ nvecs = 1;
+
+ vecp->i_addr = &ip->i_d;
+ vecp->i_len = sizeof(struct xfs_icdinode);
+ vecp->i_type = XLOG_REG_TYPE_ICORE;
+ vecp++;
+ nvecs++;
+
+ /*
+ * If this is really an old format inode, then we need to
+ * log it as such. This means that we have to copy the link
+ * count from the new field to the old. We don't have to worry
+ * about the new fields, because nothing trusts them as long as
+ * the old inode version number is there. If the superblock already
+ * has a new version number, then we don't bother converting back.
+ */
+ mp = ip->i_mount;
+ ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
+ if (ip->i_d.di_version == 1) {
+ if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
+ /*
+ * Convert it back.
+ */
+ ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
+ ip->i_d.di_onlink = ip->i_d.di_nlink;
+ } else {
+ /*
+ * The superblock version has already been bumped,
+ * so just make the conversion to the new inode
+ * format permanent.
+ */
+ ip->i_d.di_version = 2;
+ ip->i_d.di_onlink = 0;
+ memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
+ }
+ }
+
+ switch (ip->i_d.di_format) {
+ case XFS_DINODE_FMT_EXTENTS:
+ iip->ili_fields &=
+ ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
+ XFS_ILOG_DEV | XFS_ILOG_UUID);
+
+ if ((iip->ili_fields & XFS_ILOG_DEXT) &&
+ ip->i_d.di_nextents > 0 &&
+ ip->i_df.if_bytes > 0) {
+ ASSERT(ip->i_df.if_u1.if_extents != NULL);
+ ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
+ ASSERT(iip->ili_extents_buf == NULL);
+
+#ifdef XFS_NATIVE_HOST
+ if (ip->i_d.di_nextents == ip->i_df.if_bytes /
+ (uint)sizeof(xfs_bmbt_rec_t)) {
+ /*
+ * There are no delayed allocation
+ * extents, so just point to the
+ * real extents array.
+ */
+ vecp->i_addr = ip->i_df.if_u1.if_extents;
+ vecp->i_len = ip->i_df.if_bytes;
+ vecp->i_type = XLOG_REG_TYPE_IEXT;
+ } else
+#endif
+ {
+ xfs_inode_item_format_extents(ip, vecp,
+ XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
+ }
+ ASSERT(vecp->i_len <= ip->i_df.if_bytes);
+ iip->ili_format.ilf_dsize = vecp->i_len;
+ vecp++;
+ nvecs++;
+ } else {
+ iip->ili_fields &= ~XFS_ILOG_DEXT;
+ }
+ break;
+
+ case XFS_DINODE_FMT_BTREE:
+ iip->ili_fields &=
+ ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
+ XFS_ILOG_DEV | XFS_ILOG_UUID);
+
+ if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
+ ip->i_df.if_broot_bytes > 0) {
+ ASSERT(ip->i_df.if_broot != NULL);
+ vecp->i_addr = ip->i_df.if_broot;
+ vecp->i_len = ip->i_df.if_broot_bytes;
+ vecp->i_type = XLOG_REG_TYPE_IBROOT;
+ vecp++;
+ nvecs++;
+ iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
+ } else {
+ ASSERT(!(iip->ili_fields &
+ XFS_ILOG_DBROOT));
+#ifdef XFS_TRANS_DEBUG
+ if (iip->ili_root_size > 0) {
+ ASSERT(iip->ili_root_size ==
+ ip->i_df.if_broot_bytes);
+ ASSERT(memcmp(iip->ili_orig_root,
+ ip->i_df.if_broot,
+ iip->ili_root_size) == 0);
+ } else {
+ ASSERT(ip->i_df.if_broot_bytes == 0);
+ }
+#endif
+ iip->ili_fields &= ~XFS_ILOG_DBROOT;
+ }
+ break;
+
+ case XFS_DINODE_FMT_LOCAL:
+ iip->ili_fields &=
+ ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
+ XFS_ILOG_DEV | XFS_ILOG_UUID);
+ if ((iip->ili_fields & XFS_ILOG_DDATA) &&
+ ip->i_df.if_bytes > 0) {
+ ASSERT(ip->i_df.if_u1.if_data != NULL);
+ ASSERT(ip->i_d.di_size > 0);
+
+ vecp->i_addr = ip->i_df.if_u1.if_data;
+ /*
+ * Round i_bytes up to a word boundary.
+ * The underlying memory is guaranteed to
+ * to be there by xfs_idata_realloc().
