diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/block/blk-settings.c | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/block/blk-settings.c')
-rw-r--r-- | ANDROID_3.4.5/block/blk-settings.c | 822 |
1 files changed, 0 insertions, 822 deletions
diff --git a/ANDROID_3.4.5/block/blk-settings.c b/ANDROID_3.4.5/block/blk-settings.c deleted file mode 100644 index d3234fc4..00000000 --- a/ANDROID_3.4.5/block/blk-settings.c +++ /dev/null @@ -1,822 +0,0 @@ -/* - * Functions related to setting various queue properties from drivers - */ -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/init.h> -#include <linux/bio.h> -#include <linux/blkdev.h> -#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ -#include <linux/gcd.h> -#include <linux/lcm.h> -#include <linux/jiffies.h> -#include <linux/gfp.h> - -#include "blk.h" - -unsigned long blk_max_low_pfn; -EXPORT_SYMBOL(blk_max_low_pfn); - -unsigned long blk_max_pfn; - -/** - * blk_queue_prep_rq - set a prepare_request function for queue - * @q: queue - * @pfn: prepare_request function - * - * It's possible for a queue to register a prepare_request callback which - * is invoked before the request is handed to the request_fn. The goal of - * the function is to prepare a request for I/O, it can be used to build a - * cdb from the request data for instance. - * - */ -void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) -{ - q->prep_rq_fn = pfn; -} -EXPORT_SYMBOL(blk_queue_prep_rq); - -/** - * blk_queue_unprep_rq - set an unprepare_request function for queue - * @q: queue - * @ufn: unprepare_request function - * - * It's possible for a queue to register an unprepare_request callback - * which is invoked before the request is finally completed. The goal - * of the function is to deallocate any data that was allocated in the - * prepare_request callback. - * - */ -void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn) -{ - q->unprep_rq_fn = ufn; -} -EXPORT_SYMBOL(blk_queue_unprep_rq); - -/** - * blk_queue_merge_bvec - set a merge_bvec function for queue - * @q: queue - * @mbfn: merge_bvec_fn - * - * Usually queues have static limitations on the max sectors or segments that - * we can put in a request. Stacking drivers may have some settings that - * are dynamic, and thus we have to query the queue whether it is ok to - * add a new bio_vec to a bio at a given offset or not. If the block device - * has such limitations, it needs to register a merge_bvec_fn to control - * the size of bio's sent to it. Note that a block device *must* allow a - * single page to be added to an empty bio. The block device driver may want - * to use the bio_split() function to deal with these bio's. By default - * no merge_bvec_fn is defined for a queue, and only the fixed limits are - * honored. - */ -void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) -{ - q->merge_bvec_fn = mbfn; -} -EXPORT_SYMBOL(blk_queue_merge_bvec); - -void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) -{ - q->softirq_done_fn = fn; -} -EXPORT_SYMBOL(blk_queue_softirq_done); - -void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) -{ - q->rq_timeout = timeout; -} -EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); - -void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) -{ - q->rq_timed_out_fn = fn; -} -EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); - -void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) -{ - q->lld_busy_fn = fn; -} -EXPORT_SYMBOL_GPL(blk_queue_lld_busy); - -/** - * blk_set_default_limits - reset limits to default values - * @lim: the queue_limits structure to reset - * - * Description: - * Returns a queue_limit struct to its default state. - */ -void blk_set_default_limits(struct queue_limits *lim) -{ - lim->max_segments = BLK_MAX_SEGMENTS; - lim->max_integrity_segments = 0; - lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; - lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; - lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; - lim->max_discard_sectors = 0; - lim->discard_granularity = 0; - lim->discard_alignment = 0; - lim->discard_misaligned = 0; - lim->discard_zeroes_data = 0; - lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; - lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); - lim->alignment_offset = 0; - lim->io_opt = 0; - lim->misaligned = 0; - lim->cluster = 1; -} -EXPORT_SYMBOL(blk_set_default_limits); - -/** - * blk_set_stacking_limits - set default