diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/fs/reiserfs/fix_node.c | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/fs/reiserfs/fix_node.c')
-rw-r--r-- | ANDROID_3.4.5/fs/reiserfs/fix_node.c | 2593 |
1 files changed, 0 insertions, 2593 deletions
diff --git a/ANDROID_3.4.5/fs/reiserfs/fix_node.c b/ANDROID_3.4.5/fs/reiserfs/fix_node.c deleted file mode 100644 index 430e0658..00000000 --- a/ANDROID_3.4.5/fs/reiserfs/fix_node.c +++ /dev/null @@ -1,2593 +0,0 @@ -/* - * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README - */ - -/** - ** old_item_num - ** old_entry_num - ** set_entry_sizes - ** create_virtual_node - ** check_left - ** check_right - ** directory_part_size - ** get_num_ver - ** set_parameters - ** is_leaf_removable - ** are_leaves_removable - ** get_empty_nodes - ** get_lfree - ** get_rfree - ** is_left_neighbor_in_cache - ** decrement_key - ** get_far_parent - ** get_parents - ** can_node_be_removed - ** ip_check_balance - ** dc_check_balance_internal - ** dc_check_balance_leaf - ** dc_check_balance - ** check_balance - ** get_direct_parent - ** get_neighbors - ** fix_nodes - ** - ** - **/ - -#include <linux/time.h> -#include <linux/slab.h> -#include <linux/string.h> -#include "reiserfs.h" -#include <linux/buffer_head.h> - -/* To make any changes in the tree we find a node, that contains item - to be changed/deleted or position in the node we insert a new item - to. We call this node S. To do balancing we need to decide what we - will shift to left/right neighbor, or to a new node, where new item - will be etc. To make this analysis simpler we build virtual - node. Virtual node is an array of items, that will replace items of - node S. (For instance if we are going to delete an item, virtual - node does not contain it). Virtual node keeps information about - item sizes and types, mergeability of first and last items, sizes - of all entries in directory item. We use this array of items when - calculating what we can shift to neighbors and how many nodes we - have to have if we do not any shiftings, if we shift to left/right - neighbor or to both. */ - -/* taking item number in virtual node, returns number of item, that it has in source buffer */ -static inline int old_item_num(int new_num, int affected_item_num, int mode) -{ - if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) - return new_num; - - if (mode == M_INSERT) { - - RFALSE(new_num == 0, - "vs-8005: for INSERT mode and item number of inserted item"); - - return new_num - 1; - } - - RFALSE(mode != M_DELETE, - "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", - mode); - /* delete mode */ - return new_num + 1; -} - -static void create_virtual_node(struct tree_balance *tb, int h) -{ - struct item_head *ih; - struct virtual_node *vn = tb->tb_vn; - int new_num; - struct buffer_head *Sh; /* this comes from tb->S[h] */ - - Sh = PATH_H_PBUFFER(tb->tb_path, h); - - /* size of changed node */ - vn->vn_size = - MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h]; - - /* for internal nodes array if virtual items is not created */ - if (h) { - vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); - return; - } - - /* number of items in virtual node */ - vn->vn_nr_item = - B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) - - ((vn->vn_mode == M_DELETE) ? 1 : 0); - - /* first virtual item */ - vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); - memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item)); - vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item); - - /* first item in the node */ - ih = B_N_PITEM_HEAD(Sh, 0); - - /* define the mergeability for 0-th item (if it is not being deleted) */ - if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size) - && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) - vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; - - /* go through all items those remain in the virtual node (except for the new (inserted) one) */ - for (new_num = 0; new_num < vn->vn_nr_item; new_num++) { - int j; - struct virtual_item *vi = vn->vn_vi + new_num; - int is_affected = - ((new_num != vn->vn_affected_item_num) ? 0 : 1); - - if (is_affected && vn->vn_mode == M_INSERT) - continue; - - /* get item number in source node */ - j = old_item_num(new_num, vn->vn_affected_item_num, - vn->vn_mode); - - vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; - vi->vi_ih = ih + j; - vi->vi_item = B_I_PITEM(Sh, ih + j); - vi->vi_uarea = vn->vn_free_ptr; - - // FIXME: there is no check, that item operation did not - // consume too much memory - vn->vn_free_ptr += - op_create_vi(vn, vi, is_affected, tb->insert_size[0]); - if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) - reiserfs_panic(tb->tb_sb, "vs-8030", - "virtual node space consumed"); - - if (!is_affected) - /* this is not being changed */ - continue; - - if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { - vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; - vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted - } - } - - /* virtual inserted item is not defined yet */ - if (vn->vn_mode == M_INSERT) { - struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num; - - RFALSE(vn->vn_ins_ih == NULL, - "vs-8040: item header of inserted item is not specified"); - vi->vi_item_len = tb->insert_size[0]; - vi->vi_ih = vn->vn_ins_ih; - vi->vi_item = vn->vn_data; - vi->vi_uarea = vn->vn_free_ptr; - - op_create_vi(vn, vi, 0 /*not pasted or cut */ , - tb->insert_size[0]); - } - - /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ - if (tb->CFR[0]) { - struct reiserfs_key *key; - - key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]); - if (op_is_left_mergeable(key, Sh->b_size) - && (vn->vn_mode != M_DELETE - || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) - vn->vn_vi[vn->vn_nr_item - 1].vi_type |= - VI_TYPE_RIGHT_MERGEABLE; - -#ifdef CONFIG_REISERFS_CHECK - if (op_is_left_mergeable(key, Sh->b_size) && - !(vn->vn_mode != M_DELETE - || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) { - /* we delete last item and it could be merged with right neighbor's first item */ - if (! - (B_NR_ITEMS(Sh) == 1 - && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0)) - && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) { - /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ - print_block(Sh, 0, -1, -1); - reiserfs_panic(tb->tb_sb, "vs-8045", - "rdkey %k, affected item==%d " - "(mode==%c) Must be %c", - key, vn->vn_affected_item_num, - vn->vn_mode, M_DELETE); - } - } -#endif - - } -} - -/* using virtual node check, how many items can be shifted to left - neighbor */ -static void check_left(struct tree_balance *tb, int h, int cur_free) -{ - int i; - struct virtual_node *vn = tb->tb_vn; - struct virtual_item *vi; - int d_size, ih_size; - - RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); - - /* internal level */ - if (h > 0) { - tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); - return; - } - - /* leaf level */ - - if (!cur_free || !vn->vn_nr_item) { - /* no free space or nothing to move */ - tb->lnum[h] = 0; - tb->lbytes = -1; - return; - } - - RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), - "vs-8055: parent does not exist or invalid"); - - vi = vn->vn_vi; - if ((unsigned int)cur_free >= - (vn->vn_size - - ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { - /* all contents of S[0] fits into L[0] */ - - RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, - "vs-8055: invalid mode or balance condition failed"); - - tb->lnum[0] = vn->vn_nr_item; - tb->lbytes = -1; - return; - } - - d_size = 0, ih_size = IH_SIZE; - - /* first item may be merge with last item in left neighbor */ - if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) - d_size = -((int)IH_SIZE), ih_size = 0; - - tb->lnum[0] = 0; - for (i = 0; i < vn->vn_nr_item; - i++, ih_size = IH_SIZE, d_size = 0, vi++) { - d_size += vi->vi_item_len; - if (cur_free >= d_size) { - /* the item can be shifted entirely */ - cur_free -= d_size; - tb->lnum[0]++; - continue; - } - - /* the item cannot be shifted entirely, try to split it */ - /* check whether L[0] can hold ih and at least one byte of the item body */ - if (cur_free <= ih_size) { - /* cannot shift even a part of the current item */ - tb->lbytes = -1; - return; - } - cur_free -= ih_size; - - tb->lbytes = op_check_left(vi, cur_free, 0, 0); - if (tb->lbytes != -1) - /* count partially shifted item */ - tb->lnum[0]++; - - break; - } - - return; -} - -/* using virtual node check, how many items can be shifted to right - neighbor */ -static void check_right(struct tree_balance *tb, int h, int cur_free) -{ - int i; - struct virtual_node *vn = tb->tb_vn; - struct virtual_item *vi; - int d_size, ih_size; - - RFALSE(cur_free < 0, "vs-8070: cur_free < 0"); - - /* internal level */ - if (h > 0) { - tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); - return; - } - - /* leaf level */ - - if (!cur_free || !vn->vn_nr_item) { - /* no free space */ - tb->rnum[h] = 0; - tb->rbytes = -1; - return; - } - - RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), - "vs-8075: parent does not exist or invalid"); - - vi = vn->vn_vi + vn->vn_nr_item - 1; - if ((unsigned int)cur_free >= - (vn->vn_size - - ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { - /* all contents of S[0] fits into R[0] */ - - RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, - "vs-8080: invalid mode or balance condition failed"); - - tb->rnum[h] = vn->vn_nr_item; - tb->rbytes = -1; - return; - } - - d_size = 0, ih_size = IH_SIZE; - - /* last item may be merge with