summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/fs/ubifs/io.c
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-11 12:28:04 +0530
committerSrikant Patnaik2015-01-11 12:28:04 +0530
commit871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch)
tree8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/fs/ubifs/io.c
parent9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff)
downloadFOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/fs/ubifs/io.c')
-rw-r--r--ANDROID_3.4.5/fs/ubifs/io.c1156
1 files changed, 0 insertions, 1156 deletions
diff --git a/ANDROID_3.4.5/fs/ubifs/io.c b/ANDROID_3.4.5/fs/ubifs/io.c
deleted file mode 100644
index 21780502..00000000
--- a/ANDROID_3.4.5/fs/ubifs/io.c
+++ /dev/null
@@ -1,1156 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- * Copyright (C) 2006, 2007 University of Szeged, Hungary
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- * Zoltan Sogor
- */
-
-/*
- * This file implements UBIFS I/O subsystem which provides various I/O-related
- * helper functions (reading/writing/checking/validating nodes) and implements
- * write-buffering support. Write buffers help to save space which otherwise
- * would have been wasted for padding to the nearest minimal I/O unit boundary.
- * Instead, data first goes to the write-buffer and is flushed when the
- * buffer is full or when it is not used for some time (by timer). This is
- * similar to the mechanism is used by JFFS2.
- *
- * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
- * write size (@c->max_write_size). The latter is the maximum amount of bytes
- * the underlying flash is able to program at a time, and writing in
- * @c->max_write_size units should presumably be faster. Obviously,
- * @c->min_io_size <= @c->max_write_size. Write-buffers are of
- * @c->max_write_size bytes in size for maximum performance. However, when a
- * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
- * boundary) which contains data is written, not the whole write-buffer,
- * because this is more space-efficient.
- *
- * This optimization adds few complications to the code. Indeed, on the one
- * hand, we want to write in optimal @c->max_write_size bytes chunks, which
- * also means aligning writes at the @c->max_write_size bytes offsets. On the
- * other hand, we do not want to waste space when synchronizing the write
- * buffer, so during synchronization we writes in smaller chunks. And this makes
- * the next write offset to be not aligned to @c->max_write_size bytes. So the
- * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
- * to @c->max_write_size bytes again. We do this by temporarily shrinking
- * write-buffer size (@wbuf->size).
- *
- * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
- * mutexes defined inside these objects. Since sometimes upper-level code
- * has to lock the write-buffer (e.g. journal space reservation code), many
- * functions related to write-buffers have "nolock" suffix which means that the
- * caller has to lock the write-buffer before calling this function.
- *
- * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
- * aligned, UBIFS starts the next node from the aligned address, and the padded
- * bytes may contain any rubbish. In other words, UBIFS does not put padding
- * bytes in those small gaps. Common headers of nodes store real node lengths,
- * not aligned lengths. Indexing nodes also store real lengths in branches.
- *
- * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
- * uses padding nodes or padding bytes, if the padding node does not fit.
- *
- * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
- * they are read from the flash media.
- */
-
-#include <linux/crc32.h>
-#include <linux/slab.h>
-#include "ubifs.h"
-
-/**
- * ubifs_ro_mode - switch UBIFS to read read-only mode.
- * @c: UBIFS file-system description object
- * @err: error code which is the reason of switching to R/O mode
- */
-void ubifs_ro_mode(struct ubifs_info *c, int err)
-{
- if (!c->ro_error) {
- c->ro_error = 1;
- c->no_chk_data_crc = 0;
- c->vfs_sb->s_flags |= MS_RDONLY;
- ubifs_warn("switched to read-only mode, error %d", err);
- dump_stack();
- }
-}
-
-/*
- * Below are simple wrappers over UBI I/O functions which include some
- * additional checks and UBIFS debugging stuff. See corresponding UBI function
- * for more information.
- */
-
-int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
- int len, int even_ebadmsg)
-{
- int err;
-
- err = ubi_read(c->ubi, lnum, buf, offs, len);
- /*
- * In case of %-EBADMSG print the error message only if the
- * @even_ebadmsg is true.