limits for stacking devices - * @lim: the queue_limits structure to reset - * - * Description: - * Returns a queue_limit struct to its default state. Should be used - * by stacking drivers like DM that have no internal limits. - */ -void blk_set_stacking_limits(struct queue_limits *lim) -{ - blk_set_default_limits(lim); - - /* Inherit limits from component devices */ - lim->discard_zeroes_data = 1; - lim->max_segments = USHRT_MAX; - lim->max_hw_sectors = UINT_MAX; - - lim->max_sectors = BLK_DEF_MAX_SECTORS; -} -EXPORT_SYMBOL(blk_set_stacking_limits); - -/** - * blk_queue_make_request - define an alternate make_request function for a device - * @q: the request queue for the device to be affected - * @mfn: the alternate make_request function - * - * Description: - * The normal way for &struct bios to be passed to a device - * driver is for them to be collected into requests on a request - * queue, and then to allow the device driver to select requests - * off that queue when it is ready. This works well for many block - * devices. However some block devices (typically virtual devices - * such as md or lvm) do not benefit from the processing on the - * request queue, and are served best by having the requests passed - * directly to them. This can be achieved by providing a function - * to blk_queue_make_request(). - * - * Caveat: - * The driver that does this *must* be able to deal appropriately - * with buffers in "highmemory". This can be accomplished by either calling - * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling - * blk_queue_bounce() to create a buffer in normal memory. - **/ -void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) -{ - /* - * set defaults - */ - q->nr_requests = BLKDEV_MAX_RQ; - - q->make_request_fn = mfn; - blk_queue_dma_alignment(q, 511); - blk_queue_congestion_threshold(q); - q->nr_batching = BLK_BATCH_REQ; - - blk_set_default_limits(&q->limits); - - /* - * by default assume old behaviour and bounce for any highmem page - */ - blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); -} -EXPORT_SYMBOL(blk_queue_make_request); - -/** - * blk_queue_bounce_limit - set bounce buffer limit for queue - * @q: the request queue for the device - * @dma_mask: the maximum address the device can handle - * - * Description: - * Different hardware can have different requirements as to what pages - * it can do I/O directly to. A low level driver can call - * blk_queue_bounce_limit to have lower memory pages allocated as bounce - * buffers for doing I/O to pages residing above @dma_mask. - **/ -void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) -{ - unsigned long b_pfn = dma_mask >> PAGE_SHIFT; - int dma = 0; - - q->bounce_gfp = GFP_NOIO; -#if BITS_PER_LONG == 64 - /* - * Assume anything <= 4GB can be handled by IOMMU. Actually - * some IOMMUs can handle everything, but I don't know of a - * way to test this here. - */ - if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) - dma = 1; - q->limits.bounce_pfn = max(max_low_pfn, b_pfn); -#else - if (b_pfn < blk_max_low_pfn) - dma = 1; - q->limits.bounce_pfn = b_pfn; -#endif - if (dma) { - init_emergency_isa_pool(); - q->bounce_gfp = GFP_NOIO | GFP_DMA; - q->limits.bounce_pfn = b_pfn; - } -} -EXPORT_SYMBOL(blk_queue_bounce_limit); - -/** - * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request - * @limits: the queue limits - * @max_hw_sectors: max hardware sectors in the usual 512b unit - * - * Description: - * Enables a low level driver to set a hard upper limit, - * max_hw_sectors, on the size of requests. max_hw_sectors is set by - * the device driver based upon the combined capabilities of I/O - * controller and storage device. - * - * max_sectors is a soft limit imposed by the block layer for - * filesystem type requests. This value can be overridden on a - * per-device basis in /sys/block/<device>/queue/max_sectors_kb. - * The soft limit can not exceed max_hw_sectors. - **/ -void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors) -{ - if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) { - max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9); - printk(KERN_INFO "%s: set to minimum %d\n", - __func__, max_hw_sectors); - } - - limits->max_hw_sectors = max_hw_sectors; - limits->max_sectors = min_t(unsigned int, max_hw_sectors, - BLK_DEF_MAX_SECTORS); -} -EXPORT_SYMBOL(blk_limits_max_hw_sectors); - -/** - * blk_queue_max_hw_sectors - set max sectors