first item in right neighbor */ - if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) - d_size = -(int)IH_SIZE, ih_size = 0; - - tb->rnum[0] = 0; - for (i = vn->vn_nr_item - 1; i >= 0; - i--, d_size = 0, ih_size = IH_SIZE, vi--) { - d_size += vi->vi_item_len; - if (cur_free >= d_size) { - /* the item can be shifted entirely */ - cur_free -= d_size; - tb->rnum[0]++; - continue; - } - - /* check whether R[0] can hold ih and at least one byte of the item body */ - if (cur_free <= ih_size) { /* cannot shift even a part of the current item */ - tb->rbytes = -1; - return; - } - - /* R[0] can hold the header of the item and at least one byte of its body */ - cur_free -= ih_size; /* cur_free is still > 0 */ - - tb->rbytes = op_check_right(vi, cur_free); - if (tb->rbytes != -1) - /* count partially shifted item */ - tb->rnum[0]++; - - break; - } - - return; -} - -/* - * from - number of items, which are shifted to left neighbor entirely - * to - number of item, which are shifted to right neighbor entirely - * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor - * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ -static int get_num_ver(int mode, struct tree_balance *tb, int h, - int from, int from_bytes, - int to, int to_bytes, short *snum012, int flow) -{ - int i; - int cur_free; - // int bytes; - int units; - struct virtual_node *vn = tb->tb_vn; - // struct virtual_item * vi; - - int total_node_size, max_node_size, current_item_size; - int needed_nodes; - int start_item, /* position of item we start filling node from */ - end_item, /* position of item we finish filling node by */ - start_bytes, /* number of first bytes (entries for directory) of start_item-th item - we do not include into node that is being filled */ - end_bytes; /* number of last bytes (entries for directory) of end_item-th item - we do node include into node that is being filled */ - int split_item_positions[2]; /* these are positions in virtual item of - items, that are split between S[0] and - S1new and S1new and S2new */ - - split_item_positions[0] = -1; - split_item_positions[1] = -1; - - /* We only create additional nodes if we are in insert or paste mode - or we are in replace mode at the internal level. If h is 0 and - the mode is M_REPLACE then in fix_nodes we change the mode to - paste or insert before we get here in the code. */ - RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), - "vs-8100: insert_size < 0 in overflow"); - - max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h)); - - /* snum012 [0-2] - number of items, that lay - to S[0], first new node and second new node */ - snum012[3] = -1; /* s1bytes */ - snum012[4] = -1; /* s2bytes */ - - /* internal level */ - if (h > 0) { - i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); - if (i == max_node_size) - return 1; - return (i / max_node_size + 1); - } - - /* leaf level */ - needed_nodes = 1; - total_node_size = 0; - cur_free = max_node_size; - - // start from 'from'-th item - start_item = from; - // skip its first 'start_bytes' units - start_bytes = ((from_bytes != -1) ? from_bytes : 0); - - // last included item is the 'end_item'-th one - end_item = vn->vn_nr_item - to - 1; - // do not count last 'end_bytes' units of 'end_item'-th item - end_bytes = (to_bytes != -1) ? to_bytes : 0; - - /* go through all item beginning from the start_item-th item and ending by - the end_item-th item. Do not count first 'start_bytes' units of - 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ - - for (i = start_item; i <= end_item; i++) { - struct virtual_item *vi = vn->vn_vi + i; - int skip_from_end = ((i == end_item) ? end_bytes : 0); - - RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed"); - - /* get size of current item */ - current_item_size = vi->vi_item_len; - - /* do not take in calculation head part (from_bytes) of from-th item */ - current_item_size -= - op_part_size(vi, 0 /*from start */ , start_bytes); - - /* do not take in calculation tail part of last item */ - current_item_size -= - op_part_size(vi, 1 /*from end */ , skip_from_end); - - /* if item fits into current node entierly */ - if (total_node_size + current_item_size <= max_node_size) { - snum012[needed_nodes - 1]++; - total_node_size += current_item_size; - start_bytes = 0; - continue; - } - - if (current_item_size > max_node_size) { - /* virtual item length is longer, than max size of item in - a node. It is impossible for direct item */ - RFALSE(is_direct_le_ih(vi->vi_ih), - "vs-8110: " - "direct item length is %d. It can not be longer than %d", - current_item_size, max_node_size); - /* we will try to split it */ - flow = 1; - } - - if (!flow) { - /* as we do not split items, take new node and continue */ - needed_nodes++; - i--; - total_node_size = 0; - continue; - } - // calculate number of item units which fit into node being - // filled - { - int free_space; - - free_space = max_node_size - total_node_size - IH_SIZE; - units = - op_check_left(vi, free_space, start_bytes, - skip_from_end); - if (units == -1) { - /* nothing fits into current node, take new node and continue */ - needed_nodes++, i--, total_node_size = 0; - continue; - } - } - - /* something fits into the current node */ - //if (snum012[3] != -1 || needed_nodes != 1) - // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); - //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; - start_bytes += units; - snum012[needed_nodes - 1 + 3] = units; - - if (needed_nodes > 2) - reiserfs_warning(tb->tb_sb, "vs-8111", - "split_item_position is out of range"); - snum012[needed_nodes - 1]++; - split_item_positions[needed_nodes - 1] = i; - needed_nodes++; - /* continue from the same item with start_bytes != -1 */ - start_item = i; - i--; - total_node_size = 0; - } - - // sum012[4] (if it is not -1) contains number of units of which - // are to be in S1new, snum012[3] - to be in S0. They are supposed - // to be S1bytes and S2bytes correspondingly, so recalculate - if (snum012[4] > 0) { - int split_item_num; - int bytes_to_r, bytes_to_l; - int bytes_to_S1new; - - split_item_num = split_item_positions[1]; - bytes_to_l = - ((from == split_item_num - && from_bytes != -1) ? from_bytes : 0); - bytes_to_r = - ((end_item == split_item_num - && end_bytes != -1) ? end_bytes : 0); - bytes_to_S1new = - ((split_item_positions[0] == - split_item_positions[1]) ? snum012[3] : 0); - - // s2bytes - snum012[4] = - op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] - - bytes_to_r - bytes_to_l - bytes_to_S1new; - - if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && - vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) - reiserfs_warning(tb->tb_sb, "vs-8115", - "not directory or indirect item"); - } - - /* now we know S2bytes, calculate S1bytes */ - if (snum012[3] > 0) { - int split_item_num; - int bytes_to_r, bytes_to_l; - int bytes_to_S2new; - - split_item_num = split_item_positions[0]; - bytes_to_l = - ((from == split_item_num - && from_bytes != -1) ? from_bytes : 0); - bytes_to_r = - ((end_item == split_item_num - && end_bytes != -1) ? end_bytes : 0); - bytes_to_S2new = - ((split_item_positions[0] == split_item_positions[1] - && snum012[4] != -1) ? snum012[4] : 0); - - // s1bytes - snum012[3] = - op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] - - bytes_to_r - bytes_to_l - bytes_to_S2new; - } - - return needed_nodes; -} - - -/* Set parameters for balancing. - * Performs write of results of analysis of balancing into structure tb, - * where it will later be used by the functions that actually do the balancing. - * Parameters: - * tb tree_balance structure; - * h current level of the node; - * lnum number of items from S[h] that must be shifted to L[h]; - * rnum number of items from S[h] that must be shifted to R[h]; - * blk_num number of blocks that S[h] will be splitted into; - * s012 number of items that fall into splitted nodes. - * lbytes number of bytes which flow to the left neighbor from the item that is not - * not shifted entirely - * rbytes number of bytes which flow to the right neighbor from the item that is not - * not shifted entirely - * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array) - */ - -static void set_parameters(struct tree_balance *tb, int h, int lnum, - int rnum, int blk_num, short *s012, int lb, int rb) -{ - - tb->lnum[h] = lnum; - tb->rnum[h] = rnum; - tb->blknum[h] = blk_num; - - if (h == 0) { /* only for leaf level */ - if (s012 != NULL) { - tb->s0num = *s012++, - tb->s1num = *s012++, tb->s2num = *s012++; - tb->s1bytes = *s012++; - tb->s2bytes = *s012; - } - tb->lbytes = lb; - tb->rbytes = rb; - } - PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum); - PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum); - - PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb); - PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb); -} - -/* check, does node disappear if we shift tb->lnum[0] items to left - neighbor and tb->rnum[0] to the right one. */ -static int is_leaf_removable(struct tree_balance *tb) -{ - struct virtual_node *vn = tb->tb_vn; - int to_left, to_right; - int size; - int remain_items; - - /* number of items, that will be shifted to left (right) neighbor - entirely */ - to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); - to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); - remain_items = vn->vn_nr_item; - - /* how many items remain in S[0] after shiftings to neighbors */ - remain_items -= (to_left + to_right); - - if (remain_items < 1) { - /* all content of node can be shifted to neighbors */ - set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0, - NULL, -1, -1); - return 1; - } - - if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) - /* S[0] is not removable */ - return 0; - - /* check, whether we can divide 1 remaining item between neighbors */ - - /* get size of remaining item (in item units) */ - size = op_unit_num(&(vn->vn_vi[to_left])); - - if (tb->lbytes + tb->rbytes >= size) { - set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL, - tb->lbytes, -1); - return 1; - } - - return 0; -} - -/* check whether L, S, R can be joined in one node */ -static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree) -{ - struct virtual_node *vn = tb->tb_vn; - int ih_size; - struct buffer_head *S0; - - S0 = PATH_H_PBUFFER(tb->tb_path, 0); - - ih_size = 0; - if (vn->vn_nr_item) { - if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) - ih_size += IH_SIZE; - - if (vn->vn_vi[vn->vn_nr_item - 1]. - vi_type & VI_TYPE_RIGHT_MERGEABLE) - ih_size += IH_SIZE; - } else { - /* there was only one item and it will be deleted */ - struct item_head *ih; - - RFALSE(B_NR_ITEMS(S0) != 1, - "vs-8125: item number must be 1: it is %d", - B_NR_ITEMS(S0)); - - ih = B_N_PITEM_HEAD(S0, 0); - if (tb->CFR[0] - && !comp_short_le_keys(&(ih->ih_key), - B_N_PDELIM_KEY(tb->CFR[0], - tb->rkey[0]))) - if (is_direntry_le_ih(ih)) { - /* Directory must be in correct state here: that is - somewhere at the left side should exist first directory - item. But the item being deleted can not be that first - one because its right neighbor is item of the same - directory. (But first item always gets deleted in last - turn). So, neighbors of deleted item can be merged, so - we can save ih_size */ - ih_size = IH_SIZE; - - /* we might check that left neighbor exists and is of the - same directory */ - RFALSE(le_ih_k_offset(ih) == DOT_OFFSET, - "vs-8130: first directory item can not be removed until directory is not empty"); - } - - } - - if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) { - set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1); - PROC_INFO_INC(tb->tb_sb, leaves_removable); - return 1; - } - return 0; - -} - -/* when we do not split item, lnum and rnum are numbers of entire items */ -#define SET_PAR_SHIFT_LEFT \ -if (h)\ -{\ - int to_l;\ - \ - to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\ - (MAX_NR_KEY(Sh) + 1 - lpar);\ - \ - set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\ -}\ -else \ -{\ - if (lset==LEFT_SHIFT_FLOW)\ - set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\ - tb->lbytes, -1);\ - else\ - set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\ - -1, -1);\ -} - -#define SET_PAR_SHIFT_RIGHT \ -if (h)\ -{\ - int to_r;\ - \ - to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\ - \ - set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\ -}\ -else \ -{\ - if (rset==RIGHT_SHIFT_FLOW)\ - set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\ - -1, tb->rbytes);\ - else\ - set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\ - -1, -1);\ -} - -static void free_buffers_in_tb(struct tree_balance *tb) -{ - int i; - - pathrelse(tb->tb_path); - - for (i = 0; i < MAX_HEIGHT; i++) { - brelse(tb->L[i]); - brelse(tb->R[i]); - brelse(tb->FL[i]); - brelse(tb->FR[i]); - brelse(tb->CFL[i]); - brelse(tb->CFR[i]); - - tb->L[i] = NULL; - tb->R[i] = NULL; - tb->FL[i] = NULL; - tb->FR[i] = NULL; - tb->CFL[i] = NULL; - tb->CFR[i] = NULL; - } -} - -/* Get new buffers for storing new nodes that are created while balancing. - * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; - * CARRY_ON - schedule didn't occur while the function worked; - * NO_DISK_SPACE - no disk space. - */ -/* The function is NOT SCHEDULE-SAFE! */ -static int get_empty_nodes(struct tree_balance *tb, int h) -{ - struct buffer_head *new_bh, - *Sh = PATH_H_PBUFFER(tb->tb_path, h); - b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, }; - int counter, number_of_freeblk, amount_needed, /* number of needed empty blocks */ - retval = CARRY_ON; - struct super_block *sb = tb->tb_sb; - - /* number_of_freeblk is the number of empty blocks which have been - acquired for use by the balancing algorithm minus the number of - empty blocks used in the previous levels of the analysis, - number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs - after empty blocks are acquired, and the balancing analysis is - then restarted, amount_needed is the number needed by this level - (h) of the balancing analysis. - - Note that for systems with many processes writing, it would be - more layout optimal to calculate the total number needed by all - levels and then to run reiserfs_new_blocks to get all of them at once. */ - - /* Initiate number_of_freeblk to the amount acquired prior to the restart of - the analysis or 0 if not restarted, then subtract the amount needed - by all of the levels of the tree below h. */ - /* blknum includes S[h], so we subtract 1 in this calculation */ - for (counter = 0, number_of_freeblk = tb->cur_blknum; - counter < h; counter++) - number_of_freeblk -= - (tb->blknum[counter]) ? (tb->blknum[counter] - - 1) : 0; - - /* Allocate missing empty blocks. */ - /* if Sh == 0 then we are getting a new root */ - amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1; - /* Amount_needed = the amount that we need more than the amount that we have. */ - if (amount_needed > number_of_freeblk) - amount_needed -= number_of_freeblk; - else /* If we have enough already then there is nothing to do. */ - return CARRY_ON; - - /* No need to check quota - is not allocated for blocks used for formatted nodes */ - if (reiserfs_new_form_blocknrs(tb, blocknrs, - amount_needed) == NO_DISK_SPACE) - return NO_DISK_SPACE; - - /* for each blocknumber we just got, get a buffer and stick it on FEB */ - for (blocknr = blocknrs, counter = 0; - counter < amount_needed; blocknr++, counter++) { - - RFALSE(!*blocknr, - "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); - - new_bh = sb_getblk(sb, *blocknr); - RFALSE(buffer_dirty(new_bh) || - buffer_journaled(new_bh) || - buffer_journal_dirty(new_bh), - "PAP-8140: journaled or dirty buffer %b for the new block", - new_bh); - - /* Put empty buffers into the array. */ - RFALSE(tb->FEB[tb->cur_blknum], - "PAP-8141: busy slot for new buffer"); - - set_buffer_journal_new(new_bh); - tb->FEB[tb->cur_blknum++] = new_bh; - } - - if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb)) - retval = REPEAT_SEARCH; - - return retval; -} - -/* Get free space of the left neighbor, which is stored in the parent - * node of the left neighbor. */ -static int get_lfree(struct tree_balance *tb, int h) -{ - struct buffer_head *l, *f; - int order; - - if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL || - (l = tb->FL[h]) == NULL) - return 0; - - if (f == l) - order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1; - else { - order = B_NR_ITEMS(l); - f = l; - } - - return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); -} - -/* Get free space of the right neighbor, - * which is stored in the parent node of the right neighbor. - */ -static int get_rfree(struct tree_balance *tb, int h) -{ - struct buffer_head *r, *f; - int order; - - if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL || - (r = tb->FR[h]) == NULL) - return 0; - - if (f == r) - order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1; - else { - order = 0; - f = r; - } - - return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); - -} - -/* Check whether left neighbor is in memory. */ -static int is_left_neighbor_in_cache(struct tree_balance *tb, int h) -{ - struct buffer_head *father, *left; - struct super_block *sb = tb->tb_sb; - b_blocknr_t left_neighbor_blocknr; - int left_neighbor_position; - - /* Father of the left neighbor does not exist. */ - if (!tb->FL[h]) - return 0; - - /* Calculate father of the node to be balanced. */ - father = PATH_H_PBUFFER(tb->tb_path, h + 1); - - RFALSE(!father || - !B_IS_IN_TREE(father) || - !B_IS_IN_TREE(tb->FL[h]) || - !buffer_uptodate(father) || - !buffer_uptodate(tb->FL[h]), - "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", - father, tb->FL[h]); - - /* Get position of the pointer to the left neighbor into the left father. */ - left_neighbor_position = (father == tb->FL[h]) ? - tb->lkey[h] : B_NR_ITEMS(tb->FL[h]); - /* Get left neighbor block number. */ - left_neighbor_blocknr = - B_N_CHILD_NUM(tb->FL[h], left_neighbor_position); - /* Look for the left neighbor in the cache. */ - if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) { - - RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left), - "vs-8170: left neighbor (%b %z) is not in the tree", - left, left); - put_bh(left); - return 1; - } - - return 0; -} - -#define LEFT_PARENTS 'l' -#define RIGHT_PARENTS 'r' - -static void decrement_key(struct cpu_key *key) -{ - // call item specific function for this key - item_ops[cpu_key_k_type(key)]->decrement_key(key); -} - -/* Calculate far left/right parent of the left/right neighbor of the current node, that - * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. - * Calculate left/right common parent of the current node and L[h]/R[h]. - * Calculate left/right delimiting key position. - * Returns: PATH_INCORRECT - path in the tree is not correct; - SCHEDULE_OCCURRED - schedule occurred while the function worked; - * CARRY_ON - schedule didn't occur while the function worked; - */ -static int get_far_parent(struct tree_balance *tb, - int h, - struct buffer_head **pfather, - struct buffer_head **pcom_father, char c_lr_par) -{ - struct buffer_head *parent; - INITIALIZE_PATH(s_path_to_neighbor_father); - struct