diff options
author | Kevin | 2014-11-15 09:58:27 +0800 |
---|---|---|
committer | Kevin | 2014-11-15 09:58:27 +0800 |
commit | 392e8802486cb573b916e746010e141a75f507e6 (patch) | |
tree | 50029aca02c81f087b90336e670b44e510782330 /ANDROID_3.4.5/fs/xfs/xfs_inode_item.c | |
download | FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.gz FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.bz2 FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.zip |
init android origin source code
Diffstat (limited to 'ANDROID_3.4.5/fs/xfs/xfs_inode_item.c')
-rw-r--r-- | ANDROID_3.4.5/fs/xfs/xfs_inode_item.c | 966 |
1 files changed, 966 insertions, 0 deletions
diff --git a/ANDROID_3.4.5/fs/xfs/xfs_inode_item.c b/ANDROID_3.4.5/fs/xfs/xfs_inode_item.c new file mode 100644 index 00000000..05d924ef --- /dev/null +++ b/ANDROID_3.4.5/fs/xfs/xfs_inode_item.c @@ -0,0 +1,966 @@ +/* + * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_types.h" +#include "xfs_bit.h" +#include "xfs_log.h" +#include "xfs_inum.h" +#include "xfs_trans.h" +#include "xfs_sb.h" +#include "xfs_ag.h" +#include "xfs_mount.h" +#include "xfs_trans_priv.h" +#include "xfs_bmap_btree.h" +#include "xfs_dinode.h" +#include "xfs_inode.h" +#include "xfs_inode_item.h" +#include "xfs_error.h" +#include "xfs_trace.h" + + +kmem_zone_t *xfs_ili_zone; /* inode log item zone */ + +static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) +{ + return container_of(lip, struct xfs_inode_log_item, ili_item); +} + + +/* + * This returns the number of iovecs needed to log the given inode item. + * + * We need one iovec for the inode log format structure, one for the + * inode core, and possibly one for the inode data/extents/b-tree root + * and one for the inode attribute data/extents/b-tree root. + */ +STATIC uint +xfs_inode_item_size( + struct xfs_log_item *lip) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + uint nvecs = 2; + + switch (ip->i_d.di_format) { + case XFS_DINODE_FMT_EXTENTS: + if ((iip->ili_fields & XFS_ILOG_DEXT) && + ip->i_d.di_nextents > 0 && + ip->i_df.if_bytes > 0) + nvecs++; + break; + + case XFS_DINODE_FMT_BTREE: + if ((iip->ili_fields & XFS_ILOG_DBROOT) && + ip->i_df.if_broot_bytes > 0) + nvecs++; + break; + + case XFS_DINODE_FMT_LOCAL: + if ((iip->ili_fields & XFS_ILOG_DDATA) && + ip->i_df.if_bytes > 0) + nvecs++; + break; + + case XFS_DINODE_FMT_DEV: + case XFS_DINODE_FMT_UUID: + break; + + default: + ASSERT(0); + break; + } + + if (!XFS_IFORK_Q(ip)) + return nvecs; + + + /* + * Log any necessary attribute data. + */ + switch (ip->i_d.di_aformat) { + case XFS_DINODE_FMT_EXTENTS: + if ((iip->ili_fields & XFS_ILOG_AEXT) && + ip->i_d.di_anextents > 0 && + ip->i_afp->if_bytes > 0) + nvecs++; + break; + + case XFS_DINODE_FMT_BTREE: + if ((iip->ili_fields & XFS_ILOG_ABROOT) && + ip->i_afp->if_broot_bytes > 0) + nvecs++; + break; + + case XFS_DINODE_FMT_LOCAL: + if ((iip->ili_fields & XFS_ILOG_ADATA) && + ip->i_afp->if_bytes > 0) + nvecs++; + break; + + default: + ASSERT(0); + break; + } + + return nvecs; +} + +/* + * xfs_inode_item_format_extents - convert in-core extents to on-disk form + * + * For either the data or attr fork in extent format, we need to endian convert + * the in-core extent as we place them into the on-disk inode. In this case, we + * need to do this conversion before we write the extents into the log. Because + * we don't have the disk inode to write into here, we allocate a buffer and + * format the extents into it via xfs_iextents_copy(). We free the buffer in + * the unlock routine after the copy for the log has been made. + * + * In the case of the data fork, the in-core and on-disk fork sizes can be + * different due to delayed allocation extents. We only log on-disk extents + * here, so always use the physical fork size to determine the size of the + * buffer we need to allocate. + */ +STATIC void +xfs_inode_item_format_extents( + struct xfs_inode *ip, + struct xfs_log_iovec *vecp, + int whichfork, + int type) +{ + xfs_bmbt_rec_t *ext_buffer; + + ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP); + if (whichfork == XFS_DATA_FORK) + ip->i_itemp->ili_extents_buf = ext_buffer; + else + ip->i_itemp->ili_aextents_buf = ext_buffer; + + vecp->i_addr = ext_buffer; + vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork); + vecp->i_type = type; +} + +/* + * This is called to fill in the vector of log iovecs for the + * given inode log item. It fills the first item with an inode + * log format structure, the second with the on-disk inode structure, + * and a possible third and/or fourth with the inode data/extents/b-tree + * root and inode attributes data/extents/b-tree root. + */ +STATIC void +xfs_inode_item_format( + struct xfs_log_item *lip, + struct xfs_log_iovec *vecp) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + uint nvecs; + size_t data_bytes; + xfs_mount_t *mp; + + vecp->i_addr = &iip->ili_format; + vecp->i_len = sizeof(xfs_inode_log_format_t); + vecp->i_type = XLOG_REG_TYPE_IFORMAT; + vecp++; + nvecs = 1; + + vecp->i_addr = &ip->i_d; + vecp->i_len = sizeof(struct xfs_icdinode); + vecp->i_type = XLOG_REG_TYPE_ICORE; + vecp++; + nvecs++; + + /* + * If this is really an old format inode, then we need to + * log it as such. This means that we have to copy the link + * count from the new field to the old. We don't have to worry + * about the new fields, because nothing trusts them as long as + * the old inode version number is there. If the superblock already + * has a new version number, then we don't bother converting back. + */ + mp = ip->i_mount; + ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); + if (ip->i_d.di_version == 1) { + if (!xfs_sb_version_hasnlink(&mp->m_sb)) { + /* + * Convert it back. + */ + ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); + ip->i_d.di_onlink = ip->i_d.di_nlink; + } else { + /* + * The superblock version has already been bumped, + * so just make the conversion to the new inode + * format permanent. + */ + ip->i_d.di_version = 2; + ip->i_d.di_onlink = 0; + memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); + } + } + + switch (ip->i_d.di_format) { + case XFS_DINODE_FMT_EXTENTS: + iip->ili_fields &= + ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | + XFS_ILOG_DEV | XFS_ILOG_UUID); + + if ((iip->ili_fields & XFS_ILOG_DEXT) && + ip->i_d.di_nextents > 0 && + ip->i_df.if_bytes > 0) { + ASSERT(ip->i_df.if_u1.if_extents != NULL); + ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); + ASSERT(iip->ili_extents_buf == NULL); + +#ifdef XFS_NATIVE_HOST + if (ip->i_d.di_nextents == ip->i_df.if_bytes / + (uint)sizeof(xfs_bmbt_rec_t)) { + /* + * There are no delayed allocation + * extents, so just point to the + * real extents array. + */ + vecp->i_addr = ip->i_df.if_u1.if_extents; + vecp->i_len = ip->i_df.if_bytes; + vecp->i_type = XLOG_REG_TYPE_IEXT; + } else +#endif + { + xfs_inode_item_format_extents(ip, vecp, + XFS_DATA_FORK, XLOG_REG_TYPE_IEXT); + } + ASSERT(vecp->i_len <= ip->i_df.if_bytes); + iip->ili_format.ilf_dsize = vecp->i_len; + vecp++; + nvecs++; + } else { + iip->ili_fields &= ~XFS_ILOG_DEXT; + } + break; + + case XFS_DINODE_FMT_BTREE: + iip->ili_fields &= + ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | + XFS_ILOG_DEV | XFS_ILOG_UUID); + + if ((iip->ili_fields & XFS_ILOG_DBROOT) && + ip->i_df.if_broot_bytes > 0) { + ASSERT(ip->i_df.if_broot != NULL); + vecp->i_addr = ip->i_df.if_broot; + vecp->i_len = ip->i_df.if_broot_bytes; + vecp->i_type = XLOG_REG_TYPE_IBROOT; + vecp++; + nvecs++; + iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; + } else { + ASSERT(!