- */
- if (err && (err != -EBADMSG || even_ebadmsg)) {
- ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
- len, lnum, offs, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
- int len, int dtype)
-{
- int err;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error)
- return -EROFS;
- if (!dbg_is_tst_rcvry(c))
- err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
- else
- err = dbg_leb_write(c, lnum, buf, offs, len, dtype);
- if (err) {
- ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
- len, lnum, offs, err);
- ubifs_ro_mode(c, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len,
- int dtype)
-{
- int err;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error)
- return -EROFS;
- if (!dbg_is_tst_rcvry(c))
- err = ubi_leb_change(c->ubi, lnum, buf, len);
- else
- err = dbg_leb_change(c, lnum, buf, len, dtype);
- if (err) {
- ubifs_err("changing %d bytes in LEB %d failed, error %d",
- len, lnum, err);
- ubifs_ro_mode(c, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
-{
- int err;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error)
- return -EROFS;
- if (!dbg_is_tst_rcvry(c))
- err = ubi_leb_unmap(c->ubi, lnum);
- else
- err = dbg_leb_unmap(c, lnum);
- if (err) {
- ubifs_err("unmap LEB %d failed, error %d", lnum, err);
- ubifs_ro_mode(c, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_leb_map(struct ubifs_info *c, int lnum, int dtype)
-{
- int err;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error)
- return -EROFS;
- if (!dbg_is_tst_rcvry(c))
- err = ubi_leb_map(c->ubi, lnum);
- else
- err = dbg_leb_map(c, lnum, dtype);
- if (err) {
- ubifs_err("mapping LEB %d failed, error %d", lnum, err);
- ubifs_ro_mode(c, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
-{
- int err;
-
- err = ubi_is_mapped(c->ubi, lnum);
- if (err < 0) {
- ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
- lnum, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-/**
- * ubifs_check_node - check node.
- * @c: UBIFS file-system description object
- * @buf: node to check
- * @lnum: logical eraseblock number
- * @offs: offset within the logical eraseblock
- * @quiet: print no messages
- * @must_chk_crc: indicates whether to always check the CRC
- *
- * This function checks node magic number and CRC checksum. This function also
- * validates node length to prevent UBIFS from becoming crazy when an attacker
- * feeds it a file-system image with incorrect nodes. For example, too large
- * node length in the common header could cause UBIFS to read memory outside of
- * allocated buffer when checking the CRC checksum.
- *
- * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
- * true, which is controlled by corresponding UBIFS mount option. However, if
- * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
- * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
- * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
- * is checked. This is because during mounting or re-mounting from R/O mode to
- * R/W mode we may read journal nodes (when replying the journal or doing the
- * recovery) and the journal nodes may potentially be corrupted, so checking is
- * required.
- *
- * This function returns zero in case of success and %-EUCLEAN in case of bad
- * CRC or magic.
- */
-int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
- int offs, int quiet, int must_chk_crc)
-{
- int err = -EINVAL, type, node_len;
- uint32_t crc, node_crc, magic;
- struct ubifs_ch *ch = (struct ubifs_ch*)buf;
-
- ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
- ubifs_assert(!(offs & 7) && offs < c->leb_size);
-
- magic = le32_to_cpu(ch->magic);
- if (magic != UBIFS_NODE_MAGIC) {
- if (!quiet)
- ubifs_err("bad magic %#08x, expected %#08x",
- magic, UBIFS_NODE_MAGIC);
- err = -EUCLEAN;
- goto out;
- }
-
- type = ch->node_type;
- if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
- if (!quiet)
- ubifs_err("bad node type %d", type);
- goto out;
- }
-
- node_len = le32_to_cpu(ch->len);
- if (node_len + offs > c->leb_size)
- goto out_len;
-
- if (c->ranges[type].max_len == 0) {
- if (node_len != c->ranges[type].len)
- goto out_len;
- } else if (node_len < c->ranges[type].min_len ||
- node_len > c->ranges[type].max_len)
- goto out_len;
-
- if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
- !c->remounting_rw && c->no_chk_data_crc)
- return 0;
-
- crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
- node_crc = le32_to_cpu(ch->crc);
- if (crc != node_crc) {
- if (!quiet)
- ubifs_err("bad CRC: calculated %#08x, read %#08x",
- crc, node_crc);
- err = -EUCLEAN;
- goto out;
- }
-
- return 0;
-
-out_len:
- if (!quiet)
- ubifs_err("bad node length %d", node_len);
-out:
- if (!quiet) {
- ubifs_err("bad node at LEB %d:%d", lnum, offs);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- }
- return err;
-}
-
-/**
- * ubifs_pad - pad flash space.