treepath *path = tb->tb_path; - struct cpu_key s_lr_father_key; - int counter, - position = INT_MAX, - first_last_position = 0, - path_offset = PATH_H_PATH_OFFSET(path, h); - - /* Starting from F[h] go upwards in the tree, and look for the common - ancestor of F[h], and its neighbor l/r, that should be obtained. */ - - counter = path_offset; - - RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET, - "PAP-8180: invalid path length"); - - for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) { - /* Check whether parent of the current buffer in the path is really parent in the tree. */ - if (!B_IS_IN_TREE - (parent = PATH_OFFSET_PBUFFER(path, counter - 1))) - return REPEAT_SEARCH; - /* Check whether position in the parent is correct. */ - if ((position = - PATH_OFFSET_POSITION(path, - counter - 1)) > - B_NR_ITEMS(parent)) - return REPEAT_SEARCH; - /* Check whether parent at the path really points to the child. */ - if (B_N_CHILD_NUM(parent, position) != - PATH_OFFSET_PBUFFER(path, counter)->b_blocknr) - return REPEAT_SEARCH; - /* Return delimiting key if position in the parent is not equal to first/last one. */ - if (c_lr_par == RIGHT_PARENTS) - first_last_position = B_NR_ITEMS(parent); - if (position != first_last_position) { - *pcom_father = parent; - get_bh(*pcom_father); - /*(*pcom_father = parent)->b_count++; */ - break; - } - } - - /* if we are in the root of the tree, then there is no common father */ - if (counter == FIRST_PATH_ELEMENT_OFFSET) { - /* Check whether first buffer in the path is the root of the tree. */ - if (PATH_OFFSET_PBUFFER - (tb->tb_path, - FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == - SB_ROOT_BLOCK(tb->tb_sb)) { - *pfather = *pcom_father = NULL; - return CARRY_ON; - } - return REPEAT_SEARCH; - } - - RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL, - "PAP-8185: (%b %z) level too small", - *pcom_father, *pcom_father); - - /* Check whether the common parent is locked. */ - - if (buffer_locked(*pcom_father)) { - - /* Release the write lock while the buffer is busy */ - reiserfs_write_unlock(tb->tb_sb); - __wait_on_buffer(*pcom_father); - reiserfs_write_lock(tb->tb_sb); - if (FILESYSTEM_CHANGED_TB(tb)) { - brelse(*pcom_father); - return REPEAT_SEARCH; - } - } - - /* So, we got common parent of the current node and its left/right neighbor. - Now we are geting the parent of the left/right neighbor. */ - - /* Form key to get parent of the left/right neighbor. */ - le_key2cpu_key(&s_lr_father_key, - B_N_PDELIM_KEY(*pcom_father, - (c_lr_par == - LEFT_PARENTS) ? (tb->lkey[h - 1] = - position - - 1) : (tb->rkey[h - - 1] = - position))); - - if (c_lr_par == LEFT_PARENTS) - decrement_key(&s_lr_father_key); - - if (search_by_key - (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, - h + 1) == IO_ERROR) - // path is released - return IO_ERROR; - - if (FILESYSTEM_CHANGED_TB(tb)) { - pathrelse(&s_path_to_neighbor_father); - brelse(*pcom_father); - return REPEAT_SEARCH; - } - - *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); - - RFALSE(B_LEVEL(*pfather) != h + 1, - "PAP-8190: (%b %z) level too small", *pfather, *pfather); - RFALSE(s_path_to_neighbor_father.path_length < - FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small"); - - s_path_to_neighbor_father.path_length--; - pathrelse(&s_path_to_neighbor_father); - return CARRY_ON; -} - -/* Get parents of neighbors of node in the path(S[path_offset]) and common parents of - * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset], - * FR[path_offset], CFL[path_offset], CFR[path_offset]. - * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset]. - * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; - * CARRY_ON - schedule didn't occur while the function worked; - */ -static int get_parents(struct tree_balance *tb, int h) -{ - struct treepath *path = tb->tb_path; - int position, - ret, - path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h); - struct buffer_head *curf, *curcf; - - /* Current node is the root of the tree or will be root of the tree */ - if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) { - /* The root can not have parents. - Release nodes which previously were obtained as parents of the current node neighbors. */ - brelse(tb->FL[h]); - brelse(tb->CFL[h]); - brelse(tb->FR[h]); - brelse(tb->CFR[h]); - tb->FL[h] = NULL; - tb->CFL[h] = NULL; - tb->FR[h] = NULL; - tb->CFR[h] = NULL; - return CARRY_ON; - } - - /* Get parent FL[path_offset] of L[path_offset]. */ - position = PATH_OFFSET_POSITION(path, path_offset - 1); - if (position) { - /* Current node is not the first child of its parent. */ - curf = PATH_OFFSET_PBUFFER(path, path_offset - 1); - curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1); - get_bh(curf); - get_bh(curf); - tb->lkey[h] = position - 1; - } else { - /* Calculate current parent of L[path_offset], which is the left neighbor of the current node. - Calculate current common parent of L[path_offset] and the current node. Note that - CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset]. - Calculate lkey[path_offset]. */ - if ((ret = get_far_parent(tb, h + 1, &curf, - &curcf, - LEFT_PARENTS)) != CARRY_ON) - return ret; - } - - brelse(tb->FL[h]); - tb->FL[h] = curf; /* New initialization of FL[h]. */ - brelse(tb->CFL[h]); - tb->CFL[h] = curcf; /* New initialization of CFL[h]. */ - - RFALSE((curf && !B_IS_IN_TREE(curf)) || - (curcf && !B_IS_IN_TREE(curcf)), - "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf); - -/* Get parent FR[h] of R[h]. */ - -/* Current node is the last child of F[h]. FR[h] != F[h]. */ - if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) { -/* Calculate current parent of R[h], which is the right neighbor of F[h]. - Calculate current common parent of R[h] and current node. Note that CFR[h] - not equal FR[path_offset] and CFR[h] not equal F[h]. */ - if ((ret = - get_far_parent(tb, h + 1, &curf, &curcf, - RIGHT_PARENTS)) != CARRY_ON) - return ret; - } else { -/* Current node is not the last child of its parent F[h]. */ - curf = PATH_OFFSET_PBUFFER(path, path_offset - 1); - curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1); - get_bh(curf); - get_bh(curf); - tb->rkey[h] = position; - } - - brelse(tb->FR[h]); - /* New initialization of FR[path_offset]. */ - tb->FR[h] = curf; - - brelse(tb->CFR[h]); - /* New initialization of CFR[path_offset]. */ - tb->CFR[h] = curcf; - - RFALSE((curf && !B_IS_IN_TREE(curf)) || - (curcf && !B_IS_IN_TREE(curcf)), - "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf); - - return CARRY_ON; -} - -/* it is possible to remove node as result of shiftings to - neighbors even when we insert or paste item. */ -static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree, - struct tree_balance *tb, int h) -{ - struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h); - int levbytes = tb->insert_size[h]; - struct item_head *ih; - struct reiserfs_key *r_key = NULL; - - ih = B_N_PITEM_HEAD(Sh, 0); - if (tb->CFR[h]) - r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]); - - if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes - /* shifting may merge items which might save space */ - - - ((!h - && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0) - - - ((!h && r_key - && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0) - + ((h) ? KEY_SIZE : 0)) { - /* node can not be removed */ - if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ - if (!h) - tb->s0num = - B_NR_ITEMS(Sh) + - ((mode == M_INSERT) ? 1 : 0); - set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); - return NO_BALANCING_NEEDED; - } - } - PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]); - return !NO_BALANCING_NEEDED; -} - -/* Check whether current node S[h] is balanced when increasing its size by - * Inserting or Pasting. - * Calculate parameters for balancing for current level h. - * Parameters: - * tb tree_balance structure; - * h current level of the node; - * inum item number in S[h]; - * mode i - insert, p - paste; - * Returns: 1 - schedule occurred; - * 0 - balancing for higher levels needed; - * -1 - no balancing for higher levels needed; - * -2 - no disk space. - */ -/* ip means Inserting or Pasting */ -static int ip_check_balance(struct tree_balance *tb, int h) -{ - struct virtual_node *vn = tb->tb_vn; - int levbytes, /* Number of bytes that must be inserted into (value - is negative if bytes are deleted) buffer which - contains node being balanced. The mnemonic is - that the attempted change in node space used level - is levbytes bytes. */ - ret; - - int lfree, sfree, rfree /* free space in L, S and R */ ; - - /* nver is short for number of vertixes, and lnver is the number if - we shift to the left, rnver is the number if we shift to the - right, and lrnver is the number if we shift in both directions. - The goal is to minimize first the number of vertixes, and second, - the number of vertixes whose contents are changed by shifting, - and third the number of uncached vertixes whose contents are - changed by shifting and must be read from disk. */ - int nver, lnver, rnver, lrnver; - - /* used at leaf level only, S0 = S[0] is the node being balanced, - sInum [ I = 0,1,2 ] is the number of items that will - remain in node SI after balancing. S1 and S2 are new - nodes that might be created. */ - - /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters. - where 4th parameter is s1bytes and 5th - s2bytes - */ - short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases - 0,1 - do not shift and do not shift but bottle - 2 - shift only whole