diff options
author | Kevin | 2014-11-15 09:58:27 +0800 |
---|---|---|
committer | Kevin | 2014-11-15 09:58:27 +0800 |
commit | 392e8802486cb573b916e746010e141a75f507e6 (patch) | |
tree | 50029aca02c81f087b90336e670b44e510782330 /ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c | |
download | FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.gz FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.bz2 FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.zip |
init android origin source code
Diffstat (limited to 'ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c')
-rw-r--r-- | ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c | 520 |
1 files changed, 520 insertions, 0 deletions
diff --git a/ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c b/ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c new file mode 100644 index 00000000..35c2aff3 --- /dev/null +++ b/ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c @@ -0,0 +1,520 @@ +/* + * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_types.h" +#include "xfs_log.h" +#include "xfs_inum.h" +#include "xfs_trans.h" +#include "xfs_buf_item.h" +#include "xfs_sb.h" +#include "xfs_ag.h" +#include "xfs_mount.h" +#include "xfs_trans_priv.h" +#include "xfs_extfree_item.h" + + +kmem_zone_t *xfs_efi_zone; +kmem_zone_t *xfs_efd_zone; + +static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) +{ + return container_of(lip, struct xfs_efi_log_item, efi_item); +} + +void +xfs_efi_item_free( + struct xfs_efi_log_item *efip) +{ + if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) + kmem_free(efip); + else + kmem_zone_free(xfs_efi_zone, efip); +} + +/* + * Freeing the efi requires that we remove it from the AIL if it has already + * been placed there. However, the EFI may not yet have been placed in the AIL + * when called by xfs_efi_release() from EFD processing due to the ordering of + * committed vs unpin operations in bulk insert operations. Hence the + * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees + * the EFI. + */ +STATIC void +__xfs_efi_release( + struct xfs_efi_log_item *efip) +{ + struct xfs_ail *ailp = efip->efi_item.li_ailp; + + if (!test_and_clear_bit(XFS_EFI_COMMITTED, &efip->efi_flags)) { + spin_lock(&ailp->xa_lock); + /* xfs_trans_ail_delete() drops the AIL lock. */ + xfs_trans_ail_delete(ailp, &efip->efi_item); + xfs_efi_item_free(efip); + } +} + +/* + * This returns the number of iovecs needed to log the given efi item. + * We only need 1 iovec for an efi item. It just logs the efi_log_format + * structure. + */ +STATIC uint +xfs_efi_item_size( + struct xfs_log_item *lip) +{ + return 1; +} + +/* + * This is called to fill in the vector of log iovecs for the + * given efi log item. We use only 1 iovec, and we point that + * at the efi_log_format structure embedded in the efi item. + * It is at this point that we assert that all of the extent + * slots in the efi item have been filled. + */ +STATIC void +xfs_efi_item_format( + struct xfs_log_item *lip, + struct xfs_log_iovec *log_vector) +{ + struct xfs_efi_log_item *efip = EFI_ITEM(lip); + uint size; + + ASSERT(atomic_read(&efip->efi_next_extent) == + efip->efi_format.efi_nextents); + + efip->efi_format.efi_type = XFS_LI_EFI; + + size = sizeof(xfs_efi_log_format_t); + size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); + efip->efi_format.efi_size = 1; + + log_vector->i_addr = &efip->efi_format; + log_vector->i_len = size; + log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT; + ASSERT(size >= sizeof(xfs_efi_log_format_t)); +} + + +/* + * Pinning has no meaning for an efi item, so just return. + */ +STATIC void +xfs_efi_item_pin( + struct xfs_log_item *lip) +{ +} + +/* + * While EFIs cannot really be pinned, the unpin operation is the last place at + * which the EFI is manipulated during a transaction. If we are being asked to + * remove the EFI it's because the transaction has been cancelled and by + * definition that means the EFI cannot be in the AIL so remove it from the + * transaction and free it. Otherwise coordinate with xfs_efi_release() (via + * XFS_EFI_COMMITTED) to determine who gets to free the EFI. + */ +STATIC void +xfs_efi_item_unpin( + struct xfs_log_item *lip, + int remove) +{ + struct xfs_efi_log_item *efip = EFI_ITEM(lip); + + if (remove) { + ASSERT(!