+ */
+ data_bytes = roundup(ip->i_df.if_bytes, 4);
+ ASSERT((ip->i_df.if_real_bytes == 0) ||
+ (ip->i_df.if_real_bytes == data_bytes));
+ vecp->i_len = (int)data_bytes;
+ vecp->i_type = XLOG_REG_TYPE_ILOCAL;
+ vecp++;
+ nvecs++;
+ iip->ili_format.ilf_dsize = (unsigned)data_bytes;
+ } else {
+ iip->ili_fields &= ~XFS_ILOG_DDATA;
+ }
+ break;
+
+ case XFS_DINODE_FMT_DEV:
+ iip->ili_fields &=
+ ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
+ XFS_ILOG_DEXT | XFS_ILOG_UUID);
+ if (iip->ili_fields & XFS_ILOG_DEV) {
+ iip->ili_format.ilf_u.ilfu_rdev =
+ ip->i_df.if_u2.if_rdev;
+ }
+ break;
+
+ case XFS_DINODE_FMT_UUID:
+ iip->ili_fields &=
+ ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
+ XFS_ILOG_DEXT | XFS_ILOG_DEV);
+ if (iip->ili_fields & XFS_ILOG_UUID) {
+ iip->ili_format.ilf_u.ilfu_uuid =
+ ip->i_df.if_u2.if_uuid;
+ }
+ break;
+
+ default:
+ ASSERT(0);
+ break;
+ }
+
+ /*
+ * If there are no attributes associated with the file, then we're done.
+ */
+ if (!XFS_IFORK_Q(ip)) {
+ iip->ili_fields &=
+ ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
+ goto out;
+ }
+
+ switch (ip->i_d.di_aformat) {
+ case XFS_DINODE_FMT_EXTENTS:
+ iip->ili_fields &=
+ ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
+
+ if ((iip->ili_fields & XFS_ILOG_AEXT) &&
+ ip->i_d.di_anextents > 0 &&
+ ip->i_afp->if_bytes > 0) {
+ ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
+ ip->i_d.di_anextents);
+ ASSERT(ip->i_afp->if_u1.if_extents != NULL);
+#ifdef XFS_NATIVE_HOST
+ /*
+ * There are not delayed allocation extents
+ * for attributes, so just point at the array.
+ */
+ vecp->i_addr = ip->i_afp->if_u1.if_extents;
+ vecp->i_len = ip->i_afp->if_bytes;
+ vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
+#else
+ ASSERT(iip->ili_aextents_buf == NULL);
+ xfs_inode_item_format_extents(ip, vecp,
+ XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
+#endif
+ iip->ili_format.ilf_asize = vecp->i_len;
+ vecp++;
+ nvecs++;
+ } else {
+ iip->ili_fields &= ~XFS_ILOG_AEXT;
+ }
+ break;
+
+ case XFS_DINODE_FMT_BTREE:
+ iip->ili_fields &=
+ ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
+
+ if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
+ ip->i_afp->if_broot_bytes > 0) {
+ ASSERT(ip->i_afp->if_broot != NULL);
+
+ vecp->i_addr = ip->i_afp->if_broot;
+ vecp->i_len = ip->i_afp->if_broot_bytes;
+ vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
+ vecp++;
+ nvecs++;
+ iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
+ } else {
+ iip->ili_fields &= ~XFS_ILOG_ABROOT;
+ }
+ break;
+
+ case XFS_DINODE_FMT_LOCAL:
+ iip->ili_fields &=
+ ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
+
+ if ((iip->ili_fields & XFS_ILOG_ADATA) &&
+ ip->i_afp->if_bytes > 0) {
+ ASSERT(ip->i_afp->if_u1.if_data != NULL);
+
+ vecp->i_addr = ip->i_afp->if_u1.if_data;
+ /*
+ * Round i_bytes up to a word boundary.
+ * The underlying memory is guaranteed to
+ * to be there by xfs_idata_realloc().
+ */
+ data_bytes = roundup(ip->i_afp->if_bytes, 4);
+ ASSERT((ip->i_afp->if_real_bytes == 0) ||
+ (ip->i_afp->if_real_bytes == data_bytes));
+ vecp->i_len = (int)data_bytes;
+ vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
+ vecp++;
+ nvecs++;
+ iip->ili_format.ilf_asize = (unsigned)data_bytes;
+ } else {
+ iip->ili_fields &= ~XFS_ILOG_ADATA;
+ }
+ break;
+
+ default:
+ ASSERT(0);
+ break;
+ }
+
+out:
+ /*
+ * Now update the log format that goes out to disk from the in-core
+ * values. We always write the inode core to make the arithmetic
+ * games in recovery easier, which isn't a big deal as just about any
+ * transaction would dirty it anyway.