item to left - 3 - shift to left and bottle as much as possible - 4,5 - shift to right (whole items and as much as possible - 6,7 - shift to both directions (whole items and as much as possible) - */ - - /* Sh is the node whose balance is currently being checked */ - struct buffer_head *Sh; - - Sh = PATH_H_PBUFFER(tb->tb_path, h); - levbytes = tb->insert_size[h]; - - /* Calculate balance parameters for creating new root. */ - if (!Sh) { - if (!h) - reiserfs_panic(tb->tb_sb, "vs-8210", - "S[0] can not be 0"); - switch (ret = get_empty_nodes(tb, h)) { - case CARRY_ON: - set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); - return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ - - case NO_DISK_SPACE: - case REPEAT_SEARCH: - return ret; - default: - reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect " - "return value of get_empty_nodes"); - } - } - - if ((ret = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */ - return ret; - - sfree = B_FREE_SPACE(Sh); - - /* get free space of neighbors */ - rfree = get_rfree(tb, h); - lfree = get_lfree(tb, h); - - if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) == - NO_BALANCING_NEEDED) - /* and new item fits into node S[h] without any shifting */ - return NO_BALANCING_NEEDED; - - create_virtual_node(tb, h); - - /* - determine maximal number of items we can shift to the left neighbor (in tb structure) - and the maximal number of bytes that can flow to the left neighbor - from the left most liquid item that cannot be shifted from S[0] entirely (returned value) - */ - check_left(tb, h, lfree); - - /* - determine maximal number of items we can shift to the right neighbor (in tb structure) - and the maximal number of bytes that can flow to the right neighbor - from the right most liquid item that cannot be shifted from S[0] entirely (returned value) - */ - check_right(tb, h, rfree); - - /* all contents of internal node S[h] can be moved into its - neighbors, S[h] will be removed after balancing */ - if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { - int to_r; - - /* Since we are working on internal nodes, and our internal - nodes have fixed size entries, then we can balance by the - number of items rather than the space they consume. In this - routine we set the left node equal to the right node, - allowing a difference of less than or equal to 1 child - pointer. */ - to_r = - ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + - vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - - tb->rnum[h]); - set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, - -1, -1); - return CARRY_ON; - } - - /* this checks balance condition, that any two neighboring nodes can not fit in one node */ - RFALSE(h && - (tb->lnum[h] >= vn->vn_nr_item + 1 || - tb->rnum[h] >= vn->vn_nr_item + 1), - "vs-8220: tree is not balanced on internal level"); - RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || - (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))), - "vs-8225: tree is not balanced on leaf level"); - - /* all contents of S[0] can be moved into its neighbors - S[0] will be removed after balancing. */ - if (!h && is_leaf_removable(tb)) - return CARRY_ON; - - /* why do we perform this check here rather than earlier?? - Answer: we can win 1 node in some cases above. Moreover we - checked it above, when we checked, that S[0] is not removable - in principle */ - if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ - if (!h) - tb->s0num = vn->vn_nr_item; - set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); - return NO_BALANCING_NEEDED; - } - - { - int lpar, rpar, nset, lset, rset, lrset; - /* - * regular overflowing of the node - */ - - /* get_num_ver works in 2 modes (FLOW & NO_FLOW) - lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) - nset, lset, rset, lrset - shows, whether flowing items give better packing - */ -#define FLOW 1 -#define NO_FLOW 0 /* do not any splitting */ - - /* we choose one the following */ -#define NOTHING_SHIFT_NO_FLOW 0 -#define NOTHING_SHIFT_FLOW 5 -#define LEFT_SHIFT_NO_FLOW 10 -#define LEFT_SHIFT_FLOW 15 -#define RIGHT_SHIFT_NO_FLOW 20 -#define RIGHT_SHIFT_FLOW 25 -#define LR_SHIFT_NO_FLOW 30 -#define LR_SHIFT_FLOW 35 - - lpar = tb->lnum[h]; - rpar = tb->rnum[h]; - - /* calculate number of blocks S[h] must be split into when - nothing is shifted to the neighbors, - as well as number of items in each part of the split node (s012 numbers), - and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ - nset = NOTHING_SHIFT_NO_FLOW; - nver = get_num_ver(vn->vn_mode, tb, h, - 0, -1, h ? vn->vn_nr_item : 0, -1, - snum012, NO_FLOW); - - if (!h) { - int nver1; - - /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ - nver1 = get_num_ver(vn->vn_mode, tb, h, - 0, -1, 0, -1, - snum012 + NOTHING_SHIFT_FLOW, FLOW); - if (nver > nver1) - nset = NOTHING_SHIFT_FLOW, nver = nver1; - } - - /* calculate number of blocks S[h] must be split into when - l_shift_num first items and l_shift_bytes of the right most - liquid item to be shifted are shifted to the left neighbor, - as well as number of items in each part of the splitted node (s012 numbers), - and number of bytes (s1bytes) of the shared drop which flow to S1 if any - */ - lset = LEFT_SHIFT_NO_FLOW; - lnver = get_num_ver(vn->vn_mode, tb, h, - lpar - ((h || tb->lbytes == -1) ? 0 : 1), - -1, h ? vn->vn_nr_item : 0, -1, - snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); - if (!h) { - int lnver1; - - lnver1 = get_num_ver(vn->vn_mode, tb, h, - lpar - - ((tb->lbytes != -1) ? 1 : 0), - tb->lbytes, 0, -1, - snum012 + LEFT_SHIFT_FLOW, FLOW); - if (lnver > lnver1) - lset = LEFT_SHIFT_FLOW, lnver = lnver1; - } - - /* calculate number of blocks S[h] must be split into when - r_shift_num first items and r_shift_bytes of the left most - liquid item to be shifted are shifted to the right neighbor, - as well as number of items in each part of the splitted node (s012 numbers), - and number of bytes (s1bytes) of the shared drop which flow to S1 if any - */ - rset = RIGHT_SHIFT_NO_FLOW; - rnver = get_num_ver(vn->vn_mode, tb, h, - 0, -1, - h ? (vn->vn_nr_item - rpar) : (rpar - - ((tb-> - rbytes != - -1) ? 1 : - 0)), -1, - snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); - if (!h) { - int rnver1; - - rnver1 = get_num_ver(vn->vn_mode, tb, h, - 0, -1, - (rpar - - ((tb->rbytes != -1) ? 1 : 0)), - tb->rbytes, - snum012 + RIGHT_SHIFT_FLOW, FLOW); - - if (rnver > rnver1) - rset = RIGHT_SHIFT_FLOW, rnver = rnver1; - } - - /* calculate number of blocks S[h] must be split into when - items are shifted in both directions, - as well as number of items in each part of the splitted node (s012 numbers), - and number of bytes (s1bytes) of the shared drop which flow to S1 if any - */ - lrset = LR_SHIFT_NO_FLOW; - lrnver = get_num_ver(vn->vn_mode, tb, h, - lpar - ((h || tb->lbytes == -1) ? 0 : 1), - -1, - h ? (vn->vn_nr_item - rpar) : (rpar - - ((tb-> - rbytes != - -1) ? 1 : - 0)), -1, - snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); - if (!h) { - int lrnver1; - - lrnver1 = get_num_ver(vn->vn_mode, tb, h, - lpar - - ((tb->lbytes != -1) ? 1 : 0), - tb->lbytes, - (rpar - - ((tb->rbytes != -1) ? 1 : 0)), - tb->rbytes, - snum012 + LR_SHIFT_FLOW, FLOW); - if (lrnver > lrnver1) - lrset = LR_SHIFT_FLOW, lrnver = lrnver1; - } - - /* Our general shifting strategy is: - 1) to minimized number of new nodes; - 2) to minimized number of neighbors involved in shifting; - 3) to minimized number of disk reads; */ - - /* we can win TWO or ONE nodes by shifting in both directions */ - if (lrnver < lnver && lrnver < rnver) { - RFALSE(h && - (tb->lnum[h] != 1 || - tb->rnum[h] != 1 || - lrnver != 1 || rnver != 2 || lnver != 2 - || h != 1), "vs-8230: bad h"); - if (lrset == LR_SHIFT_FLOW) - set_parameters(tb, h, tb->lnum[h], tb->rnum[h], - lrnver, snum012 + lrset, - tb->lbytes, tb->rbytes); - else - set_parameters(tb, h, - tb->lnum[h] - - ((tb->lbytes == -1) ? 0 : 1), - tb->rnum[h] - - ((tb->rbytes == -1) ? 0 : 1), - lrnver, snum012 + lrset, -1, -1); - - return CARRY_ON; - } - - /* if shifting doesn't lead to better packing then don't shift */ - if (nver == lrnver) { - set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1, - -1); - return CARRY_ON; - } - - /* now we know that for better packing shifting in only one - direction either to the left or to the right is required */ - - /* if shifting to the left is better than shifting to the right */ - if (lnver < rnver) { - SET_PAR_SHIFT_LEFT; - return CARRY_ON; - } - - /* if shifting to the right is better than shifting to the left */ - if (lnver > rnver) { - SET_PAR_SHIFT_RIGHT; - return CARRY_ON; - } - - /* now shifting in either direction gives the same number - of nodes and we can make use of the cached neighbors */ - if (is_left_neighbor_in_cache(tb, h)) { - SET_PAR_SHIFT_LEFT; - return CARRY_ON; - } - - /* shift to the right independently on whether the right neighbor in cache or not */ - SET_PAR_SHIFT_RIGHT; - return CARRY_ON; - } -} - -/* Check whether current node S[h] is balanced when Decreasing its size by - * Deleting or Cutting for INTERNAL node of S+tree. - * Calculate parameters for balancing for current level h. - * Parameters: - * tb tree_balance structure; - * h current level of the node; - * inum item number in S[h]; - * mode i - insert, p - paste; - * Returns: 1 - schedule occurred; - * 0 - balancing for higher levels needed; - * -1 - no balancing for higher levels needed; - * -2 - no disk space. - * - * Note: Items of internal nodes have fixed size, so the balance condition for - * the internal part of S+tree is