(iip->ili_fields & + XFS_ILOG_DBROOT)); +#ifdef XFS_TRANS_DEBUG + if (iip->ili_root_size > 0) { + ASSERT(iip->ili_root_size == + ip->i_df.if_broot_bytes); + ASSERT(memcmp(iip->ili_orig_root, + ip->i_df.if_broot, + iip->ili_root_size) == 0); + } else { + ASSERT(ip->i_df.if_broot_bytes == 0); + } +#endif + iip->ili_fields &= ~XFS_ILOG_DBROOT; + } + break; + + case XFS_DINODE_FMT_LOCAL: + iip->ili_fields &= + ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | + XFS_ILOG_DEV | XFS_ILOG_UUID); + if ((iip->ili_fields & XFS_ILOG_DDATA) && + ip->i_df.if_bytes > 0) { + ASSERT(ip->i_df.if_u1.if_data != NULL); + ASSERT(ip->i_d.di_size > 0); + + vecp->i_addr = ip->i_df.if_u1.if_data; + /* + * Round i_bytes up to a word boundary. + * The underlying memory is guaranteed to + * to be there by xfs_idata_realloc(). + */ + data_bytes = roundup(ip->i_df.if_bytes, 4); + ASSERT((ip->i_df.if_real_bytes == 0) || + (ip->i_df.if_real_bytes == data_bytes)); + vecp->i_len = (int)data_bytes; + vecp->i_type = XLOG_REG_TYPE_ILOCAL; + vecp++; + nvecs++; + iip->ili_format.ilf_dsize = (unsigned)data_bytes; + } else { + iip->ili_fields &= ~XFS_ILOG_DDATA; + } + break; + + case XFS_DINODE_FMT_DEV: + iip->ili_fields &= + ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | + XFS_ILOG_DEXT | XFS_ILOG_UUID); + if (iip->ili_fields & XFS_ILOG_DEV) { + iip->ili_format.ilf_u.ilfu_rdev = + ip->i_df.if_u2.if_rdev; + } + break; + + case XFS_DINODE_FMT_UUID: + iip->ili_fields &= + ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | + XFS_ILOG_DEXT | XFS_ILOG_DEV); + if (iip->ili_fields & XFS_ILOG_UUID) { + iip->ili_format.ilf_u.ilfu_uuid = + ip->i_df.if_u2.if_uuid; + } + break; + + default: + ASSERT(0); + break; + } + + /* + * If there are no attributes associated with the file, then we're done. + */ + if (!XFS_IFORK_Q(ip)) { + iip->ili_fields &= + ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); + goto out; + } + + switch (ip->i_d.di_aformat) { + case XFS_DINODE_FMT_EXTENTS: + iip->ili_fields &= + ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); + + if ((iip->ili_fields & XFS_ILOG_AEXT) && + ip->i_d.di_anextents > 0 && + ip->i_afp->if_bytes > 0) { + ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == + ip->i_d.di_anextents); + ASSERT(ip->i_afp->if_u1.if_extents != NULL); +#ifdef XFS_NATIVE_HOST + /* + * There are not delayed allocation extents + * for attributes, so just point at the array. + */ + vecp->i_addr = ip->i_afp->if_u1.if_extents; + vecp->i_len = ip->i_afp->if_bytes; + vecp->i_type = XLOG_REG_TYPE_IATTR_EXT; +#else + ASSERT(iip->ili_aextents_buf == NULL); + xfs_inode_item_format_extents(ip, vecp, + XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT); +#endif + iip->ili_format.ilf_asize = vecp->i_len; + vecp++; + nvecs++; + } else { + iip->ili_fields &= ~XFS_ILOG_AEXT; + } + break; + + case XFS_DINODE_FMT_BTREE: + iip->ili_fields &= + ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); + + if ((iip->ili_fields & XFS_ILOG_ABROOT) && + ip->i_afp->if_broot_bytes > 0) { + ASSERT(ip->i_afp->if_broot != NULL); + + vecp->i_addr = ip->i_afp->if_broot; + vecp->i_len = ip->i_afp->if_broot_bytes; + vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT; + vecp++; + nvecs++; + iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; + } else { + iip->ili_fields &= ~XFS_ILOG_ABROOT; + } + break; + + case XFS_DINODE_FMT_LOCAL: + iip->ili_fields &= + ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); + + if ((iip->ili_fields & XFS_ILOG_ADATA) && + ip->i_afp->if_bytes > 0) { + ASSERT(ip->i_afp->if_u1.if_data != NULL); + + vecp->i_addr = ip->i_afp->if_u1.if_data; + /* + * Round i_bytes up to a word boundary. + * The underlying memory is guaranteed to + * to be there by xfs_idata_realloc(). + */ + data_bytes = roundup(ip->i_afp->if_bytes, 4); + ASSERT((ip->i_afp->if_real_bytes == 0) || + (ip->i_afp->if_real_bytes == data_bytes)); + vecp->i_len = (int)data_bytes; + vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL; + vecp++; + nvecs++; + iip->ili_format.ilf_asize = (unsigned)data_bytes; + } else { + iip->ili_fields &= ~XFS_ILOG_ADATA; + } + break; + + default: + ASSERT(0); + break; + } + +out: + /* + * Now update the log format that goes out to disk from the in-core + * values. We always write the inode core to make the arithmetic + * games in recovery easier, which isn't a big deal as just about any + * transaction would dirty it anyway. + */ + iip->ili_format.ilf_fields = XFS_ILOG_CORE | + (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); + iip->ili_format.ilf_size = nvecs; +} + + +/* + * This is called to pin the inode associated with the inode log + * item in memory so it cannot be written out. + */ +STATIC void +xfs_inode_item_pin( + struct xfs_log_item *lip) +{ + struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; + + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); + + trace_xfs_inode_pin(ip, _RET_IP_); + atomic_inc(&ip->i_pincount); +} + + +/* + * This is called to unpin the inode associated with the inode log + * item which was previously pinned with a call to xfs_inode_item_pin(). + * + * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. + */ +STATIC void +xfs_inode_item_unpin( + struct xfs_log_item *lip, + int remove) +{ + struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; + + trace_xfs_inode_unpin(ip, _RET_IP_); + ASSERT(atomic_read(&ip->i_pincount) > 0); + if (atomic_dec_and_test(&ip->i_pincount)) + wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); +} + +/* + * This is called to attempt to lock the inode associated with this + * inode log item, in preparation for the push routine which does the actual + * iflush. Don't sleep on the inode lock or the flush lock. + * + * If the flush lock is already held, indicating that the inode has + * been or is in the process of being flushed, then (ideally) we'd like to + * see if the inode's buffer is still incore, and if so give it a nudge. + * We delay doing so until the pushbuf routine, though, to avoid holding + * the AIL lock across a call to the blackhole which is the buffer cache. + * Also we don't want to sleep in any device strategy routines, which can happen + * if we do the subsequent bawrite in here. + */ +STATIC uint +xfs_inode_item_trylock( + struct xfs_log_item *lip) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + + if (xfs_ipincount(ip) > 0) + return XFS_ITEM_PINNED; + + if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) + return XFS_ITEM_LOCKED; + + if (!xfs_iflock_nowait(ip)) { + /* + * inode has already been flushed to the backing buffer, + * leave it locked in shared mode, pushbuf routine will + * unlock it. + */ + return XFS_ITEM_PUSHBUF; + } + + /* Stale items should force out the iclog */ + if (ip->i_flags & XFS_ISTALE) { + xfs_ifunlock(ip); + xfs_iunlock(ip, XFS_ILOCK_SHARED); + return XFS_ITEM_PINNED; + } + +#ifdef DEBUG + if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { + ASSERT(iip->ili_fields != 0); + ASSERT(iip->ili_logged == 0); + ASSERT(lip->li_flags & XFS_LI_IN_AIL); + } +#endif + return XFS_ITEM_SUCCESS; +} + +/* + * Unlock the inode associated with the inode log item. + * Clear the fields of the inode and inode log item that + * are specific to the current transaction. If the + * hold flags is set, do not unlock the inode. + */ +STATIC void +xfs_inode_item_unlock( + struct xfs_log_item *lip) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + unsigned short lock_flags; + + ASSERT(ip->i_itemp != NULL); + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); + + /* + * If the inode needed a separate buffer with which to log + * its extents, then free it now. + */ + if (iip->ili_extents_buf != NULL) { + ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); + ASSERT(ip->i_d.di_nextents > 0); + ASSERT(iip->ili_fields & XFS_ILOG_DEXT); + ASSERT(ip->i_df.if_bytes > 0); + kmem_free(iip->ili_extents_buf); + iip->ili_extents_buf = NULL; + } + if (iip->ili_aextents_buf != NULL) { + ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); + ASSERT(ip->i_d.di_anextents > 