+ */
+ iip->ili_format.ilf_fields = XFS_ILOG_CORE |
+ (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
+ iip->ili_format.ilf_size = nvecs;
+}
+
+
+/*
+ * This is called to pin the inode associated with the inode log
+ * item in memory so it cannot be written out.
+ */
+STATIC void
+xfs_inode_item_pin(
+ struct xfs_log_item *lip)
+{
+ struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
+
+ ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
+
+ trace_xfs_inode_pin(ip, _RET_IP_);
+ atomic_inc(&ip->i_pincount);
+}
+
+
+/*
+ * This is called to unpin the inode associated with the inode log
+ * item which was previously pinned with a call to xfs_inode_item_pin().
+ *
+ * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
+ */
+STATIC void
+xfs_inode_item_unpin(
+ struct xfs_log_item *lip,
+ int remove)
+{
+ struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
+
+ trace_xfs_inode_unpin(ip, _RET_IP_);
+ ASSERT(atomic_read(&ip->i_pincount) > 0);
+ if (atomic_dec_and_test(&ip->i_pincount))
+ wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
+}
+
+/*
+ * This is called to attempt to lock the inode associated with this
+ * inode log item, in preparation for the push routine which does the actual
+ * iflush. Don't sleep on the inode lock or the flush lock.
+ *
+ * If the flush lock is already held, indicating that the inode has
+ * been or is in the process of being flushed, then (ideally) we'd like to
+ * see if the inode's buffer is still incore, and if so give it a nudge.
+ * We delay doing so until the pushbuf routine, though, to avoid holding
+ * the AIL lock across a call to the blackhole which is the buffer cache.
+ * Also we don't want to sleep in any device strategy routines, which can happen
+ * if we do the subsequent bawrite in here.
+ */
+STATIC uint
+xfs_inode_item_trylock(
+ struct xfs_log_item *lip)
+{
+ struct xfs_inode_log_item *iip = INODE_ITEM(lip);
+ struct xfs_inode *ip = iip->ili_inode;
+
+ if (xfs_ipincount(ip) > 0)
+ return XFS_ITEM_PINNED;
+
+ if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
+ return XFS_ITEM_LOCKED;
+
+ if (!xfs_iflock_nowait(ip)) {
+ /*
+ * inode has already been flushed to the backing buffer,
+ * leave it locked in shared mode, pushbuf routine will
+ * unlock it.
+ */
+ return XFS_ITEM_PUSHBUF;
+ }
+
+ /* Stale items should force out the iclog */
+ if (ip->i_flags & XFS_ISTALE) {
+ xfs_ifunlock(ip);
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ return XFS_ITEM_PINNED;
+ }
+
+#ifdef DEBUG
+ if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
+ ASSERT(iip->ili_fields != 0);
+ ASSERT(iip->ili_logged == 0);
+ ASSERT(lip->li_flags & XFS_LI_IN_AIL);
+ }
+#endif
+ return XFS_ITEM_SUCCESS;
+}
+
+/*
+ * Unlock the inode associated with the inode log item.
+ * Clear the fields of the inode and inode log item that
+ * are specific to the current transaction. If the
+ * hold flags is set, do not unlock the inode.
+ */
+STATIC void
+xfs_inode_item_unlock(
+ struct xfs_log_item *lip)
+{
+ struct xfs_inode_log_item *iip = INODE_ITEM(lip);
+ struct xfs_inode *ip = iip->ili_inode;
+ unsigned short lock_flags;
+
+ ASSERT(ip->i_itemp != NULL);
+ ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
+
+ /*
+ * If the inode needed a separate buffer with which to log
+ * its extents, then free it now.