as for the B-trees. - */ -static int dc_check_balance_internal(struct tree_balance *tb, int h) -{ - struct virtual_node *vn = tb->tb_vn; - - /* Sh is the node whose balance is currently being checked, - and Fh is its father. */ - struct buffer_head *Sh, *Fh; - int maxsize, ret; - int lfree, rfree /* free space in L and R */ ; - - Sh = PATH_H_PBUFFER(tb->tb_path, h); - Fh = PATH_H_PPARENT(tb->tb_path, h); - - maxsize = MAX_CHILD_SIZE(Sh); - -/* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ -/* new_nr_item = number of items node would have if operation is */ -/* performed without balancing (new_nr_item); */ - create_virtual_node(tb, h); - - if (!Fh) { /* S[h] is the root. */ - if (vn->vn_nr_item > 0) { - set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); - return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ - } - /* new_nr_item == 0. - * Current root will be deleted resulting in - * decrementing the tree height. */ - set_parameters(tb, h, 0, 0, 0, NULL, -1, -1); - return CARRY_ON; - } - - if ((ret = get_parents(tb, h)) != CARRY_ON) - return ret; - - /* get free space of neighbors */ - rfree = get_rfree(tb, h); - lfree = get_lfree(tb, h); - - /* determine maximal number of items we can fit into neighbors */ - check_left(tb, h, lfree); - check_right(tb, h, rfree); - - if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid. - * In this case we balance only if it leads to better packing. */ - if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors, - * which is impossible with greater values of new_nr_item. */ - if (tb->lnum[h] >= vn->vn_nr_item + 1) { - /* All contents of S[h] can be moved to L[h]. */ - int n; - int order_L; - - order_L = - ((n = - PATH_H_B_ITEM_ORDER(tb->tb_path, - h)) == - 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; - n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / - (DC_SIZE + KEY_SIZE); - set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, - -1); - return CARRY_ON; - } - - if (tb->rnum[h] >= vn->vn_nr_item + 1) { - /* All contents of S[h] can be moved to R[h]. */ - int n; - int order_R; - - order_R = - ((n = - PATH_H_B_ITEM_ORDER(tb->tb_path, - h)) == - B_NR_ITEMS(Fh)) ? 0 : n + 1; - n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / - (DC_SIZE + KEY_SIZE); - set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, - -1); - return CARRY_ON; - } - } - - if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { - /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ - int to_r; - - to_r = - ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - - tb->rnum[h] + vn->vn_nr_item + 1) / 2 - - (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); - set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, - 0, NULL, -1, -1); - return CARRY_ON; - } - - /* Balancing does not lead to better packing. */ - set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); - return NO_BALANCING_NEEDED; - } - - /* Current node contain insufficient number of items. Balancing is required. */ - /* Check whether we can merge S[h] with left neighbor. */ - if (tb->lnum[h] >= vn->vn_nr_item + 1) - if (is_left_neighbor_in_cache(tb, h) - || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) { - int n; - int order_L; - - order_L = - ((n = - PATH_H_B_ITEM_ORDER(tb->tb_path, - h)) == - 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; - n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE + - KEY_SIZE); - set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1); - return CARRY_ON; - } - - /* Check whether we can merge S[h] with right neighbor. */ - if (tb->rnum[h] >= vn->vn_nr_item + 1) { - int n; - int order_R; - - order_R = - ((n = - PATH_H_B_ITEM_ORDER(tb->tb_path, - h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1); - n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE + - KEY_SIZE); - set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1); - return CARRY_ON; - } - - /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ - if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { - int to_r; - - to_r = - ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + - vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - - tb->rnum[h]); - set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, - -1, -1); - return CARRY_ON; - } - - /* For internal nodes try to borrow item from a neighbor */ - RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); - - /* Borrow one or two items from caching neighbor */ - if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) { - int from_l; - - from_l = - (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + - 1) / 2 - (vn->vn_nr_item + 1); - set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1); - return CARRY_ON; - } - - set_parameters(tb, h, 0, - -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item + - 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1); - return CARRY_ON; -} - -/* Check whether current node S[h] is balanced when Decreasing its size by - * Deleting or Truncating for LEAF node of S+tree. - * Calculate parameters for balancing for current level h. - * Parameters: - * tb tree_balance structure; - * h current level of the node; - * inum item number in S[h]; - * mode i - insert, p - paste; - * Returns: 1 - schedule occurred; - * 0 - balancing for higher levels needed; - * -1 - no balancing for higher levels needed; - * -2 - no disk space. - */ -static int dc_check_balance_leaf(struct tree_balance *tb, int h) -{ - struct virtual_node *vn = tb->tb_vn; - - /* Number of bytes that must be deleted from - (value is negative if bytes are deleted) buffer which - contains node being balanced. The mnemonic is that the - attempted change in node space used level is levbytes bytes. */ - int levbytes; - /* the maximal item size */ - int maxsize, ret; - /* S0 is the node whose balance is currently being checked, - and F0 is its father. */ - struct buffer_head *S0, *F0; - int lfree, rfree /* free space in L and R */ ; - - S0 = PATH_H_PBUFFER(tb->tb_path, 0); - F0 = PATH_H_PPARENT(tb->tb_path, 0); - - levbytes = tb->insert_size[h]; - - maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ - - if (!F0) { /* S[0] is the root now. */ - - RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0), - "vs-8240: attempt to create empty buffer tree"); - - set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); - return NO_BALANCING_NEEDED; - } - - if ((ret = get_parents(tb, h)) != CARRY_ON) - return ret; - - /* get free space of neighbors */ - rfree = get_rfree(tb, h); - lfree = get_lfree(tb, h); - - create_virtual_node(tb, h); - - /* if 3 leaves can be merge to one, set parameters and return */ - if (are_leaves_removable(tb, lfree, rfree)) - return CARRY_ON; - - /* determine maximal number of items we can shift to the left/right neighbor - and the maximal number of bytes that can flow to the left/right neighbor - from the left/right most liquid item that cannot be shifted from S[0] entirely - */ - check_left(tb, h, lfree); - check_right(tb, h, rfree); - - /* check whether we can merge S with left neighbor. */ - if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) - if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ - !tb->FR[h]) { - - RFALSE(!tb->FL[h], - "vs-8245: dc_check_balance_leaf: FL[h] must exist"); - - /* set parameter to merge S[0] with its left neighbor */ - set_parameters(tb, h, -1, 0, 0, NULL, -1, -1); - return CARRY_ON; - } - - /* check whether we can merge S[0] with right neighbor. */ - if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { - set_parameters(tb, h, 0, -1, 0, NULL, -1, -1); - return CARRY_ON; - } - - /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ - if (is_leaf_removable(tb)) - return CARRY_ON; - - /* Balancing is not required. */ - tb->s0num = vn->vn_nr_item; - set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); - return NO_BALANCING_NEEDED; -} - -/* Check whether current node S[h] is balanced when Decreasing its size by - * Deleting or Cutting. - * Calculate parameters for balancing for current level h. - * Parameters: - * tb tree_balance structure; - * h current level of the node; - * inum item number in S[h]; - * mode d - delete, c - cut. - * Returns: 1 - schedule occurred; - * 0 - balancing for higher levels needed; - * -1 - no balancing for higher levels needed; - * -2 - no disk space. - */ -static int dc_check_balance(struct tree_balance *tb, int h) -{ - RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)), - "vs-8250: S is not initialized"); - - if (h) - return dc_check_balance_internal(tb, h); - else - return dc_check_balance_leaf(tb, h); -} - -/* Check whether current node S[h] is balanced. - * Calculate parameters for balancing for current level h. - * Parameters: - * - * tb tree_balance structure: - * - * tb is a large structure that must be read about in the header file - * at the same time as this procedure if the reader is to successfully - * understand this procedure - * - * h current level of the node; - * inum item number in S[h]; - * mode i - insert, p - paste, d - delete, c - cut. - * Returns: 1 - schedule occurred; - * 0 - balancing for higher levels needed; - * -1 - no balancing for higher levels needed; - * -2 - no disk space. - */ -static int check_balance(int mode, - struct tree_balance *tb, - int h, - int inum, - int pos_in_item, - struct item_head *ins_ih, const void *data) -{ - struct virtual_node *vn; - - vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); - vn->vn_free_ptr = (char *)(tb->tb_vn + 1); - vn->vn_mode = mode; - vn->vn_affected_item_num = inum; - vn->vn_pos_in_item = pos_in_item; - vn->vn_ins_ih = ins_ih; - vn->vn_data = data; - - RFALSE(mode == M_INSERT && !vn->vn_ins_ih, - "vs-8255: ins_ih can not be 0 in insert mode"); - - if (tb->insert_size[h] > 0) - /* Calculate balance parameters when size of node is increasing. */ - return ip_check_balance(tb, h); - - /* Calculate balance parameters when size of node is decreasing. */ - return dc_check_balance(tb, h); -} - -/* Check whether parent at the path is the really parent of the current node.