- * @c: UBIFS file-system description object
- * @buf: buffer to put padding to
- * @pad: how many bytes to pad
- *
- * The flash media obliges us to write only in chunks of %c->min_io_size and
- * when we have to write less data we add padding node to the write-buffer and
- * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
- * media is being scanned. If the amount of wasted space is not enough to fit a
- * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
- * pattern (%UBIFS_PADDING_BYTE).
- *
- * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
- * used.
- */
-void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
-{
- uint32_t crc;
-
- ubifs_assert(pad >= 0 && !(pad & 7));
-
- if (pad >= UBIFS_PAD_NODE_SZ) {
- struct ubifs_ch *ch = buf;
- struct ubifs_pad_node *pad_node = buf;
-
- ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
- ch->node_type = UBIFS_PAD_NODE;
- ch->group_type = UBIFS_NO_NODE_GROUP;
- ch->padding[0] = ch->padding[1] = 0;
- ch->sqnum = 0;
- ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
- pad -= UBIFS_PAD_NODE_SZ;
- pad_node->pad_len = cpu_to_le32(pad);
- crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
- ch->crc = cpu_to_le32(crc);
- memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
- } else if (pad > 0)
- /* Too little space, padding node won't fit */
- memset(buf, UBIFS_PADDING_BYTE, pad);
-}
-
-/**
- * next_sqnum - get next sequence number.
- * @c: UBIFS file-system description object
- */
-static unsigned long long next_sqnum(struct ubifs_info *c)
-{
- unsigned long long sqnum;
-
- spin_lock(&c->cnt_lock);
- sqnum = ++c->max_sqnum;
- spin_unlock(&c->cnt_lock);
-
- if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
- if (sqnum >= SQNUM_WATERMARK) {
- ubifs_err("sequence number overflow %llu, end of life",
- sqnum);
- ubifs_ro_mode(c, -EINVAL);
- }
- ubifs_warn("running out of sequence numbers, end of life soon");
- }
-
- return sqnum;
-}
-
-/**
- * ubifs_prepare_node - prepare node to be written to flash.
- * @c: UBIFS file-system description object
- * @node: the node to pad
- * @len: node length
- * @pad: if the buffer has to be padded
- *
- * This function prepares node at @node to be written to the media - it
- * calculates node CRC, fills the common header, and adds proper padding up to
- * the next minimum I/O unit if @pad is not zero.
- */
-void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
-{
- uint32_t crc;
- struct ubifs_ch *ch = node;
- unsigned long long sqnum = next_sqnum(c);
-
- ubifs_assert(len >= UBIFS_CH_SZ);
-
- ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
- ch->len = cpu_to_le32(len);
- ch->group_type = UBIFS_NO_NODE_GROUP;
- ch->sqnum = cpu_to_le64(sqnum);
- ch->padding[0] = ch->padding[1] = 0;
- crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
- ch->crc = cpu_to_le32(crc);
-
- if (pad) {
- len = ALIGN(len, 8);
- pad = ALIGN(len, c->min_io_size) - len;
- ubifs_pad(c, node + len, pad);
- }
-}
-
-/**
- * ubifs_prep_grp_node - prepare node of a group to be written to flash.
- * @c: UBIFS file-system description object
- * @node: the node to pad
- * @len: node length
- * @last: indicates the last node of the group
- *
- * This function prepares node at @node to be written to the media - it
- * calculates node CRC and fills the common header.