+ */
+ if (iip->ili_extents_buf != NULL) {
+ ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
+ ASSERT(ip->i_d.di_nextents > 0);
+ ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
+ ASSERT(ip->i_df.if_bytes > 0);
+ kmem_free(iip->ili_extents_buf);
+ iip->ili_extents_buf = NULL;
+ }
+ if (iip->ili_aextents_buf != NULL) {
+ ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
+ ASSERT(ip->i_d.di_anextents > 0);
+ ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
+ ASSERT(ip->i_afp->if_bytes > 0);
+ kmem_free(iip->ili_aextents_buf);
+ iip->ili_aextents_buf = NULL;
+ }
+
+ lock_flags = iip->ili_lock_flags;
+ iip->ili_lock_flags = 0;
+ if (lock_flags)
+ xfs_iunlock(ip, lock_flags);
+}
+
+/*
+ * This is called to find out where the oldest active copy of the inode log
+ * item in the on disk log resides now that the last log write of it completed
+ * at the given lsn. Since we always re-log all dirty data in an inode, the
+ * latest copy in the on disk log is the only one that matters. Therefore,
+ * simply return the given lsn.
+ *
+ * If the inode has been marked stale because the cluster is being freed, we
+ * don't want to (re-)insert this inode into the AIL. There is a race condition
+ * where the cluster buffer may be unpinned before the inode is inserted into
+ * the AIL during transaction committed processing. If the buffer is unpinned
+ * before the inode item has been committed and inserted, then it is possible
+ * for the buffer to be written and IO completes before the inode is inserted
+ * into the AIL. In that case, we'd be inserting a clean, stale inode into the
+ * AIL which will never get removed. It will, however, get reclaimed which
+ * triggers an assert in xfs_inode_free() complaining about freein an inode
+ * still in the AIL.
+ *
+ * To avoid this, just unpin the inode directly and return a LSN of -1 so the
+ * transaction committed code knows that it does not need to do any further
+ * processing on the item.
+ */
+STATIC xfs_lsn_t
+xfs_inode_item_committed(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+ struct xfs_inode_log_item *iip = INODE_ITEM(lip);
+ struct xfs_inode *ip = iip->ili_inode;
+
+ if (xfs_iflags_test(ip, XFS_ISTALE)) {
+ xfs_inode_item_unpin(lip, 0);
+ return -1;
+ }
+ return lsn;
+}
+
+/*
+ * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
+ * failed to get the inode flush lock but did get the inode locked SHARED.
+ * Here we're trying to see if the inode buffer is incore, and if so whether it's
+ * marked delayed write. If that's the case, we'll promote it and that will
+ * allow the caller to write the buffer by triggering the xfsbufd to run.
+ */
+STATIC bool
+xfs_inode_item_pushbuf(
+ struct xfs_log_item *lip)
+{
+ struct xfs_inode_log_item *iip = INODE_ITEM(lip);
+ struct xfs_inode *ip = iip->ili_inode;
+ struct xfs_buf *bp;
+ bool ret = true;
+
+ ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
+
+ /*
+ * If a flush is not in progress anymore, chances are that the
+ * inode was taken off the AIL. So, just get out.
+ */
+ if (!xfs_isiflocked(ip) ||
+ !(lip->li_flags & XFS_LI_IN_AIL)) {
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ return true;
+ }
+
+ bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
+ iip->ili_format.ilf_len, XBF_TRYLOCK);
+
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ if (!bp)
+ return true;
+ if (XFS_BUF_ISDELAYWRITE(bp))
+ xfs_buf_delwri_promote(bp);
+ if (xfs_buf_ispinned(bp))
+ ret = false;
+ xfs_buf_relse(bp);
+ return ret;
+}
+
+/*
+ * This is called to asynchronously write the inode associated with this
+ * inode log item out to disk. The inode will already have been locked by
+ * a successful call to xfs_inode_item_trylock().
+ */
+STATIC void
+xfs_inode_item_push(
+ struct xfs_log_item *lip)
+{
+ struct xfs_inode_log_item *iip = INODE_ITEM(lip);
+ struct xfs_inode *ip = iip->ili_inode;
+
+ ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
+ ASSERT(xfs_isiflocked(ip));
+
+ /*
+ * Since we were able to lock the inode's flush lock and
+ * we found it on the AIL, the inode must be dirty. This
+ * is because the inode is removed from the AIL while still
+ * holding the flush lock in xfs_iflush_done(). Thus, if
+ * we found it in the AIL and were able to obtain the flush
+ * lock without sleeping, then there must not have been
+ * anyone in the process of flushing the inode.
+ */
+ ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || iip->ili_fields != 0);
+
+ /*
+ * Push the inode to it's backing buffer. This will not remove the
+ * inode from the AIL - a further push will be required to trigger a
+ * buffer push. However, this allows all the dirty inodes to be pushed
+ * to the buffer before it is pushed to disk. The buffer IO completion
+ * will pull the inode from the AIL, mark it clean and unlock the flush
+ * lock.