(lip->li_flags & XFS_LI_IN_AIL)); + if (lip->li_desc) + xfs_trans_del_item(lip); + xfs_efi_item_free(efip); + return; + } + __xfs_efi_release(efip); +} + +/* + * Efi items have no locking or pushing. However, since EFIs are + * pulled from the AIL when their corresponding EFDs are committed + * to disk, their situation is very similar to being pinned. Return + * XFS_ITEM_PINNED so that the caller will eventually flush the log. + * This should help in getting the EFI out of the AIL. + */ +STATIC uint +xfs_efi_item_trylock( + struct xfs_log_item *lip) +{ + return XFS_ITEM_PINNED; +} + +/* + * Efi items have no locking, so just return. + */ +STATIC void +xfs_efi_item_unlock( + struct xfs_log_item *lip) +{ + if (lip->li_flags & XFS_LI_ABORTED) + xfs_efi_item_free(EFI_ITEM(lip)); +} + +/* + * The EFI is logged only once and cannot be moved in the log, so simply return + * the lsn at which it's been logged. For bulk transaction committed + * processing, the EFI may be processed but not yet unpinned prior to the EFD + * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected + * when processing the EFD. + */ +STATIC xfs_lsn_t +xfs_efi_item_committed( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ + struct xfs_efi_log_item *efip = EFI_ITEM(lip); + + set_bit(XFS_EFI_COMMITTED, &efip->efi_flags); + return lsn; +} + +/* + * There isn't much you can do to push on an efi item. It is simply + * stuck waiting for all of its corresponding efd items to be + * committed to disk. + */ +STATIC void +xfs_efi_item_push( + struct xfs_log_item *lip) +{ +} + +/* + * The EFI dependency tracking op doesn't do squat. It can't because + * it doesn't know where the free extent is coming from. The dependency + * tracking has to be handled by the "enclosing" metadata object. For + * example, for inodes, the inode is locked throughout the extent freeing + * so the dependency should be recorded there. + */ +STATIC void +xfs_efi_item_committing( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ +} + +/* + * This is the ops vector shared by all efi log items. + */ +static const struct xfs_item_ops xfs_efi_item_ops = { + .iop_size = xfs_efi_item_size, + .iop_format = xfs_efi_item_format, + .iop_pin = xfs_efi_item_pin, + .iop_unpin = xfs_efi_item_unpin, + .iop_trylock = xfs_efi_item_trylock, + .iop_unlock = xfs_efi_item_unlock, + .iop_committed = xfs_efi_item_committed, + .iop_push = xfs_efi_item_push, + .iop_committing = xfs_efi_item_committing +}; + + +/* + * Allocate and initialize an efi item with the given number of extents. + */ +struct xfs_efi_log_item * +xfs_efi_init( + struct xfs_mount *mp, + uint nextents) + +{ + struct xfs_efi_log_item *efip; + uint size; + + ASSERT(nextents > 0); + if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { + size = (uint)(sizeof(xfs_efi_log_item_t) + + ((nextents - 1) * sizeof(xfs_extent_t))); + efip = kmem_zalloc(size, KM_SLEEP); + } else { + efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); + } + + xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); + efip->efi_format.efi_nextents = nextents; + efip->efi_format.efi_id = (__psint_t)(void*)efip; + atomic_set(&efip->efi_next_extent, 0); + + return efip; +} + +/* + * Copy an EFI format buffer from the given buf, and into the destination + * EFI format structure. + * The given buffer can be in 32 bit or 64 bit form (which has different padding), + * one of which will be the native format for this kernel. + * It will handle the conversion of formats if necessary. + */ +int +xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) +{ + xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; + uint i; + uint len = sizeof(xfs_efi_log_format_t) + + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); + uint len32 = sizeof(xfs_efi_log_format_32_t) + + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); + uint len64 = sizeof(xfs_efi_log_format_64_t) + + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); + + if (buf->i_len == len) { + memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); + return 0; + } else if (buf->i_len == len32) { + xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; + + dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; + dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; + dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; + dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; + for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { + dst_efi_fmt->efi_extents[i].ext_start = + src_efi_fmt_32->efi_extents[i].ext_start; + dst_efi_fmt->efi_extents[i].ext_len = + src_efi_fmt_32->efi_extents[i].ext_len; + } + return 0; + } else if (buf->i_len == len64) { + xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; + + dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; + dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; + dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; + dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; + for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { + dst_efi_fmt->efi_extents[i].ext_start = + src_efi_fmt_64->efi_extents[i].ext_start; + dst_efi_fmt->efi_extents[i].ext_len = + src_efi_fmt_64->efi_extents[i].ext_len; + } + return 0; + } + return EFSCORRUPTED; +} + +/* + * This is called by the efd item code below to release references to the given + * efi item. Each efd calls this with the number of extents that it has + * logged, and when the sum of these reaches the total number of extents logged + * by this efi item we can free the efi item. + */ +void +xfs_efi_release(xfs_efi_log_item_t *efip, + uint nextents) +{ + ASSERT(atomic_read(&efip->efi_next_extent) >= nextents); + if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) + __xfs_efi_release(efip); +} + +static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) +{ + return container_of(lip, struct xfs_efd_log_item, efd_item); +} + +STATIC void +xfs_efd_item_free(struct xfs_efd_log_item *efdp) +{ + if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) + kmem_free(efdp); + else + kmem_zone_free(xfs_efd_zone, efdp); +} + +/* + * This returns the number of iovecs needed to log the given efd item. + * We only need 1 iovec for an efd item. It just logs the efd_log_format + * structure. + */ +STATIC uint +xfs_efd_item_size( + struct xfs_log_item *lip) +{ + return 1; +} + +/* + * This is called to fill in the vector of log iovecs for the + * given efd log item. We use only 1 iovec, and we point that + * at the efd_log_format structure embedded in the efd item. + * It is at this point that we assert that all of the extent + * slots in the efd item have been filled. + */ +STATIC void +xfs_efd_item_format( + struct xfs_log_item *lip, + struct xfs_log_iovec *log_vector) +{ + struct xfs_efd_log_item *efdp = EFD_ITEM(lip); + uint size; + + ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); + + efdp->efd_format.efd_type = XFS_LI_EFD; + + size = sizeof(xfs_efd_log_format_t); + size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); + efdp->efd_format.efd_size = 1; + + log_vector->i_addr = &efdp->efd_format; + log_vector->i_len = size; + log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT; + ASSERT(size >= sizeof(xfs_efd_log_format_t)); +} + +/* + * Pinning has no meaning for an efd item, so just return. + */ +STATIC void +xfs_efd_item_pin( + struct xfs_log_item *lip) +{ +} + +/* + * Since pinning has no meaning for an efd item, unpinning does + * not either. + */ +STATIC void +xfs_efd_item_unpin( + struct xfs_log_item *lip, + int remove) +{ +} + +/* + * Efd items have no locking, so just return success. + */ +STATIC uint +xfs_efd_item_trylock( + struct xfs_log_item *lip) +{ + return XFS_ITEM_LOCKED; +} + +/* + * Efd items have no locking or pushing, so return failure + * so that the caller doesn't bother with us. + */ +STATIC void +xfs_efd_item_unlock( + struct xfs_log_item *lip) +{ + if (lip->li_flags & XFS_LI_ABORTED) + xfs_efd_item_free(EFD_ITEM(lip)); +} + +/* + * When the efd item is committed to disk, all we need to do + * is delete our reference to our partner efi item and then + * free ourselves. Since we're freeing ourselves we must + * return -1 to keep the transaction code from further referencing + * this item. + */ +STATIC xfs_lsn_t +xfs_efd_item_committed( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ + struct xfs_efd_log_item *efdp = EFD_ITEM(lip); + + /* + * If we got a log I/O error, it's always the case that the LR with the + * EFI got unpinned and freed before the EFD got aborted. + */ + if (!(lip->li_flags & XFS_LI_ABORTED)) + xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); + + xfs_efd_item_free(efdp); + return (xfs_lsn_t)-1; +} + +/* + * There isn't much you can do to push on an efd item. It is simply + * stuck waiting for the log to be flushed to disk. + */ +STATIC void +xfs_efd_item_push( + struct xfs_log_item *lip) +{ +} + +/* + * The EFD dependency tracking op doesn't do squat. It can't because + * it doesn't know where the free extent is coming from. The dependency + * tracking has to be handled by the "enclosing" metadata object. For + * example, for inodes, the inode is locked throughout the extent freeing + * so the dependency should be recorded there. + */ +STATIC void +xfs_efd_item_committing( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ +} + +/* + * This is the ops vector shared by all efd log items. + */ +static const struct xfs_item_ops xfs_efd_item_ops = { + .iop_size = xfs_efd_item_size, + .iop_format = xfs_efd_item_format, + .iop_pin = xfs_efd_item_pin, + .iop_unpin = xfs_efd_item_unpin, + .iop_trylock = xfs_efd_item_trylock, + .iop_unlock = xfs_efd_item_unlock, + .iop_committed = xfs_efd_item_committed, + .iop_push = xfs_efd_item_push, + .iop_committing = xfs_efd_item_committing +}; + +/* + * Allocate and initialize an efd item with the given number of extents. + */ +struct xfs_efd_log_item * +xfs_efd_init( + struct xfs_mount *mp, + struct xfs_efi_log_item *efip, + uint nextents) + +{ + struct xfs_efd_log_item *efdp; + uint size; + + ASSERT(nextents > 0); + if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { + size = (uint)(sizeof(xfs_efd_log_item_t) + + ((nextents - 1) * sizeof(xfs_extent_t))); + efdp = kmem_zalloc(size, KM_SLEEP); + } else { + efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); + } + + xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); + efdp->efd_efip = efip; + efdp->efd_format.efd_nextents = nextents; + efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; + + return efdp; +} |