- */
-void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
-{
- uint32_t crc;
- struct ubifs_ch *ch = node;
- unsigned long long sqnum = next_sqnum(c);
-
- ubifs_assert(len >= UBIFS_CH_SZ);
-
- ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
- ch->len = cpu_to_le32(len);
- if (last)
- ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
- else
- ch->group_type = UBIFS_IN_NODE_GROUP;
- ch->sqnum = cpu_to_le64(sqnum);
- ch->padding[0] = ch->padding[1] = 0;
- crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
- ch->crc = cpu_to_le32(crc);
-}
-
-/**
- * wbuf_timer_callback - write-buffer timer callback function.
- * @data: timer data (write-buffer descriptor)
- *
- * This function is called when the write-buffer timer expires.
- */
-static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
-{
- struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
-
- dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
- wbuf->need_sync = 1;
- wbuf->c->need_wbuf_sync = 1;
- ubifs_wake_up_bgt(wbuf->c);
- return HRTIMER_NORESTART;
-}
-
-/**
- * new_wbuf_timer - start new write-buffer timer.
- * @wbuf: write-buffer descriptor
- */
-static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
-{
- ubifs_assert(!hrtimer_active(&wbuf->timer));
-
- if (wbuf->no_timer)
- return;
- dbg_io("set timer for jhead %s, %llu-%llu millisecs",
- dbg_jhead(wbuf->jhead),
- div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
- div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
- USEC_PER_SEC));
- hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
- HRTIMER_MODE_REL);
-}
-
-/**
- * cancel_wbuf_timer - cancel write-buffer timer.
- * @wbuf: write-buffer descriptor
- */
-static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
-{
- if (wbuf->no_timer)
- return;
- wbuf->need_sync = 0;
- hrtimer_cancel(&wbuf->timer);
-}
-
-/**
- * ubifs_wbuf_sync_nolock - synchronize write-buffer.
- * @wbuf: write-buffer to synchronize
- *
- * This function synchronizes write-buffer @buf and returns zero in case of
- * success or a negative error code in case of failure.
- *
- * Note, although write-buffers are of @c->max_write_size, this function does
- * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
- * if the write-buffer is only partially filled with data, only the used part
- * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
- * This way we waste less space.
- */
-int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
-{
- struct ubifs_info *c = wbuf->c;
- int err, dirt, sync_len;
-
- cancel_wbuf_timer_nolock(wbuf);
- if (!wbuf->used || wbuf->lnum == -1)
- /* Write-buffer is empty or not seeked */
- return 0;
-
- dbg_io("LEB %d:%d, %d bytes, jhead %s",
- wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
- ubifs_assert(!(wbuf->avail & 7));
- ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
- ubifs_assert(wbuf->size >= c->min_io_size);
- ubifs_assert(wbuf->size <= c->max_write_size);
- ubifs_assert(wbuf->size % c->min_io_size == 0);
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->leb_size - wbuf->offs >= c->max_write_size)
- ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
-
- if (c->ro_error)
- return -EROFS;
-
- /*
- * Do not write whole write buffer but write only the minimum necessary
- * amount of min. I/O units.
- */
- sync_len = ALIGN(wbuf->used, c->min_io_size);
- dirt = sync_len - wbuf->used;
- if (dirt)
- ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
- err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len,
- wbuf->dtype);
- if (err)
- return err;
-
- spin_lock(&wbuf->lock);
- wbuf->offs += sync_len;
- /*
- * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
- * But our goal is to optimize writes and make sure we write in
- * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
- * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
- * sure that @wbuf->offs + @wbuf->size is aligned to
- * @c->max_write_size. This way we make sure that after next
- * write-buffer flush we are again at the optimal offset (aligned to
- * @c->max_write_size).
- */
- if (c->leb_size - wbuf->offs < c->max_write_size)
- wbuf->size = c->leb_size - wbuf->offs;
- else if (wbuf->offs & (c->max_write_size - 1))
- wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
- else
- wbuf->size = c->max_write_size;
- wbuf->avail = wbuf->size;
- wbuf->used = 0;
- wbuf->next_ino = 0;
- spin_unlock(&wbuf->lock);
-
- if (wbuf->sync_callback)
- err = wbuf->sync_callback(c, wbuf->lnum,
- c->leb_size - wbuf->offs, dirt);
- return err;
-}
-
-/**
- * ubifs_wbuf_seek_nolock - seek write-buffer.