0); + ASSERT(iip->ili_fields & XFS_ILOG_AEXT); + ASSERT(ip->i_afp->if_bytes > 0); + kmem_free(iip->ili_aextents_buf); + iip->ili_aextents_buf = NULL; + } + + lock_flags = iip->ili_lock_flags; + iip->ili_lock_flags = 0; + if (lock_flags) + xfs_iunlock(ip, lock_flags); +} + +/* + * This is called to find out where the oldest active copy of the inode log + * item in the on disk log resides now that the last log write of it completed + * at the given lsn. Since we always re-log all dirty data in an inode, the + * latest copy in the on disk log is the only one that matters. Therefore, + * simply return the given lsn. + * + * If the inode has been marked stale because the cluster is being freed, we + * don't want to (re-)insert this inode into the AIL. There is a race condition + * where the cluster buffer may be unpinned before the inode is inserted into + * the AIL during transaction committed processing. If the buffer is unpinned + * before the inode item has been committed and inserted, then it is possible + * for the buffer to be written and IO completes before the inode is inserted + * into the AIL. In that case, we'd be inserting a clean, stale inode into the + * AIL which will never get removed. It will, however, get reclaimed which + * triggers an assert in xfs_inode_free() complaining about freein an inode + * still in the AIL. + * + * To avoid this, just unpin the inode directly and return a LSN of -1 so the + * transaction committed code knows that it does not need to do any further + * processing on the item. + */ +STATIC xfs_lsn_t +xfs_inode_item_committed( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + + if (xfs_iflags_test(ip, XFS_ISTALE)) { + xfs_inode_item_unpin(lip, 0); + return -1; + } + return lsn; +} + +/* + * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK + * failed to get the inode flush lock but did get the inode locked SHARED. + * Here we're trying to see if the inode buffer is incore, and if so whether it's + * marked delayed write. If that's the case, we'll promote it and that will + * allow the caller to write the buffer by triggering the xfsbufd to run. + */ +STATIC bool +xfs_inode_item_pushbuf( + struct xfs_log_item *lip) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + struct xfs_buf *bp; + bool ret = true; + + ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); + + /* + * If a flush is not in progress anymore, chances are that the + * inode was taken off the AIL. So, just get out. + */ + if (!xfs_isiflocked(ip) || + !(lip->li_flags & XFS_LI_IN_AIL)) { + xfs_iunlock(ip, XFS_ILOCK_SHARED); + return true; + } + + bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno, + iip->ili_format.ilf_len, XBF_TRYLOCK); + + xfs_iunlock(ip, XFS_ILOCK_SHARED); + if (!bp) + return true; + if (XFS_BUF_ISDELAYWRITE(bp)) + xfs_buf_delwri_promote(bp); + if (xfs_buf_ispinned(bp)) + ret = false; + xfs_buf_relse(bp); + return ret; +} + +/* + * This is called to asynchronously write the inode associated with this + * inode log item out to disk. The inode will already have been locked by + * a successful call to xfs_inode_item_trylock(). + */ +STATIC void +xfs_inode_item_push( + struct xfs_log_item *lip) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + + ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); + ASSERT(xfs_isiflocked(ip)); + + /* + * Since we were able to lock the inode's flush lock and + * we found it on the AIL, the inode must be dirty. This + * is because the inode is removed from the AIL while still + * holding the flush lock in xfs_iflush_done(). Thus, if + * we found it in the AIL and were able to obtain the flush + * lock without sleeping, then there must not have been + * anyone in the process of flushing the inode. + */ + ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || iip->ili_fields != 0); + + /* + * Push the inode to it's backing buffer. This will not remove the + * inode