summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c
diff options
context:
space:
mode:
authorKevin2014-11-15 09:58:27 +0800
committerKevin2014-11-15 09:58:27 +0800
commit392e8802486cb573b916e746010e141a75f507e6 (patch)
tree50029aca02c81f087b90336e670b44e510782330 /ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c
downloadFOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.gz
FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.bz2
FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.zip
init android origin source code
Diffstat (limited to 'ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c')
-rw-r--r--ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c520
1 files changed, 520 insertions, 0 deletions
diff --git a/ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c b/ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c
new file mode 100644
index 00000000..35c2aff3
--- /dev/null
+++ b/ANDROID_3.4.5/fs/xfs/xfs_extfree_item.c
@@ -0,0 +1,520 @@
+/*
+ * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_types.h"
+#include "xfs_log.h"
+#include "xfs_inum.h"
+#include "xfs_trans.h"
+#include "xfs_buf_item.h"
+#include "xfs_sb.h"
+#include "xfs_ag.h"
+#include "xfs_mount.h"
+#include "xfs_trans_priv.h"
+#include "xfs_extfree_item.h"
+
+
+kmem_zone_t *xfs_efi_zone;
+kmem_zone_t *xfs_efd_zone;
+
+static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
+{
+ return container_of(lip, struct xfs_efi_log_item, efi_item);
+}
+
+void
+xfs_efi_item_free(
+ struct xfs_efi_log_item *efip)
+{
+ if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
+ kmem_free(efip);
+ else
+ kmem_zone_free(xfs_efi_zone, efip);
+}
+
+/*
+ * Freeing the efi requires that we remove it from the AIL if it has already
+ * been placed there. However, the EFI may not yet have been placed in the AIL
+ * when called by xfs_efi_release() from EFD processing due to the ordering of
+ * committed vs unpin operations in bulk insert operations. Hence the
+ * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees
+ * the EFI.
+ */
+STATIC void
+__xfs_efi_release(
+ struct xfs_efi_log_item *efip)
+{
+ struct xfs_ail *ailp = efip->efi_item.li_ailp;
+
+ if (!test_and_clear_bit(XFS_EFI_COMMITTED, &efip->efi_flags)) {
+ spin_lock(&ailp->xa_lock);
+ /* xfs_trans_ail_delete() drops the AIL lock. */
+ xfs_trans_ail_delete(ailp, &efip->efi_item);
+ xfs_efi_item_free(efip);
+ }
+}
+
+/*
+ * This returns the number of iovecs needed to log the given efi item.
+ * We only need 1 iovec for an efi item. It just logs the efi_log_format
+ * structure.
+ */
+STATIC uint
+xfs_efi_item_size(
+ struct xfs_log_item *lip)
+{
+ return 1;
+}
+
+/*
+ * This is called to fill in the vector of log iovecs for the
+ * given efi log item. We use only 1 iovec, and we point that
+ * at the efi_log_format structure embedded in the efi item.
+ * It is at this point that we assert that all of the extent
+ * slots in the efi item have been filled.
+ */
+STATIC void
+xfs_efi_item_format(
+ struct xfs_log_item *lip,
+ struct xfs_log_iovec *log_vector)
+{
+ struct xfs_efi_log_item *efip = EFI_ITEM(lip);
+ uint size;
+
+ ASSERT(atomic_read(&efip->efi_next_extent) ==
+ efip->efi_format.efi_nextents);
+
+ efip->efi_format.efi_type = XFS_LI_EFI;
+
+ size = sizeof(xfs_efi_log_format_t);
+ size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
+ efip->efi_format.efi_size = 1;
+
+ log_vector->i_addr = &efip->efi_format;
+ log_vector->i_len = size;
+ log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
+ ASSERT(size >= sizeof(xfs_efi_log_format_t));
+}
+
+
+/*
+ * Pinning has no meaning for an efi item, so just return.