- * @wbuf: write-buffer
- * @lnum: logical eraseblock number to seek to
- * @offs: logical eraseblock offset to seek to
- * @dtype: data type
- *
- * This function targets the write-buffer to logical eraseblock @lnum:@offs.
- * The write-buffer has to be empty. Returns zero in case of success and a
- * negative error code in case of failure.
- */
-int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
- int dtype)
-{
- const struct ubifs_info *c = wbuf->c;
-
- dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
- ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
- ubifs_assert(offs >= 0 && offs <= c->leb_size);
- ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
- ubifs_assert(lnum != wbuf->lnum);
- ubifs_assert(wbuf->used == 0);
-
- spin_lock(&wbuf->lock);
- wbuf->lnum = lnum;
- wbuf->offs = offs;
- if (c->leb_size - wbuf->offs < c->max_write_size)
- wbuf->size = c->leb_size - wbuf->offs;
- else if (wbuf->offs & (c->max_write_size - 1))
- wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
- else
- wbuf->size = c->max_write_size;
- wbuf->avail = wbuf->size;
- wbuf->used = 0;
- spin_unlock(&wbuf->lock);
- wbuf->dtype = dtype;
-
- return 0;
-}
-
-/**
- * ubifs_bg_wbufs_sync - synchronize write-buffers.
- * @c: UBIFS file-system description object
- *
- * This function is called by background thread to synchronize write-buffers.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- */
-int ubifs_bg_wbufs_sync(struct ubifs_info *c)
-{
- int err, i;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (!c->need_wbuf_sync)
- return 0;
- c->need_wbuf_sync = 0;
-
- if (c->ro_error) {
- err = -EROFS;
- goto out_timers;
- }
-
- dbg_io("synchronize");
- for (i = 0; i < c->jhead_cnt; i++) {
- struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
-
- cond_resched();
-
- /*
- * If the mutex is locked then wbuf is being changed, so
- * synchronization is not necessary.
- */
- if (mutex_is_locked(&wbuf->io_mutex))
- continue;
-
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- if (!wbuf->need_sync) {
- mutex_unlock(&wbuf->io_mutex);
- continue;
- }
-
- err = ubifs_wbuf_sync_nolock(wbuf);
- mutex_unlock(&wbuf->io_mutex);
- if (err) {
- ubifs_err("cannot sync write-buffer, error %d", err);
- ubifs_ro_mode(c, err);
- goto out_timers;
- }
- }
-
- return 0;
-
-out_timers:
- /* Cancel all timers to prevent repeated errors */
- for (i = 0; i < c->jhead_cnt; i++) {
- struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
-
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- cancel_wbuf_timer_nolock(wbuf);
- mutex_unlock(&wbuf->io_mutex);
- }
- return err;
-}
-
-/**
- * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
- * @wbuf: write-buffer
- * @buf: node to write
- * @len: node length
- *
- * This function writes data to flash via write-buffer @wbuf. This means that
- * the last piece of the node won't reach the flash media immediately if it
- * does not take whole max. write unit (@c->max_write_size). Instead, the node
- * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
- * because more data are appended to the write-buffer).
- *
- * This function returns zero in case of success and a negative error code in
- * case of failure. If the node cannot be written because there is no more
- * space in this logical eraseblock, %-ENOSPC is returned.
- */
-int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
-{
- struct ubifs_info *c = wbuf->c;
- int err, written, n, aligned_len = ALIGN(len, 8);
-
- dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
- dbg_ntype(((struct ubifs_ch *)buf)->node_type),
- dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
- ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
- ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
- ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
- ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
- ubifs_assert(wbuf->size >= c->min_io_size);
- ubifs_assert(wbuf->size <= c->max_write_size);
- ubifs_assert(wbuf->size % c->min_io_size == 0);
- ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
- ubifs_assert(!c->ro_media && !c->ro_mount);
- ubifs_assert(!c->space_fixup);
- if (c->leb_size - wbuf->offs >= c->max_write_size)
- ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
-
- if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
- err = -ENOSPC;
- goto out;
- }
-
- cancel_wbuf_timer_nolock(wbuf);
-
- if (c->ro_error)
- return -EROFS;
-
- if (aligned_len <= wbuf->avail) {
- /*
- * The node is not very large and fits entirely within
- * write-buffer.