from the AIL - a further push will be required to trigger a + * buffer push. However, this allows all the dirty inodes to be pushed + * to the buffer before it is pushed to disk. The buffer IO completion + * will pull the inode from the AIL, mark it clean and unlock the flush + * lock. + */ + (void) xfs_iflush(ip, SYNC_TRYLOCK); + xfs_iunlock(ip, XFS_ILOCK_SHARED); +} + +/* + * XXX rcc - this one really has to do something. Probably needs + * to stamp in a new field in the incore inode. + */ +STATIC void +xfs_inode_item_committing( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ + INODE_ITEM(lip)->ili_last_lsn = lsn; +} + +/* + * This is the ops vector shared by all buf log items. + */ +static const struct xfs_item_ops xfs_inode_item_ops = { + .iop_size = xfs_inode_item_size, + .iop_format = xfs_inode_item_format, + .iop_pin = xfs_inode_item_pin, + .iop_unpin = xfs_inode_item_unpin, + .iop_trylock = xfs_inode_item_trylock, + .iop_unlock = xfs_inode_item_unlock, + .iop_committed = xfs_inode_item_committed, + .iop_push = xfs_inode_item_push, + .iop_pushbuf = xfs_inode_item_pushbuf, + .iop_committing = xfs_inode_item_committing +}; + + +/* + * Initialize the inode log item for a newly allocated (in-core) inode. + */ +void +xfs_inode_item_init( + struct xfs_inode *ip, + struct xfs_mount *mp) +{ + struct xfs_inode_log_item *iip; + + ASSERT(ip->i_itemp == NULL); + iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); + + iip->ili_inode = ip; + xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, + &xfs_inode_item_ops); + iip->ili_format.ilf_type = XFS_LI_INODE; + iip->ili_format.ilf_ino = ip->i_ino; + iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; + iip->ili_format.ilf_len = ip->i_imap.im_len; + iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; +} + +/* + * Free the inode log item and any memory hanging off of it. + */ +void +xfs_inode_item_destroy( + xfs_inode_t *ip) +{ +#ifdef XFS_TRANS_DEBUG + if (ip->i_itemp->ili_root_size != 0) { + kmem_free(ip->i_itemp->ili_orig_root); + } +#endif + kmem_zone_free(xfs_ili_zone, ip->i_itemp); +} + + +/* + * This is the inode flushing I/O completion routine. It is called + * from interrupt level when the buffer containing the inode is + * flushed to disk. It is responsible for removing the inode item + * from the AIL if it has not been re-logged, and unlocking the inode's + * flush lock. + * + * To reduce AIL lock traffic as much as possible, we scan the buffer log item + * list for other inodes that will run this function. We remove them from the + * buffer list so we can process all the inode IO completions in one AIL lock + * traversal. + */ +void +xfs_iflush_done( + struct xfs_buf *bp, + struct xfs_log_item *lip) +{ + struct xfs_inode_log_item *iip; + struct xfs_log_item *blip; + struct xfs_log_item *next; + struct xfs_log_item *prev; + struct xfs_ail *ailp = lip->li_ailp; + int need_ail = 0; + + /* + * Scan the buffer IO completions for other inodes being completed and + * attach them to the current inode log item. + */ + blip = bp->b_fspriv; + prev = NULL; + while (blip != NULL) { + if (lip->li_cb != xfs_iflush_done) { + prev = blip; + blip = blip->li_bio_list; + continue; + } + + /* remove from list */ + next = blip->li_bio_list; + if (!prev) { + bp->b_fspriv = next; + } else { + prev->li_bio_list = next; + } + + /* add to current list */ + blip->li_bio_list = lip->li_bio_list; + lip->li_bio_list = blip; + + /* + * while we have the item, do the unlocked check for needing + * the AIL lock. + */ + iip = INODE_ITEM(blip); + if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) + need_ail++; + + blip = next; + } + + /* make sure we capture the state of the initial inode. */ + iip = INODE_ITEM(lip); + if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) + need_ail++; + + /* + * We only want to pull the item from the AIL if it is + * actually there and its location in