+ */
+STATIC void
+xfs_efi_item_pin(
+ struct xfs_log_item *lip)
+{
+}
+
+/*
+ * While EFIs cannot really be pinned, the unpin operation is the last place at
+ * which the EFI is manipulated during a transaction. If we are being asked to
+ * remove the EFI it's because the transaction has been cancelled and by
+ * definition that means the EFI cannot be in the AIL so remove it from the
+ * transaction and free it. Otherwise coordinate with xfs_efi_release() (via
+ * XFS_EFI_COMMITTED) to determine who gets to free the EFI.
+ */
+STATIC void
+xfs_efi_item_unpin(
+ struct xfs_log_item *lip,
+ int remove)
+{
+ struct xfs_efi_log_item *efip = EFI_ITEM(lip);
+
+ if (remove) {
+ ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
+ if (lip->li_desc)
+ xfs_trans_del_item(lip);
+ xfs_efi_item_free(efip);
+ return;
+ }
+ __xfs_efi_release(efip);
+}
+
+/*
+ * Efi items have no locking or pushing. However, since EFIs are
+ * pulled from the AIL when their corresponding EFDs are committed
+ * to disk, their situation is very similar to being pinned. Return
+ * XFS_ITEM_PINNED so that the caller will eventually flush the log.
+ * This should help in getting the EFI out of the AIL.
+ */
+STATIC uint
+xfs_efi_item_trylock(
+ struct xfs_log_item *lip)
+{
+ return XFS_ITEM_PINNED;
+}
+
+/*
+ * Efi items have no locking, so just return.
+ */
+STATIC void
+xfs_efi_item_unlock(
+ struct xfs_log_item *lip)
+{
+ if (lip->li_flags & XFS_LI_ABORTED)
+ xfs_efi_item_free(EFI_ITEM(lip));
+}
+
+/*
+ * The EFI is logged only once and cannot be moved in the log, so simply return
+ * the lsn at which it's been logged. For bulk transaction committed
+ * processing, the EFI may be processed but not yet unpinned prior to the EFD
+ * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected
+ * when processing the EFD.
+ */
+STATIC xfs_lsn_t
+xfs_efi_item_committed(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+ struct xfs_efi_log_item *efip = EFI_ITEM(lip);
+
+ set_bit(XFS_EFI_COMMITTED, &efip->efi_flags);
+ return lsn;
+}
+
+/*
+ * There isn't much you can do to push on an efi item. It is simply
+ * stuck waiting for all of its corresponding efd items to be
+ * committed to disk.
+ */
+STATIC void
+xfs_efi_item_push(
+ struct xfs_log_item *lip)
+{
+}
+
+/*
+ * The EFI dependency tracking op doesn't do squat. It can't because
+ * it doesn't know where the free extent is coming from. The dependency
+ * tracking has to be handled by the "enclosing" metadata object. For
+ * example, for inodes, the inode is locked throughout the extent freeing
+ * so the dependency should be recorded there.
+ */
+STATIC void
+xfs_efi_item_committing(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+}
+
+/*
+ * This is the ops vector shared by all efi log items.
+ */
+static const struct xfs_item_ops xfs_efi_item_ops = {
+ .iop_size = xfs_efi_item_size,
+ .iop_format = xfs_efi_item_format,
+ .iop_pin = xfs_efi_item_pin,
+ .iop_unpin = xfs_efi_item_unpin,
+ .iop_trylock = xfs_efi_item_trylock,
+ .iop_unlock = xfs_efi_item_unlock,
+ .iop_committed = xfs_efi_item_committed,
+ .iop_push = xfs_efi_item_push,
+ .iop_committing = xfs_efi_item_committing
+};
+
+
+/*
+ * Allocate and initialize an efi item with the given number of extents.