for a request for this queue - * @q: the request queue for the device - * @max_hw_sectors: max hardware sectors in the usual 512b unit - * - * Description: - * See description for blk_limits_max_hw_sectors(). - **/ -void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) -{ - blk_limits_max_hw_sectors(&q->limits, max_hw_sectors); -} -EXPORT_SYMBOL(blk_queue_max_hw_sectors); - -/** - * blk_queue_max_discard_sectors - set max sectors for a single discard - * @q: the request queue for the device - * @max_discard_sectors: maximum number of sectors to discard - **/ -void blk_queue_max_discard_sectors(struct request_queue *q, - unsigned int max_discard_sectors) -{ - q->limits.max_discard_sectors = max_discard_sectors; -} -EXPORT_SYMBOL(blk_queue_max_discard_sectors); - -/** - * blk_queue_max_segments - set max hw segments for a request for this queue - * @q: the request queue for the device - * @max_segments: max number of segments - * - * Description: - * Enables a low level driver to set an upper limit on the number of - * hw data segments in a request. - **/ -void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) -{ - if (!max_segments) { - max_segments = 1; - printk(KERN_INFO "%s: set to minimum %d\n", - __func__, max_segments); - } - - q->limits.max_segments = max_segments; -} -EXPORT_SYMBOL(blk_queue_max_segments); - -/** - * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg - * @q: the request queue for the device - * @max_size: max size of segment in bytes - * - * Description: - * Enables a low level driver to set an upper limit on the size of a - * coalesced segment - **/ -void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) -{ - if (max_size < PAGE_CACHE_SIZE) { - max_size = PAGE_CACHE_SIZE; - printk(KERN_INFO "%s: set to minimum %d\n", - __func__, max_size); - } - - q->limits.max_segment_size = max_size; -} -EXPORT_SYMBOL(blk_queue_max_segment_size); - -/** - * blk_queue_logical_block_size - set logical block size for the queue - * @q: the request queue for the device - * @size: the logical block size, in bytes - * - * Description: - * This should be set to the lowest possible block size that the - * storage device can address. The default of 512 covers most - * hardware. - **/ -void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) -{ - q->limits.logical_block_size = size; - - if (q->limits.physical_block_size < size) - q->limits.physical_block_size = size; - - if (q->limits.io_min < q->limits.physical_block_size) - q->limits.io_min = q->limits.physical_block_size; -} -EXPORT_SYMBOL(blk_queue_logical_block_size); - -/** - * blk_queue_physical_block_size - set physical block size for the queue - * @q: the request queue for the device - * @size: the physical block size, in bytes - * - * Description: - * This should be set to the lowest possible sector size that the - * hardware can operate on without reverting to read-modify-write - * operations. - */ -void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) -{ - q->limits.physical_block_size = size; - - if (q->limits.physical_block_size < q->limits.logical_block_size) - q->limits.physical_block_size = q->limits.logical_block_size; - - if (q->limits.io_min < q->limits.physical_block_size) - q->limits.io_min = q->limits.physical_block_size; -} -EXPORT_SYMBOL(blk_queue_physical_block_size); - -/** - * blk_queue_alignment_offset - set physical block alignment offset - * @q: the request queue for the device - * @offset: alignment offset in bytes - * - * Description: - * Some devices are naturally misaligned to compensate for things like - * the legacy DOS partition table 63-sector offset. Low-level drivers - * should call this function for devices whose first sector is not - * naturally aligned. - */ -void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) -{ - q->limits.alignment_offset = - offset & (q->limits.physical_block_size - 1); - q->limits.misaligned = 0; -} -EXPORT_SYMBOL(blk_queue_alignment_offset); - -/** - * blk_limits_io_min - set minimum request size for a device - * @limits: the queue limits - * @min: smallest I/O size in bytes - * - * Description: - * Some devices have an internal block size bigger than the reported - * hardware sector size. This function can be used to signal the - * smallest I/O the device can perform without incurring a performance - * penalty. - */ -void blk_limits_io_min(struct queue_limits *limits, unsigned int min) -{ - limits->io_min = min; - - if (limits->io_min < limits->logical_block_size) - limits->io_min = limits->logical_block_size; - - if (limits->io_min < limits->physical_block_size) - limits->io_min = limits->physical_block_size; -} -EXPORT_SYMBOL(blk_limits_io_min); - -/** - * blk_queue_io_min - set minimum request size for the queue - * @q: the request queue for the device - * @min: smallest I/O size in bytes - * - * Description: - * Storage devices may report a granularity or preferred minimum I/O - * size which is the smallest request the device can perform without - * incurring a performance penalty. For disk drives this is often the - * physical block size. For RAID arrays it is often the stripe chunk - * size. A properly aligned multiple of minimum_io_size is the - * preferred request size for workloads where a high number of I/O - * operations is desired. - */ -void blk_queue_io_min(struct request_queue *q, unsigned int min) -{ - blk_limits_io_min(&q->limits, min); -} -EXPORT_SYMBOL(blk_queue_io_min); - -/** - * blk_limits_io_opt - set optimal request size for a device - * @limits: the queue limits - * @opt: smallest I/O size in bytes - * - * Description: - * Storage devices may report an optimal I/O size, which is the - * device's preferred unit for sustained I/O. This is rarely reported - * for disk drives. For RAID arrays it is usually the stripe width or - * the internal track size. A properly aligned multiple of - * optimal_io_size is the preferred request size for workloads where - * sustained throughput is desired. - */ -void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) -{ - limits->io_opt = opt; -} -EXPORT_SYMBOL(blk_limits_io_opt); - -/** - * blk_queue_io_opt - set optimal request size for the queue - * @q: the request queue for the device - * @opt: optimal request size in bytes - * - * Description: - * Storage devices may report an optimal I/O size, which is the - * device's preferred unit for sustained I/O. This is rarely reported - * for disk drives. For RAID arrays it is usually the stripe width or - * the internal track size. A properly aligned multiple of - * optimal_io_size is the preferred request size for workloads where - * sustained throughput is desired. - */ -void blk_queue_io_opt(struct request_queue *q, unsigned int opt) -{ - blk_limits_io_opt(&q->limits, opt); -} -EXPORT_SYMBOL(blk_queue_io_opt); - -/** - * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers - * @t: the stacking driver (top) - * @b: the underlying device (bottom) - **/ -void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) -{ - blk_stack_limits(&t->limits, &b->limits, 0); -} -EXPORT_SYMBOL(blk_queue_stack_limits); - -/** - * blk_stack_limits - adjust queue_limits for stacked devices - * @t: the stacking driver limits (top device) - * @b: the underlying queue limits (bottom, component device) - * @start: first data sector within component device - * - * Description: - * This function is used by stacking drivers like MD and DM to ensure - * that all component devices have compatible block sizes and - * alignments. The stacking driver must provide a queue_limits - * struct (top) and then iteratively call the stacking function for - * all component (bottom) devices. The stacking function will - * attempt to combine the values and ensure proper alignment. - * - * Returns 0 if the top and bottom queue_limits are compatible. The - * top device's block sizes and alignment offsets may be adjusted to - * ensure alignment with the bottom device. If no compatible sizes - * and alignments exist, -1 is returned and the resulting top - * queue_limits will have the misaligned flag set to indicate that - * the alignment_offset is undefined. - */ -int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, - sector_t start) -{ - unsigned int top, bottom, alignment, ret = 0; - - t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); - t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); - t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); - - t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, - b->seg_boundary_mask); - - t->max_segments = min_not_zero(t->max_segments, b->max_segments); - t->max_integrity_segments = min_not_zero(t->max_integrity_segments, - b->max_integrity_segments); - - t->max_segment_size = min_not_zero(t->max_segment_size, - b->max_segment_size); - - t->misaligned |= b->misaligned; - - alignment = queue_limit_alignment_offset(b, start); - - /* Bottom