- */
- memcpy(wbuf->buf + wbuf->used, buf, len);
-
- if (aligned_len == wbuf->avail) {
- dbg_io("flush jhead %s wbuf to LEB %d:%d",
- dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
- err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
- wbuf->offs, wbuf->size,
- wbuf->dtype);
- if (err)
- goto out;
-
- spin_lock(&wbuf->lock);
- wbuf->offs += wbuf->size;
- if (c->leb_size - wbuf->offs >= c->max_write_size)
- wbuf->size = c->max_write_size;
- else
- wbuf->size = c->leb_size - wbuf->offs;
- wbuf->avail = wbuf->size;
- wbuf->used = 0;
- wbuf->next_ino = 0;
- spin_unlock(&wbuf->lock);
- } else {
- spin_lock(&wbuf->lock);
- wbuf->avail -= aligned_len;
- wbuf->used += aligned_len;
- spin_unlock(&wbuf->lock);
- }
-
- goto exit;
- }
-
- written = 0;
-
- if (wbuf->used) {
- /*
- * The node is large enough and does not fit entirely within
- * current available space. We have to fill and flush
- * write-buffer and switch to the next max. write unit.
- */
- dbg_io("flush jhead %s wbuf to LEB %d:%d",
- dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
- memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
- err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
- wbuf->size, wbuf->dtype);
- if (err)
- goto out;
-
- wbuf->offs += wbuf->size;
- len -= wbuf->avail;
- aligned_len -= wbuf->avail;
- written += wbuf->avail;
- } else if (wbuf->offs & (c->max_write_size - 1)) {
- /*
- * The write-buffer offset is not aligned to
- * @c->max_write_size and @wbuf->size is less than
- * @c->max_write_size. Write @wbuf->size bytes to make sure the
- * following writes are done in optimal @c->max_write_size
- * chunks.
- */
- dbg_io("write %d bytes to LEB %d:%d",
- wbuf->size, wbuf->lnum, wbuf->offs);
- err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
- wbuf->size, wbuf->dtype);
- if (err)
- goto out;
-
- wbuf->offs += wbuf->size;
- len -= wbuf->size;
- aligned_len -= wbuf->size;
- written += wbuf->size;
- }
-
- /*
- * The remaining data may take more whole max. write units, so write the
- * remains multiple to max. write unit size directly to the flash media.
- * We align node length to 8-byte boundary because we anyway flash wbuf
- * if the remaining space is less than 8 bytes.
- */
- n = aligned_len >> c->max_write_shift;
- if (n) {
- n <<= c->max_write_shift;
- dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
- wbuf->offs);
- err = ubifs_leb_write(c, wbuf->lnum, buf + written,
- wbuf->offs, n, wbuf->dtype);
- if (err)
- goto out;
- wbuf->offs += n;
- aligned_len -= n;
- len -= n;
- written += n;
- }
-
- spin_lock(&wbuf->lock);
- if (aligned_len)
- /*
- * And now we have what's left and what does not take whole
- * max. write unit, so write it to the write-buffer and we are
- * done.
- */
- memcpy(wbuf->buf, buf + written, len);
-
- if (c->leb_size - wbuf->offs >= c->max_write_size)
- wbuf->size = c->max_write_size;
- else
- wbuf->size = c->leb_size - wbuf->offs;
- wbuf->avail = wbuf->size - aligned_len;
- wbuf->used = aligned_len;
- wbuf->next_ino = 0;
- spin_unlock(&wbuf->lock);
-
-exit:
- if (wbuf->sync_callback) {
- int free = c->leb_size - wbuf->offs - wbuf->used;
-
- err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
- if (err)
- goto out;
- }
-
- if (wbuf->used)
- new_wbuf_timer_nolock(wbuf);
-
- return 0;
-
-out:
- ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
- len, wbuf->lnum, wbuf->offs, err);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- dbg_dump_leb(c, wbuf->lnum);
- return err;
-}
-
-/**
- * ubifs_write_node - write node to the media.