+ */
+ (void) xfs_iflush(ip, SYNC_TRYLOCK);
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+}
+
+/*
+ * XXX rcc - this one really has to do something. Probably needs
+ * to stamp in a new field in the incore inode.
+ */
+STATIC void
+xfs_inode_item_committing(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+ INODE_ITEM(lip)->ili_last_lsn = lsn;
+}
+
+/*
+ * This is the ops vector shared by all buf log items.
+ */
+static const struct xfs_item_ops xfs_inode_item_ops = {
+ .iop_size = xfs_inode_item_size,
+ .iop_format = xfs_inode_item_format,
+ .iop_pin = xfs_inode_item_pin,
+ .iop_unpin = xfs_inode_item_unpin,
+ .iop_trylock = xfs_inode_item_trylock,
+ .iop_unlock = xfs_inode_item_unlock,
+ .iop_committed = xfs_inode_item_committed,
+ .iop_push = xfs_inode_item_push,
+ .iop_pushbuf = xfs_inode_item_pushbuf,
+ .iop_committing = xfs_inode_item_committing
+};
+
+
+/*
+ * Initialize the inode log item for a newly allocated (in-core) inode.
+ */
+void
+xfs_inode_item_init(
+ struct xfs_inode *ip,
+ struct xfs_mount *mp)
+{
+ struct xfs_inode_log_item *iip;
+
+ ASSERT(ip->i_itemp == NULL);
+ iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
+
+ iip->ili_inode = ip;
+ xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
+ &xfs_inode_item_ops);
+ iip->ili_format.ilf_type = XFS_LI_INODE;
+ iip->ili_format.ilf_ino = ip->i_ino;
+ iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
+ iip->ili_format.ilf_len = ip->i_imap.im_len;
+ iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
+}
+
+/*
+ * Free the inode log item and any memory hanging off of it.
+ */
+void
+xfs_inode_item_destroy(
+ xfs_inode_t *ip)
+{
+#ifdef XFS_TRANS_DEBUG
+ if (ip->i_itemp->ili_root_size != 0) {
+ kmem_free(ip->i_itemp->ili_orig_root);
+ }
+#endif
+ kmem_zone_free(xfs_ili_zone, ip->i_itemp);
+}
+
+
+/*
+ * This is the inode flushing I/O completion routine. It is called
+ * from interrupt level when the buffer containing the inode is
+ * flushed to disk. It is responsible for removing the inode item
+ * from the AIL if it has not been re-logged, and unlocking the inode's
+ * flush lock.
+ *
+ * To reduce AIL lock traffic as much as possible, we scan the buffer log item
+ * list for other inodes that will run this function. We remove them from the
+ * buffer list so we can process all the inode IO completions in one AIL lock
+ * traversal.
+ */
+void
+xfs_iflush_done(
+ struct xfs_buf *bp,
+ struct xfs_log_item *lip)
+{
+ struct xfs_inode_log_item *iip;
+ struct xfs_log_item *blip;
+ struct xfs_log_item *next;
+ struct xfs_log_item *prev;
+ struct xfs_ail *ailp = lip->li_ailp;
+ int need_ail = 0;
+
+ /*
+ * Scan the buffer IO completions for other inodes being completed and
+ * attach them to the current inode log item.
+ */
+ blip = bp->b_fspriv;
+ prev = NULL;
+ while (blip != NULL) {
+ if (lip->li_cb != xfs_iflush_done) {
+ prev = blip;
+ blip = blip->li_bio_list;
+ continue;
+ }
+
+ /* remove from list */
+ next = blip->li_bio_list;
+ if (!prev) {
+ bp->b_fspriv = next;
+ } else {
+ prev->li_bio_list = next;
+ }
+
+ /* add to current list */
+ blip->li_bio_list = lip->li_bio_list;
+ lip->li_bio_list = blip;
+
+ /*
+ * while we have the item, do the unlocked check for needing
+ * the AIL lock.
+ */
+ iip = INODE_ITEM(blip);
+ if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
+ need_ail++;
+
+ blip = next;
+ }
+
+ /* make sure we capture the state of the initial inode. */
+ iip = INODE_ITEM(lip);
+ if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
+ need_ail++;
+
+ /*
+ * We only want to pull the item from the AIL if it is
+ * actually there and its location in the log has not
+ * changed since we started the flush. Thus, we only bother
+ * if the ili_logged flag is set and the inode's lsn has not
+ * changed. First we check the lsn outside
+ * the lock since it's cheaper, and then we recheck while
+ * holding the lock before removing the inode from the AIL.