+ */
+struct xfs_efi_log_item *
+xfs_efi_init(
+ struct xfs_mount *mp,
+ uint nextents)
+
+{
+ struct xfs_efi_log_item *efip;
+ uint size;
+
+ ASSERT(nextents > 0);
+ if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
+ size = (uint)(sizeof(xfs_efi_log_item_t) +
+ ((nextents - 1) * sizeof(xfs_extent_t)));
+ efip = kmem_zalloc(size, KM_SLEEP);
+ } else {
+ efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
+ }
+
+ xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
+ efip->efi_format.efi_nextents = nextents;
+ efip->efi_format.efi_id = (__psint_t)(void*)efip;
+ atomic_set(&efip->efi_next_extent, 0);
+
+ return efip;
+}
+
+/*
+ * Copy an EFI format buffer from the given buf, and into the destination
+ * EFI format structure.
+ * The given buffer can be in 32 bit or 64 bit form (which has different padding),
+ * one of which will be the native format for this kernel.
+ * It will handle the conversion of formats if necessary.
+ */
+int
+xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
+{
+ xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
+ uint i;
+ uint len = sizeof(xfs_efi_log_format_t) +
+ (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
+ uint len32 = sizeof(xfs_efi_log_format_32_t) +
+ (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
+ uint len64 = sizeof(xfs_efi_log_format_64_t) +
+ (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
+
+ if (buf->i_len == len) {
+ memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
+ return 0;
+ } else if (buf->i_len == len32) {
+ xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
+
+ dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
+ dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
+ dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
+ dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
+ for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
+ dst_efi_fmt->efi_extents[i].ext_start =
+ src_efi_fmt_32->efi_extents[i].ext_start;
+ dst_efi_fmt->efi_extents[i].ext_len =
+ src_efi_fmt_32->efi_extents[i].ext_len;
+ }
+ return 0;
+ } else if (buf->i_len == len64) {
+ xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
+
+ dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
+ dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
+ dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
+ dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
+ for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
+ dst_efi_fmt->efi_extents[i].ext_start =
+ src_efi_fmt_64->efi_extents[i].ext_start;
+ dst_efi_fmt->efi_extents[i].ext_len =
+ src_efi_fmt_64->efi_extents[i].ext_len;
+ }
+ return 0;
+ }
+ return EFSCORRUPTED;
+}
+
+/*
+ * This is called by the efd item code below to release references to the given
+ * efi item. Each efd calls this with the number of extents that it has
+ * logged, and when the sum of these reaches the total number of extents logged
+ * by this efi item we can free the efi item.
+ */
+void
+xfs_efi_release(xfs_efi_log_item_t *efip,
+ uint nextents)
+{
+ ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
+ if (atomic_sub_and_test(nextents, &efip->efi_next_extent))
+ __xfs_efi_release(efip);
+}
+
+static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
+{
+ return container_of(lip, struct xfs_efd_log_item, efd_item);
+}
+
+STATIC void
+xfs_efd_item_free(struct xfs_efd_log_item *efdp)
+{
+ if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
+ kmem_free(efdp);
+ else
+ kmem_zone_free(xfs_efd_zone, efdp);
+}
+
+/*
+ * This returns the number of iovecs needed to log the given efd item.
+ * We only need 1 iovec for an efd item. It just logs the efd_log_format
+ * structure.
+ */
+STATIC uint
+xfs_efd_item_size(
+ struct xfs_log_item *lip)
+{
+ return 1;
+}
+
+/*
+ * This is called to fill in the vector of log iovecs for the
+ * given efd log item. We use only 1 iovec, and we point that
+ * at the efd_log_format structure embedded in the efd item.
+ * It is at this point that we assert that all of the extent
+ * slots in the efd item have been filled.
+ */
+STATIC void
+xfs_efd_item_format(
+ struct xfs_log_item *lip,
+ struct xfs_log_iovec *log_vector)
+{
+ struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
+ uint size;
+
+ ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
+
+ efdp->efd_format.efd_type = XFS_LI_EFD;
+
+ size = sizeof(xfs_efd_log_format_t);
+ size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
+ efdp->efd_format.efd_size = 1;
+
+ log_vector->i_addr = &efdp->efd_format;
+ log_vector->i_len = size;
+ log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
+ ASSERT(size >= sizeof(xfs_efd_log_format_t));
+}
+
+/*
+ * Pinning has no meaning for an efd item, so just return.