*/ -static int get_direct_parent(struct tree_balance *tb, int h) -{ - struct buffer_head *bh; - struct treepath *path = tb->tb_path; - int position, - path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h); - - /* We are in the root or in the new root. */ - if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) { - - RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, - "PAP-8260: invalid offset in the path"); - - if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)-> - b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) { - /* Root is not changed. */ - PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL; - PATH_OFFSET_POSITION(path, path_offset - 1) = 0; - return CARRY_ON; - } - return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */ - } - - if (!B_IS_IN_TREE - (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1))) - return REPEAT_SEARCH; /* Parent in the path is not in the tree. */ - - if ((position = - PATH_OFFSET_POSITION(path, - path_offset - 1)) > B_NR_ITEMS(bh)) - return REPEAT_SEARCH; - - if (B_N_CHILD_NUM(bh, position) != - PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr) - /* Parent in the path is not parent of the current node in the tree. */ - return REPEAT_SEARCH; - - if (buffer_locked(bh)) { - reiserfs_write_unlock(tb->tb_sb); - __wait_on_buffer(bh); - reiserfs_write_lock(tb->tb_sb); - if (FILESYSTEM_CHANGED_TB(tb)) - return REPEAT_SEARCH; - } - - return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */ -} - -/* Using lnum[h] and rnum[h] we should determine what neighbors - * of S[h] we - * need in order to balance S[h], and get them if necessary. - * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; - * CARRY_ON - schedule didn't occur while the function worked; - */ -static int get_neighbors(struct tree_balance *tb, int h) -{ - int child_position, - path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1); - unsigned long son_number; - struct super_block *sb = tb->tb_sb; - struct buffer_head *bh; - - PROC_INFO_INC(sb, get_neighbors[h]); - - if (tb->lnum[h]) { - /* We need left neighbor to balance S[h]. */ - PROC_INFO_INC(sb, need_l_neighbor[h]); - bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset); - - RFALSE(bh == tb->FL[h] && - !PATH_OFFSET_POSITION(tb->tb_path, path_offset), - "PAP-8270: invalid position in the parent"); - - child_position = - (bh == - tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb-> - FL[h]); - son_number = B_N_CHILD_NUM(tb->FL[h], child_position); - reiserfs_write_unlock(sb); - bh = sb_bread(sb, son_number); - reiserfs_write_lock(sb); - if (!bh) - return IO_ERROR; - if (FILESYSTEM_CHANGED_TB(tb)) { - brelse(bh); - PROC_INFO_INC(sb, get_neighbors_restart[h]); - return REPEAT_SEARCH; - } - - RFALSE(!B_IS_IN_TREE(tb->FL[h]) || - child_position > B_NR_ITEMS(tb->FL[h]) || - B_N_CHILD_NUM(tb->FL[h], child_position) != - bh->b_blocknr, "PAP-8275: invalid parent"); - RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child"); - RFALSE(!h && - B_FREE_SPACE(bh) != - MAX_CHILD_SIZE(bh) - - dc_size(B_N_CHILD(tb->FL[0], child_position)), - "PAP-8290: invalid child size of left neighbor"); - - brelse(tb->L[h]); - tb->L[h] = bh; - } - - /* We need right neighbor to balance S[path_offset]. */ - if (tb->rnum[h]) { /* We need right neighbor to balance S[path_offset]. */ - PROC_INFO_INC(sb, need_r_neighbor[h]); - bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset); - - RFALSE(bh == tb->FR[h] && - PATH_OFFSET_POSITION(tb->tb_path, - path_offset) >= - B_NR_ITEMS(bh), - "PAP-8295: invalid position in the parent"); - - child_position = - (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0; - son_number = B_N_CHILD_NUM(tb->FR[h], child_position); - reiserfs_write_unlock(sb); - bh = sb_bread(sb, son_number); - reiserfs_write_lock(sb); - if (!bh) - return IO_ERROR; - if (FILESYSTEM_CHANGED_TB(tb)) { - brelse(bh); - PROC_INFO_INC(sb, get_neighbors_restart[h]); - return REPEAT_SEARCH; - } - brelse(tb->R[h]); - tb->R[h] = bh; - - RFALSE(!h - && B_FREE_SPACE(bh) != - MAX_CHILD_SIZE(bh) - - dc_size(B_N_CHILD(tb->FR[0], child_position)), - "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", - B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh), - dc_size(B_N_CHILD(tb->FR[0], child_position))); - - } - return CARRY_ON; -} - -static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh) -{ - int max_num_of_items; - int max_num_of_entries; - unsigned long blocksize = sb->s_blocksize; - -#define MIN_NAME_LEN 1 - - max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); - max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / - (DEH_SIZE + MIN_NAME_LEN); - - return sizeof(struct virtual_node) + - max(max_num_of_items * sizeof(struct virtual_item), - sizeof(struct virtual_item) + sizeof(struct direntry_uarea) + - (max_num_of_entries - 1) * sizeof(__u16)); -} - -/* maybe we should fail balancing we are going to perform when kmalloc - fails several times. But now it will loop until kmalloc gets - required memory */ -static int get_mem_for_virtual_node(struct tree_balance *tb) -{ - int check_fs = 0; - int size; - char *buf; - - size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path)); - - if (size > tb->vn_buf_size) { - /* we have to allocate more memory for virtual node */ - if (tb->vn_buf) { - /* free memory allocated before */ - kfree(tb->vn_buf); - /* this is not needed if kfree is atomic */ - check_fs = 1; - } - - /* virtual node requires now more memory */ - tb->vn_buf_size = size; - - /* get memory for virtual item */ - buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN); - if (!buf) { - /* getting memory with GFP_KERNEL priority may involve - balancing now (due to indirect_to_direct conversion on - dcache shrinking). So, release path and collected - resources here */ - free_buffers_in_tb(tb); - buf = kmalloc(size, GFP_NOFS); - if (!buf) { - tb->vn_buf_size = 0; - } - tb->vn_buf = buf; - schedule(); - return REPEAT_SEARCH; - } - - tb->vn_buf = buf; - } - - if (check_fs && FILESYSTEM_CHANGED_TB(tb)) - return REPEAT_SEARCH; - - return CARRY_ON; -} - -#ifdef CONFIG_REISERFS_CHECK -static void tb_buffer_sanity_check(struct super_block *sb, - struct buffer_head *bh, - const char *descr, int level) -{ - if (bh) { - if (atomic_read(&(bh->b_count)) <= 0) - - reiserfs_panic(sb, "jmacd-1", "negative or zero " - "reference counter for buffer %s[%d] " - "(%b)", descr, level, bh); - - if (!buffer_uptodate(bh)) - reiserfs_panic(sb, "jmacd-2", "buffer is not up " - "to date %s[%d] (%b)", - descr, level, bh); - - if (!B_IS_IN_TREE(bh)) - reiserfs_panic(sb, "jmacd-3", "buffer is not " - "in tree %s[%d] (%b)", - descr, level, bh); - - if (bh->b_bdev != sb->s_bdev) - reiserfs_panic(sb, "jmacd-4", "buffer has wrong " - "device %s[%d] (%b)", - descr, level, bh); - - if (bh->b_size != sb->s_blocksize) - reiserfs_panic(sb, "jmacd-5", "buffer has wrong " - "blocksize %s[%d] (%b)", - descr, level, bh); - - if (bh->b_blocknr > SB_BLOCK_COUNT(sb)) - reiserfs_panic(sb, "jmacd-6", "buffer block " - "number too high %s[%d] (%b)", - descr, level, bh); - } -} -#else -static void tb_buffer_sanity_check(struct super_block *sb, - struct buffer_head *bh, - const char *descr, int level) -{; -} -#endif - -static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh) -{ - return reiserfs_prepare_for_journal(s, bh, 0); -} - -static int wait_tb_buffers_until_unlocked(struct tree_balance *tb) -{ - struct buffer_head *locked; -#ifdef CONFIG_REISERFS_CHECK - int repeat_counter = 0; -#endif - int i; - - do { - - locked = NULL; - - for (i = tb->tb_path->path_length; - !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) { - if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) { - /* if I understand correctly, we can only be sure the last buffer - ** in the path is in the tree --clm - */ -#ifdef CONFIG_REISERFS_CHECK - if (PATH_PLAST_BUFFER(tb->tb_path) == - PATH_OFFSET_PBUFFER(tb->tb_path, i)) - tb_buffer_sanity_check(tb->tb_sb, - PATH_OFFSET_PBUFFER - (tb->tb_path, - i), "S", - tb->tb_path-> - path_length - i); -#endif - if (!clear_all_dirty_bits(tb->tb_sb, - PATH_OFFSET_PBUFFER - (tb->tb_path, - i))) { - locked = - PATH_OFFSET_PBUFFER(tb->tb_path, - i); - } - } - } - - for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i]; - i++) { - - if (tb->lnum[i]) { - - if (tb->L[i]) { - tb_buffer_sanity_check(tb->tb_sb, - tb->L[i], - "L", i); - if (!clear_all_dirty_bits - (tb->tb_sb, tb->L[i])) - locked = tb->L[i]; - } - - if (!locked && tb->FL[i]) { - tb_buffer_sanity_check(tb->tb_sb, - tb->FL[i], - "FL", i); - if (!clear_all_dirty_bits - (tb->tb_sb, tb->FL[i])) - locked = tb->FL[i]; - } - - if (!locked && tb->CFL[i]) { - tb_buffer_sanity_check(tb->tb_sb, - tb->CFL[i], - "CFL", i); - if (!clear_all_dirty_bits - (tb->tb_sb, tb->CFL[i])) - locked = tb->CFL[i]; - } - - } - - if (!locked && (tb->rnum[i])) { - - if (tb->R[i]) { - tb_buffer_sanity_check(tb->tb_sb, - tb->R[i], - "R", i); - if (!clear_all_dirty_bits - (tb->tb_sb, tb->R[i])) - locked = tb->R[i]; - } - - if (!locked && tb->FR[i]) { - tb_buffer_sanity_check(tb->tb_sb, - tb->FR[i], - "FR", i); - if (!clear_all_dirty_bits - (tb->tb_sb, tb->FR[i])) - locked = tb->FR[i]; - } - - if (!locked && tb->CFR[i]) { - tb_buffer_sanity_check(tb->tb_sb, - tb->CFR[i], - "CFR", i); - if (!clear_all_dirty_bits - (tb->tb_sb, tb->CFR[i])) - locked = tb->CFR[i]; - } - } - } - /* as far as I can tell, this is not required. The FEB list seems - ** to be full of newly allocated nodes, which will never be locked, - ** dirty, or anything else. - ** To be safe, I'm putting in the checks and waits in. For the moment, - ** they are needed to keep the code in journal.c from complaining - ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well. - ** --clm - */ - for (i = 0; !locked && i < MAX_FEB_SIZE; i++) { - if (tb->FEB[i]) { - if (!clear_all_dirty_bits - (tb->tb_sb, tb->FEB[i])) - locked = tb->FEB[i]; - } - } - - if (locked) { -#ifdef CONFIG_REISERFS_CHECK - repeat_counter++; - if ((repeat_counter % 10000) == 0) { - reiserfs_warning(tb->tb_sb, "reiserfs-8200", - "too many iterations waiting " - "for buffer to unlock " - "(%b)", locked); - - /* Don't loop forever. Try to recover from possible error. */ - - return (FILESYSTEM_CHANGED_TB(tb)) ? - REPEAT_SEARCH : CARRY_ON; - } -#endif - reiserfs_write_unlock(tb->tb_sb); - __wait_on_buffer(locked); - reiserfs_write_lock(tb->tb_sb); - if (FILESYSTEM_CHANGED_TB(tb)) - return REPEAT_SEARCH; - } - - } while (locked); - - return CARRY_ON; -} - -/* Prepare for balancing, that is - * get all necessary parents, and neighbors; - * analyze what and where should be moved; - * get sufficient number of new nodes; - * Balancing will start only after all resources will be collected at a time. - * - * When ported to SMP kernels, only at the last moment after all needed nodes - * are collected in cache, will the resources be locked using the usual - * textbook ordered lock acquisition algorithms. Note that ensuring that - * this code neither write locks what it does not need to write lock nor locks out of order - * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans - * - * fix is meant in the sense of render unchanging - * - * Latency might be improved by first gathering a list of what buffers are needed - * and then getting as many of them in parallel as possible? -Hans - * - * Parameters: - * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append) - * tb tree_balance structure; - * inum item number in S[h]; - * pos_in_item - comment this if you can - * ins_ih item head of item being inserted - * data inserted item or data to be pasted - * Returns: 1 - schedule occurred while the function worked; - * 0 - schedule didn't occur while the function worked; - * -1 - if no_disk_space - */ - -int fix_nodes(int op_mode, struct tree_balance *tb, - struct item_head *ins_ih, const void *data) -{ - int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path); - int pos_in_item; - - /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared - ** during wait_tb_buffers_run - */ - int wait_tb_buffers_run = 0; - struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path); - - ++REISERFS_SB(tb->tb_sb)->s_fix_nodes; - - pos_in_item = tb->tb_path->pos_in_item; - - tb->fs_gen = get_generation(tb->tb_sb); - - /* we prepare and log the super here so it will already be in the - ** transaction when do_balance needs to change it. - ** This way do_balance won't have to schedule when trying to prepare - ** the super for logging - */ - reiserfs_prepare_for_journal(tb->tb_sb, - SB_BUFFER_WITH_SB(tb->tb_sb), 1); - journal_mark_dirty(tb->transaction_handle, tb->tb_sb, - SB_BUFFER_WITH_SB(tb->tb_sb)); - if (FILESYSTEM_CHANGED_TB(tb)) - return REPEAT_SEARCH; - - /* if it possible in indirect_to_direct conversion */ - if (buffer_locked(tbS0)) { - reiserfs_write_unlock(tb->tb_sb); - __wait_on_buffer(tbS0); - reiserfs_write_lock(tb->tb_sb); - if (FILESYSTEM_CHANGED_TB(tb)) - return REPEAT_SEARCH; - } -#ifdef CONFIG_REISERFS_CHECK - if (REISERFS_SB(tb->tb_sb)->cur_tb) { - print_cur_tb("fix_nodes"); - reiserfs_panic(tb->tb_sb, "PAP-8305", - "there is pending do_balance"); - } - - if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0)) - reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is " - "not uptodate at the beginning of fix_nodes " - "or not in tree (mode %c)", - tbS0, tbS0, op_mode); - - /* Check parameters. */ - switch (op_mode) { - case M_INSERT: - if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0)) - reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect " - "item number %d (in S0 - %d) in case " - "of insert", item_num, - B_NR_ITEMS(tbS0)); - break; - case M_PASTE: - case M_DELETE: - case M_CUT: - if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) { - print_block(tbS0, 0, -1, -1); - reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect " - "item number(%d); mode = %c " - "insert_size = %d", - item_num, op_mode, - tb->insert_size[0]); - } - break; - default: - reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode " - "of operation"); - } -#endif - - if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH) - // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat - return REPEAT_SEARCH; - - /* Starting from the leaf level; for all levels h of the tree. */ - for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) { - ret = get_direct_parent(tb, h); - if (ret != CARRY_ON) - goto repeat; - - ret = check_balance(op_mode, tb, h, item_num, - pos_in_item, ins_ih, data); - if (ret != CARRY_ON) { - if (ret == NO_BALANCING_NEEDED) { - /* No balancing for higher levels needed. */ - ret = get_neighbors(tb, h); - if (ret != CARRY_ON) - goto repeat; - if (h != MAX_HEIGHT - 1) - tb->insert_size[h + 1] = 0; - /* ok, analysis and resource gathering are complete */ - break; - } - goto repeat; - } - - ret = get_neighbors(tb, h); - if (ret != CARRY_ON) - goto repeat; - - /* No disk space, or schedule occurred and analysis may be - * invalid and needs to be redone. */ - ret = get_empty_nodes(tb, h); - if (ret != CARRY_ON) - goto repeat; - - if (!PATH_H_PBUFFER(tb->tb_path, h)) { - /* We have a positive insert size but no nodes exist on this - level, this means that we are creating a new root. */ - - RFALSE(tb->blknum[h] != 1, - "PAP-8350: creating new empty root"); - - if (h < MAX_HEIGHT - 1) - tb->insert_size[h + 1] = 0; - } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) { - if (tb->blknum[h] > 1) { - /* The tree needs to be grown, so this node S[h] - which is the root node is split into two nodes, - and a new node (S[h+1]) will be created to - become the root node. */ - - RFALSE(h == MAX_HEIGHT - 1, - "PAP-8355: attempt to create too high of a tree"); - - tb->insert_size[h + 1] = - (DC_SIZE + - KEY_SIZE) * (tb->blknum[h] - 1) + - DC_SIZE; - } else if (h < MAX_HEIGHT - 1) - tb->insert_size[h + 1] = 0; - } else - tb->insert_size[h + 1] = - (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1); - } - - ret = wait_tb_buffers_until_unlocked(tb); - if (ret == CARRY_ON) { - if (FILESYSTEM_CHANGED_TB(tb)) { - wait_tb_buffers_run = 1; - ret = REPEAT_SEARCH; - goto repeat; - } else { - return CARRY_ON; - } - } else { - wait_tb_buffers_run = 1; - goto repeat; - } - - repeat: - // fix_nodes was unable to perform its calculation due to - // filesystem got changed under us, lack of free disk space or i/o - // failure. If the first is the case - the search will be - // repeated. For now - free all resources acquired so far except - // for the new allocated nodes - { - int i; - - /* Release path buffers. */ - if (wait_tb_buffers_run) { - pathrelse_and_restore(tb->tb_sb, tb->tb_path); - } else { - pathrelse(tb->tb_path); - } - /* brelse all resources collected for balancing */ - for (i = 0; i < MAX_HEIGHT; i++) { - if (wait_tb_buffers_run) { - reiserfs_restore_prepared_buffer(tb->tb_sb, - tb->L[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, - tb->R[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, - tb->FL[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, - tb->FR[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, - tb-> - CFL[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, - tb-> - CFR[i]); - } - - brelse(tb->L[i]); - brelse(tb->R[i]); - brelse(tb->FL[i]); - brelse(tb->FR[i]); - brelse(tb->CFL[i]); - brelse(tb->CFR[i]); - - tb->L[i] = NULL; - tb->R[i] = NULL; - tb->FL[i] = NULL; - tb->FR[i] = NULL; - tb->CFL[i] = NULL; - tb->CFR[i] = NULL; - } - - if (wait_tb_buffers_run) { - for (i = 0; i < MAX_FEB_SIZE; i++) { - if (tb->FEB[i]) - reiserfs_restore_prepared_buffer - (tb->tb_sb, tb->FEB[i]); - } - } - return ret; - } - -} - -/* Anatoly will probably forgive me renaming tb to tb. I just - wanted to make lines shorter */ -void unfix_nodes(struct tree_balance *tb) -{ - int i; - - /* Release path buffers. */ - pathrelse_and_restore(tb->tb_sb, tb->tb_path); - - /* brelse all resources collected for balancing */ - for (i = 0; i < MAX_HEIGHT; i++) { - reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]); - reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]); - - brelse(tb->L[i]); - brelse(tb->R[i]); - brelse(tb->FL[i]); - brelse(tb->FR[i]); - brelse(tb->CFL[i]); - brelse(tb->CFR[i]); - } - - /* deal with list of allocated (used and unused) nodes */ - for (i = 0; i < MAX_FEB_SIZE; i++) { - if (tb->FEB[i]) { - b_blocknr_t blocknr = tb->FEB[i]->b_blocknr; - /* de-allocated block which was not used by balancing and - bforget about buffer for it */ - brelse(tb->FEB[i]); - reiserfs_free_block(tb->transaction_handle, NULL, - blocknr, 0); - } - if (tb->used[i]) { - /* release used as new nodes including a new root */ - brelse(tb->used[i]); - } - } - - kfree(tb->vn_buf); - -} |