+ */
+ if (need_ail) {
+ struct xfs_log_item *log_items[need_ail];
+ int i = 0;
+ spin_lock(&ailp->xa_lock);
+ for (blip = lip; blip; blip = blip->li_bio_list) {
+ iip = INODE_ITEM(blip);
+ if (iip->ili_logged &&
+ blip->li_lsn == iip->ili_flush_lsn) {
+ log_items[i++] = blip;
+ }
+ ASSERT(i <= need_ail);
+ }
+ /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
+ xfs_trans_ail_delete_bulk(ailp, log_items, i);
+ }
+
+
+ /*
+ * clean up and unlock the flush lock now we are done. We can clear the
+ * ili_last_fields bits now that we know that the data corresponding to
+ * them is safely on disk.
+ */
+ for (blip = lip; blip; blip = next) {
+ next = blip->li_bio_list;
+ blip->li_bio_list = NULL;
+
+ iip = INODE_ITEM(blip);
+ iip->ili_logged = 0;
+ iip->ili_last_fields = 0;
+ xfs_ifunlock(iip->ili_inode);
+ }
+}
+
+/*
+ * This is the inode flushing abort routine. It is called
+ * from xfs_iflush when the filesystem is shutting down to clean
+ * up the inode state.
+ * It is responsible for removing the inode item
+ * from the AIL if it has not been re-logged, and unlocking the inode's
+ * flush lock.
+ */
+void
+xfs_iflush_abort(
+ xfs_inode_t *ip)
+{
+ xfs_inode_log_item_t *iip = ip->i_itemp;
+
+ if (iip) {
+ struct xfs_ail *ailp = iip->ili_item.li_ailp;
+ if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
+ spin_lock(&ailp->xa_lock);
+ if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
+ /* xfs_trans_ail_delete() drops the AIL lock. */
+ xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
+ } else
+ spin_unlock(&ailp->xa_lock);
+ }
+ iip->ili_logged = 0;
+ /*
+ * Clear the ili_last_fields bits now that we know that the
+ * data corresponding to them is safely on disk.
+ */
+ iip->ili_last_fields = 0;
+ /*
+ * Clear the inode logging fields so no more flushes are
+ * attempted.
+ */
+ iip->ili_fields = 0;
+ }
+ /*
+ * Release the inode's flush lock since we're done with it.
+ */
+ xfs_ifunlock(ip);
+}
+
+void
+xfs_istale_done(
+ struct xfs_buf *bp,
+ struct xfs_log_item *lip)
+{
+ xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
+}
+
+/*
+ * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
+ * (which can have different field alignments) to the native version
+ */
+int
+xfs_inode_item_format_convert(
+ xfs_log_iovec_t *buf,
+ xfs_inode_log_format_t *in_f)
+{
+ if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
+ xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
+
+ in_f->ilf_type = in_f32->ilf_type;
+ in_f->ilf_size = in_f32->ilf_size;
+ in_f->ilf_fields = in_f32->ilf_fields;
+ in_f->ilf_asize = in_f32->ilf_asize;
+ in_f->ilf_dsize = in_f32->ilf_dsize;
+ in_f->ilf_ino = in_f32->ilf_ino;
+ /* copy biggest field of ilf_u */
+ memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
+ in_f32->ilf_u.ilfu_uuid.__u_bits,
+ sizeof(uuid_t));
+ in_f->ilf_blkno = in_f32->ilf_blkno;
+ in_f->ilf_len = in_f32->ilf_len;
+ in_f->ilf_boffset = in_f32->ilf_boffset;
+ return 0;
+ } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
+ xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
+
+ in_f->ilf_type = in_f64->ilf_type;
+ in_f->ilf_size = in_f64->ilf_size;
+ in_f->ilf_fields = in_f64->ilf_fields;
+ in_f->ilf_asize = in_f64->ilf_asize;
+ in_f->ilf_dsize = in_f64->ilf_dsize;
+ in_f->ilf_ino = in_f64->ilf_ino;
+ /* copy biggest field of ilf_u */
+ memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
+ in_f64->ilf_u.ilfu_uuid.__u_bits,
+ sizeof(uuid_t));
+ in_f->ilf_blkno = in_f64->ilf_blkno;
+ in_f->ilf_len = in_f64->ilf_len;
+ in_f->ilf_boffset = in_f64->ilf_boffset;
+ return 0;
+ }
+ return EFSCORRUPTED;
+}