device has different alignment. Check that it is - * compatible with the current top alignment. - */ - if (t->alignment_offset != alignment) { - - top = max(t->physical_block_size, t->io_min) - + t->alignment_offset; - bottom = max(b->physical_block_size, b->io_min) + alignment; - - /* Verify that top and bottom intervals line up */ - if (max(top, bottom) & (min(top, bottom) - 1)) { - t->misaligned = 1; - ret = -1; - } - } - - t->logical_block_size = max(t->logical_block_size, - b->logical_block_size); - - t->physical_block_size = max(t->physical_block_size, - b->physical_block_size); - - t->io_min = max(t->io_min, b->io_min); - t->io_opt = lcm(t->io_opt, b->io_opt); - - t->cluster &= b->cluster; - t->discard_zeroes_data &= b->discard_zeroes_data; - - /* Physical block size a multiple of the logical block size? */ - if (t->physical_block_size & (t->logical_block_size - 1)) { - t->physical_block_size = t->logical_block_size; - t->misaligned = 1; - ret = -1; - } - - /* Minimum I/O a multiple of the physical block size? */ - if (t->io_min & (t->physical_block_size - 1)) { - t->io_min = t->physical_block_size; - t->misaligned = 1; - ret = -1; - } - - /* Optimal I/O a multiple of the physical block size? */ - if (t->io_opt & (t->physical_block_size - 1)) { - t->io_opt = 0; - t->misaligned = 1; - ret = -1; - } - - /* Find lowest common alignment_offset */ - t->alignment_offset = lcm(t->alignment_offset, alignment) - & (max(t->physical_block_size, t->io_min) - 1); - - /* Verify that new alignment_offset is on a logical block boundary */ - if (t->alignment_offset & (t->logical_block_size - 1)) { - t->misaligned = 1; - ret = -1; - } - - /* Discard alignment and granularity */ - if (b->discard_granularity) { - alignment = queue_limit_discard_alignment(b, start); - - if (t->discard_granularity != 0 && - t->discard_alignment != alignment) { - top = t->discard_granularity + t->discard_alignment; - bottom = b->discard_granularity + alignment; - - /* Verify that top and bottom intervals line up */ - if (max(top, bottom) & (min(top, bottom) - 1)) - t->discard_misaligned = 1; - } - - t->max_discard_sectors = min_not_zero(t->max_discard_sectors, - b->max_discard_sectors); - t->discard_granularity = max(t->discard_granularity, - b->discard_granularity); - t->discard_alignment = lcm(t->discard_alignment, alignment) & - (t->discard_granularity - 1); - } - - return ret; -} -EXPORT_SYMBOL(blk_stack_limits); - -/** - * bdev_stack_limits - adjust queue limits for stacked drivers - * @t: the stacking driver limits (top device) - * @bdev: the component block_device (bottom) - * @start: first data sector within component device - * - * Description: - * Merges queue limits for a top device and a block_device. Returns - * 0 if alignment didn't change. Returns -1 if adding the bottom - * device caused misalignment. - */ -int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, - sector_t start) -{ - struct request_queue *bq = bdev_get_queue(bdev); - - start += get_start_sect(bdev); - - return blk_stack_limits(t, &bq->limits, start); -} -EXPORT_SYMBOL(bdev_stack_limits); - -/** - * disk_stack_limits - adjust queue limits for stacked drivers - * @disk: MD/DM gendisk (top) - * @bdev: the underlying block device (bottom) - * @offset: offset to beginning of data within component device - * - * Description: - * Merges the limits for a top level gendisk and a bottom level - * block_device. - */ -void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, - sector_t offset) -{ - struct request_queue *t = disk->queue; - - if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { - char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; - - disk_name(disk, 0, top); - bdevname(bdev, bottom); - - printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", - top, bottom); - } -} -EXPORT_SYMBOL(disk_stack_limits); - -/** - * blk_queue_dma_pad - set pad mask - * @q: the request queue for the device - * @mask: pad mask - * - * Set dma pad mask. - * - * Appending pad buffer to a request modifies the last entry of a - * scatter list such that it includes the pad buffer. - **/ -void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) -{ - q->dma_pad_mask = mask; -} -EXPORT_SYMBOL(blk_queue_dma_pad); - -/** - * blk_queue_update_dma_pad - update pad mask - * @q: the request queue for the device - * @mask: pad mask - * - * Update dma pad mask. - * - * Appending pad buffer to a request modifies the last entry