- * @c: UBIFS file-system description object
- * @buf: the node to write
- * @len: node length
- * @lnum: logical eraseblock number
- * @offs: offset within the logical eraseblock
- * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
- *
- * This function automatically fills node magic number, assigns sequence
- * number, and calculates node CRC checksum. The length of the @buf buffer has
- * to be aligned to the minimal I/O unit size. This function automatically
- * appends padding node and padding bytes if needed. Returns zero in case of
- * success and a negative error code in case of failure.
- */
-int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
- int offs, int dtype)
-{
- int err, buf_len = ALIGN(len, c->min_io_size);
-
- dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
- lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
- buf_len);
- ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
- ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
- ubifs_assert(!c->ro_media && !c->ro_mount);
- ubifs_assert(!c->space_fixup);
-
- if (c->ro_error)
- return -EROFS;
-
- ubifs_prepare_node(c, buf, len, 1);
- err = ubifs_leb_write(c, lnum, buf, offs, buf_len, dtype);
- if (err)
- dbg_dump_node(c, buf);
-
- return err;
-}
-
-/**
- * ubifs_read_node_wbuf - read node from the media or write-buffer.
- * @wbuf: wbuf to check for un-written data
- * @buf: buffer to read to
- * @type: node type
- * @len: node length
- * @lnum: logical eraseblock number
- * @offs: offset within the logical eraseblock
- *
- * This function reads a node of known type and length, checks it and stores
- * in @buf. If the node partially or fully sits in the write-buffer, this
- * function takes data from the buffer, otherwise it reads the flash media.
- * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
- * error code in case of failure.
- */
-int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
- int lnum, int offs)
-{
- const struct ubifs_info *c = wbuf->c;
- int err, rlen, overlap;
- struct ubifs_ch *ch = buf;
-
- dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
- dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
- ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
- ubifs_assert(!(offs & 7) && offs < c->leb_size);
- ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
-
- spin_lock(&wbuf->lock);
- overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
- if (!overlap) {
- /* We may safely unlock the write-buffer and read the data */
- spin_unlock(&wbuf->lock);
- return ubifs_read_node(c, buf, type, len, lnum, offs);
- }
-
- /* Don't read under wbuf */
- rlen = wbuf->offs - offs;
- if (rlen < 0)
- rlen = 0;
-
- /* Copy the rest from the write-buffer */
- memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
- spin_unlock(&wbuf->lock);
-
- if (rlen > 0) {
- /* Read everything that goes before write-buffer */
- err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
- if (err && err != -EBADMSG)
- return err;
- }
-
- if (type != ch->node_type) {
- ubifs_err("bad node type (%d but expected %d)",
- ch->node_type, type);
- goto out;
- }
-
- err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
- if (err) {
- ubifs_err("expected node type %d", type);
- return err;
- }
-
- rlen = le32_to_cpu(ch->len);
- if (rlen != len) {
- ubifs_err("bad node length %d, expected %d", rlen, len);
- goto out;
- }
-
- return 0;
-
-out:
- ubifs_err("bad node at LEB %d:%d", lnum, offs);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- return -EINVAL;
-}
-
-/**
- * ubifs_read_node - read node.
- * @c: UBIFS file-system description object
- * @buf: buffer to read to
- * @type: node type
- * @len: node length (not aligned)
- * @lnum: logical eraseblock number
- * @offs: offset within the logical eraseblock
- *
- * This function reads a node of known type and and length, checks it and
- * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
- * and a negative error code in case of failure.