the log has not + * changed since we started the flush. Thus, we only bother + * if the ili_logged flag is set and the inode's lsn has not + * changed. First we check the lsn outside + * the lock since it's cheaper, and then we recheck while + * holding the lock before removing the inode from the AIL. + */ + if (need_ail) { + struct xfs_log_item *log_items[need_ail]; + int i = 0; + spin_lock(&ailp->xa_lock); + for (blip = lip; blip; blip = blip->li_bio_list) { + iip = INODE_ITEM(blip); + if (iip->ili_logged && + blip->li_lsn == iip->ili_flush_lsn) { + log_items[i++] = blip; + } + ASSERT(i <= need_ail); + } + /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ + xfs_trans_ail_delete_bulk(ailp, log_items, i); + } + + + /* + * clean up and unlock the flush lock now we are done. We can clear the + * ili_last_fields bits now that we know that the data corresponding to + * them is safely on disk. + */ + for (blip = lip; blip; blip = next) { + next = blip->li_bio_list; + blip->li_bio_list = NULL; + + iip = INODE_ITEM(blip); + iip->ili_logged = 0; + iip->ili_last_fields = 0; + xfs_ifunlock(iip->ili_inode); + } +} + +/* + * This is the inode flushing abort routine. It is called + * from xfs_iflush when the filesystem is shutting down to clean + * up the inode state. + * It is responsible for removing the inode item + * from the AIL if it has not been re-logged, and unlocking the inode's + * flush lock. + */ +void +xfs_iflush_abort( + xfs_inode_t *ip) +{ + xfs_inode_log_item_t *iip = ip->i_itemp; + + if (iip) { + struct xfs_ail *ailp = iip->ili_item.li_ailp; + if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { + spin_lock(&ailp->xa_lock); + if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { + /* xfs_trans_ail_delete() drops the AIL lock. */ + xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip); + } else + spin_unlock(&ailp->xa_lock); + } + iip->ili_logged = 0; + /* + * Clear the ili_last_fields bits now that we know that the + * data corresponding to them is safely on disk. + */ + iip->ili_last_fields = 0; + /* + * Clear the inode logging fields so no more flushes are + * attempted. + */ + iip->ili_fields = 0; + } + /* + * Release the inode's flush lock since we're done with it. + */ + xfs_ifunlock(ip); +} + +void +xfs_istale_done( + struct xfs_buf *bp, + struct xfs_log_item *lip) +{ + xfs_iflush_abort(INODE_ITEM(lip)->ili_inode); +} + +/* + * convert an xfs_inode_log_format struct from either 32 or 64 bit versions + * (which can have different field alignments) to the native version + */ +int +xfs_inode_item_format_convert( + xfs_log_iovec_t *buf, + xfs_inode_log_format_t *in_f) +{ + if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { + xfs_inode_log_format_32_t *in_f32 = buf->i_addr; + + in_f->ilf_type = in_f32->ilf_type; + in_f->ilf_size = in_f32->ilf_size; + in_f->ilf_fields = in_f32->ilf_fields; + in_f->ilf_asize = in_f32->ilf_asize; + in_f->ilf_dsize = in_f32->ilf_dsize; + in_f->ilf_ino = in_f32->ilf_ino; + /* copy biggest field of ilf_u */ + memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, + in_f32->ilf_u.ilfu_uuid.__u_bits, + sizeof(uuid_t)); + in_f->ilf_blkno = in_f32->ilf_blkno; + in_f->ilf_len = in_f32->ilf_len; + in_f->ilf_boffset = in_f32->ilf_boffset; + return 0; + } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ + xfs_inode_log_format_64_t *in_f64 = buf->i_addr; + + in_f->ilf_type = in_f64->ilf_type; + in_f->ilf_size = in_f64->ilf_size; + in_f->ilf_fields = in_f64->ilf_fields; + in_f->ilf_asize = in_f64->ilf_asize; + in_f->ilf_dsize = in_f64->ilf_dsize; + in_f->ilf_ino = in_f64->ilf_ino; + /* copy biggest field of ilf_u */ + memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, + in_f64->ilf_u.ilfu_uuid.__u_bits, + sizeof(uuid_t)); + in_f->ilf_blkno = in_f64->ilf_blkno; + in_f->ilf_len = in_f64->ilf_len; + in_f->ilf_boffset = in_f64->ilf_boffset; + return 0; + } + return EFSCORRUPTED; +} |