+ */
+STATIC void
+xfs_efd_item_pin(
+ struct xfs_log_item *lip)
+{
+}
+
+/*
+ * Since pinning has no meaning for an efd item, unpinning does
+ * not either.
+ */
+STATIC void
+xfs_efd_item_unpin(
+ struct xfs_log_item *lip,
+ int remove)
+{
+}
+
+/*
+ * Efd items have no locking, so just return success.
+ */
+STATIC uint
+xfs_efd_item_trylock(
+ struct xfs_log_item *lip)
+{
+ return XFS_ITEM_LOCKED;
+}
+
+/*
+ * Efd items have no locking or pushing, so return failure
+ * so that the caller doesn't bother with us.
+ */
+STATIC void
+xfs_efd_item_unlock(
+ struct xfs_log_item *lip)
+{
+ if (lip->li_flags & XFS_LI_ABORTED)
+ xfs_efd_item_free(EFD_ITEM(lip));
+}
+
+/*
+ * When the efd item is committed to disk, all we need to do
+ * is delete our reference to our partner efi item and then
+ * free ourselves. Since we're freeing ourselves we must
+ * return -1 to keep the transaction code from further referencing
+ * this item.
+ */
+STATIC xfs_lsn_t
+xfs_efd_item_committed(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+ struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
+
+ /*
+ * If we got a log I/O error, it's always the case that the LR with the
+ * EFI got unpinned and freed before the EFD got aborted.
+ */
+ if (!(lip->li_flags & XFS_LI_ABORTED))
+ xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
+
+ xfs_efd_item_free(efdp);
+ return (xfs_lsn_t)-1;
+}
+
+/*
+ * There isn't much you can do to push on an efd item. It is simply
+ * stuck waiting for the log to be flushed to disk.
+ */
+STATIC void
+xfs_efd_item_push(
+ struct xfs_log_item *lip)
+{
+}
+
+/*
+ * The EFD dependency tracking op doesn't do squat. It can't because
+ * it doesn't know where the free extent is coming from. The dependency
+ * tracking has to be handled by the "enclosing" metadata object. For
+ * example, for inodes, the inode is locked throughout the extent freeing
+ * so the dependency should be recorded there.
+ */
+STATIC void
+xfs_efd_item_committing(
+ struct xfs_log_item *lip,
+ xfs_lsn_t lsn)
+{
+}
+
+/*
+ * This is the ops vector shared by all efd log items.
+ */
+static const struct xfs_item_ops xfs_efd_item_ops = {
+ .iop_size = xfs_efd_item_size,
+ .iop_format = xfs_efd_item_format,
+ .iop_pin = xfs_efd_item_pin,
+ .iop_unpin = xfs_efd_item_unpin,
+ .iop_trylock = xfs_efd_item_trylock,
+ .iop_unlock = xfs_efd_item_unlock,
+ .iop_committed = xfs_efd_item_committed,
+ .iop_push = xfs_efd_item_push,
+ .iop_committing = xfs_efd_item_committing
+};
+
+/*
+ * Allocate and initialize an efd item with the given number of extents.
+ */
+struct xfs_efd_log_item *
+xfs_efd_init(
+ struct xfs_mount *mp,
+ struct xfs_efi_log_item *efip,
+ uint nextents)
+
+{
+ struct xfs_efd_log_item *efdp;
+ uint size;
+
+ ASSERT(nextents > 0);
+ if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
+ size = (uint)(sizeof(xfs_efd_log_item_t) +
+ ((nextents - 1) * sizeof(xfs_extent_t)));
+ efdp = kmem_zalloc(size, KM_SLEEP);
+ } else {
+ efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
+ }
+
+ xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
+ efdp->efd_efip = efip;
+ efdp->efd_format.efd_nextents = nextents;
+ efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
+
+ return efdp;
+}