of a - * scatter list such that it includes the pad buffer. - **/ -void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) -{ - if (mask > q->dma_pad_mask) - q->dma_pad_mask = mask; -} -EXPORT_SYMBOL(blk_queue_update_dma_pad); - -/** - * blk_queue_dma_drain - Set up a drain buffer for excess dma. - * @q: the request queue for the device - * @dma_drain_needed: fn which returns non-zero if drain is necessary - * @buf: physically contiguous buffer - * @size: size of the buffer in bytes - * - * Some devices have excess DMA problems and can't simply discard (or - * zero fill) the unwanted piece of the transfer. They have to have a - * real area of memory to transfer it into. The use case for this is - * ATAPI devices in DMA mode. If the packet command causes a transfer - * bigger than the transfer size some HBAs will lock up if there - * aren't DMA elements to contain the excess transfer. What this API - * does is adjust the queue so that the buf is always appended - * silently to the scatterlist. - * - * Note: This routine adjusts max_hw_segments to make room for appending - * the drain buffer. If you call blk_queue_max_segments() after calling - * this routine, you must set the limit to one fewer than your device - * can support otherwise there won't be room for the drain buffer. - */ -int blk_queue_dma_drain(struct request_queue *q, - dma_drain_needed_fn *dma_drain_needed, - void *buf, unsigned int size) -{ - if (queue_max_segments(q) < 2) - return -EINVAL; - /* make room for appending the drain */ - blk_queue_max_segments(q, queue_max_segments(q) - 1); - q->dma_drain_needed = dma_drain_needed; - q->dma_drain_buffer = buf; - q->dma_drain_size = size; - - return 0; -} -EXPORT_SYMBOL_GPL(blk_queue_dma_drain); - -/** - * blk_queue_segment_boundary - set boundary rules for segment merging - * @q: the request queue for the device - * @mask: the memory boundary mask - **/ -void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) -{ - if (mask < PAGE_CACHE_SIZE - 1) { - mask = PAGE_CACHE_SIZE - 1; - printk(KERN_INFO "%s: set to minimum %lx\n", - __func__, mask); - } - - q->limits.seg_boundary_mask = mask; -} -EXPORT_SYMBOL(blk_queue_segment_boundary); - -/** - * blk_queue_dma_alignment - set dma length and memory alignment - * @q: the request queue for the device - * @mask: alignment mask - * - * description: - * set required memory and length alignment for direct dma transactions. - * this is used when building direct io requests for the queue. - * - **/ -void blk_queue_dma_alignment(struct request_queue *q, int mask) -{ - q->dma_alignment = mask; -} -EXPORT_SYMBOL(blk_queue_dma_alignment); - -/** - * blk_queue_update_dma_alignment - update dma length and memory alignment - * @q: the request queue for the device - * @mask: alignment mask - * - * description: - * update required memory and length alignment for direct dma transactions. - * If the requested alignment is larger than the current alignment, then - * the current queue alignment is updated to the new value, otherwise it - * is left alone. The design of this is to allow multiple objects - * (driver, device, transport etc) to set their respective - * alignments without having them interfere. - * - **/ -void blk_queue_update_dma_alignment(struct request_queue *q, int mask) -{ - BUG_ON(mask > PAGE_SIZE); - - if (mask > q->dma_alignment) - q->dma_alignment = mask; -} -EXPORT_SYMBOL(blk_queue_update_dma_alignment); - -/** - * blk_queue_flush - configure queue's cache flush capability - * @q: the request queue for the device - * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA - * - * Tell block layer cache flush capability of @q. If it supports - * flushing, REQ_FLUSH should be set. If it supports bypassing - * write cache for individual writes, REQ_FUA should be set. - */ -void blk_queue_flush(struct request_queue *q, unsigned int flush) -{ - WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA)); - - if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA))) - flush &= ~REQ_FUA; - - q->flush_flags = flush & (REQ_FLUSH | REQ_FUA); -} -EXPORT_SYMBOL_GPL(blk_queue_flush); - -void blk_queue_flush_queueable(struct request_queue *q, bool queueable) -{ - q->flush_not_queueable = !queueable; -} -EXPORT_SYMBOL_GPL(blk_queue_flush_queueable); - -static int __init blk_settings_init(void) -{ - blk_max_low_pfn = max_low_pfn - 1; - blk_max_pfn = max_pfn - 1; - return 0; -} -subsys_initcall(blk_settings_init); |