- */
-int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
- int lnum, int offs)
-{
- int err, l;
- struct ubifs_ch *ch = buf;
-
- dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
- ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
- ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
- ubifs_assert(!(offs & 7) && offs < c->leb_size);
- ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
-
- err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
- if (err && err != -EBADMSG)
- return err;
-
- if (type != ch->node_type) {
- ubifs_err("bad node type (%d but expected %d)",
- ch->node_type, type);
- goto out;
- }
-
- err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
- if (err) {
- ubifs_err("expected node type %d", type);
- return err;
- }
-
- l = le32_to_cpu(ch->len);
- if (l != len) {
- ubifs_err("bad node length %d, expected %d", l, len);
- goto out;
- }
-
- return 0;
-
-out:
- ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
- ubi_is_mapped(c->ubi, lnum));
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- return -EINVAL;
-}
-
-/**
- * ubifs_wbuf_init - initialize write-buffer.
- * @c: UBIFS file-system description object
- * @wbuf: write-buffer to initialize
- *
- * This function initializes write-buffer. Returns zero in case of success
- * %-ENOMEM in case of failure.
- */
-int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
-{
- size_t size;
-
- wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
- if (!wbuf->buf)
- return -ENOMEM;
-
- size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
- wbuf->inodes = kmalloc(size, GFP_KERNEL);
- if (!wbuf->inodes) {
- kfree(wbuf->buf);
- wbuf->buf = NULL;
- return -ENOMEM;
- }
-
- wbuf->used = 0;
- wbuf->lnum = wbuf->offs = -1;
- /*
- * If the LEB starts at the max. write size aligned address, then
- * write-buffer size has to be set to @c->max_write_size. Otherwise,
- * set it to something smaller so that it ends at the closest max.
- * write size boundary.
- */
- size = c->max_write_size - (c->leb_start % c->max_write_size);
- wbuf->avail = wbuf->size = size;
- wbuf->dtype = UBI_UNKNOWN;
- wbuf->sync_callback = NULL;
- mutex_init(&wbuf->io_mutex);
- spin_lock_init(&wbuf->lock);
- wbuf->c = c;
- wbuf->next_ino = 0;
-
- hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- wbuf->timer.function = wbuf_timer_callback_nolock;
- wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
- wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
- wbuf->delta *= 1000000000ULL;
- ubifs_assert(wbuf->delta <= ULONG_MAX);
- return 0;
-}
-
-/**
- * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
- * @wbuf: the write-buffer where to add
- * @inum: the inode number
- *
- * This function adds an inode number to the inode array of the write-buffer.
- */
-void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
-{
- if (!wbuf->buf)
- /* NOR flash or something similar */
- return;
-
- spin_lock(&wbuf->lock);
- if (wbuf->used)
- wbuf->inodes[wbuf->next_ino++] = inum;
- spin_unlock(&wbuf->lock);
-}
-
-/**
- * wbuf_has_ino - returns if the wbuf contains data from the inode.
- * @wbuf: the write-buffer
- * @inum: the inode number
- *
- * This function returns with %1 if the write-buffer contains some data from the
- * given inode otherwise it returns with %0.
- */
-static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
-{
- int i, ret = 0;
-
- spin_lock(&wbuf->lock);
- for (i = 0; i < wbuf->next_ino; i++)
- if (inum == wbuf->inodes[i]) {
- ret = 1;
- break;
- }
- spin_unlock(&wbuf->lock);
-
- return ret;
-}
-
-/**
- * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
- * @c: UBIFS file-system description object
- * @inode: inode to synchronize
- *
- * This function synchronizes write-buffers which contain nodes belonging to
- * @inode. Returns zero in case of success and a negative error code in case of
- * failure.
- */
-int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
-{
- int i, err = 0;
-
- for (i = 0; i < c->jhead_cnt; i++) {
- struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
-
- if (i == GCHD)
- /*
- * GC head is special, do not look at it. Even if the
- * head contains something related to this inode, it is
- * a _copy_ of corresponding on-flash node which sits
- * somewhere else.
- */
- continue;
-
- if (!wbuf_has_ino(wbuf, inode->i_ino))
- continue;
-
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- if (wbuf_has_ino(wbuf, inode->i_ino))
- err = ubifs_wbuf_sync_nolock(wbuf);
- mutex_unlock(&wbuf->io_mutex);
-
- if (err) {
- ubifs_ro_mode(c, err);
- return err;
- }
- }
- return 0;
-}