diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/arch/x86/kernel/tsc.c | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/arch/x86/kernel/tsc.c')
-rw-r--r-- | ANDROID_3.4.5/arch/x86/kernel/tsc.c | 1026 |
1 files changed, 0 insertions, 1026 deletions
diff --git a/ANDROID_3.4.5/arch/x86/kernel/tsc.c b/ANDROID_3.4.5/arch/x86/kernel/tsc.c deleted file mode 100644 index fc0a147e..00000000 --- a/ANDROID_3.4.5/arch/x86/kernel/tsc.c +++ /dev/null @@ -1,1026 +0,0 @@ -#include <linux/kernel.h> -#include <linux/sched.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/timer.h> -#include <linux/acpi_pmtmr.h> -#include <linux/cpufreq.h> -#include <linux/delay.h> -#include <linux/clocksource.h> -#include <linux/percpu.h> -#include <linux/timex.h> - -#include <asm/hpet.h> -#include <asm/timer.h> -#include <asm/vgtod.h> -#include <asm/time.h> -#include <asm/delay.h> -#include <asm/hypervisor.h> -#include <asm/nmi.h> -#include <asm/x86_init.h> - -unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ -EXPORT_SYMBOL(cpu_khz); - -unsigned int __read_mostly tsc_khz; -EXPORT_SYMBOL(tsc_khz); - -/* - * TSC can be unstable due to cpufreq or due to unsynced TSCs - */ -static int __read_mostly tsc_unstable; - -/* native_sched_clock() is called before tsc_init(), so - we must start with the TSC soft disabled to prevent - erroneous rdtsc usage on !cpu_has_tsc processors */ -static int __read_mostly tsc_disabled = -1; - -int tsc_clocksource_reliable; -/* - * Scheduler clock - returns current time in nanosec units. - */ -u64 native_sched_clock(void) -{ - u64 this_offset; - - /* - * Fall back to jiffies if there's no TSC available: - * ( But note that we still use it if the TSC is marked - * unstable. We do this because unlike Time Of Day, - * the scheduler clock tolerates small errors and it's - * very important for it to be as fast as the platform - * can achieve it. ) - */ - if (unlikely(tsc_disabled)) { - /* No locking but a rare wrong value is not a big deal: */ - return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); - } - - /* read the Time Stamp Counter: */ - rdtscll(this_offset); - - /* return the value in ns */ - return __cycles_2_ns(this_offset); -} - -/* We need to define a real function for sched_clock, to override the - weak default version */ -#ifdef CONFIG_PARAVIRT -unsigned long long sched_clock(void) -{ - return paravirt_sched_clock(); -} -#else -unsigned long long -sched_clock(void) __attribute__((alias("native_sched_clock"))); -#endif - -int check_tsc_unstable(void) -{ - return tsc_unstable; -} -EXPORT_SYMBOL_GPL(check_tsc_unstable); - -#ifdef CONFIG_X86_TSC -int __init notsc_setup(char *str) -{ - printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " - "cannot disable TSC completely.\n"); - tsc_disabled = 1; - return 1; -} -#else -/* - * disable flag for tsc. Takes effect by clearing the TSC cpu flag - * in cpu/common.c - */ -int __init notsc_setup(char *str) -{ - setup_clear_cpu_cap(X86_FEATURE_TSC); - return 1; -} -#endif - -__setup("notsc", notsc_setup); - -static int no_sched_irq_time; - -static int __init tsc_setup(char *str) -{ - if (!strcmp(str, "reliable")) - tsc_clocksource_reliable = 1; - if (!strncmp(str, "noirqtime", 9)) - no_sched_irq_time = 1; - return 1; -} - -__setup("tsc=", tsc_setup); - -#define MAX_RETRIES 5 -#define SMI_TRESHOLD 50000 - -/* - * Read TSC and the reference counters. Take care of SMI disturbance - */ -static u64 tsc_read_refs(u64 *p, int hpet) -{ - u64 t1, t2; - int i; - - for (i = 0; i < MAX_RETRIES; i++) { - t1 = get_cycles(); - if (hpet) - *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; - else - *p = acpi_pm_read_early(); - t2 = get_cycles(); - if ((t2 - t1) < SMI_TRESHOLD) - return t2; - } - return ULLONG_MAX; -} - -/* - * Calculate the TSC frequency from HPET reference - */ -static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) -{ - u64 tmp; - - if (hpet2 < hpet1) - hpet2 += 0x100000000ULL; - hpet2 -= hpet1; - tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); - do_div(tmp, 1000000); - do_div(deltatsc, tmp); - - return (unsigned long) deltatsc; -} - -/* - * Calculate the TSC frequency from PMTimer reference - */ -static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) -{ - u64 tmp; - - if (!pm1 && !pm2) - return ULONG_MAX; - - if (pm2 < pm1) - pm2 += (u64)ACPI_PM_OVRRUN; - pm2 -= pm1; - tmp = pm2 * 1000000000LL; - do_div(tmp, PMTMR_TICKS_PER_SEC); - do_div(deltatsc, tmp); - - return (unsigned long) deltatsc; -} - -#define CAL_MS 10 -#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) -#define CAL_PIT_LOOPS 1000 - -#define CAL2_MS 50 -#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) -#define CAL2_PIT_LOOPS 5000 - - -/* - * Try to calibrate the TSC against the Programmable - * Interrupt Timer and return the frequency of the TSC - * in kHz. - * - * Return ULONG_MAX on failure to calibrate. - */ -static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) -{ - u64 tsc, t1, t2, delta; - unsigned long tscmin, tscmax; - int pitcnt; - - /* Set the Gate high, disable speaker */ - outb((inb(0x61) & ~0x02) | 0x01, 0x61); - - /* - * Setup CTC channel 2* for mode 0, (interrupt on terminal - * count mode), binary count. Set the latch register to 50ms - * (LSB then MSB) to begin countdown. - */ - outb(0xb0, 0x43); - outb(latch & 0xff, 0x42); - outb(latch >> 8, 0x42); - - tsc = t1 = t2 = get_cycles(); - - pitcnt = 0; - tscmax = 0; - tscmin = ULONG_MAX; - while ((inb(0x61) & 0x20) == 0) { - t2 = get_cycles(); - delta = t2 - tsc; - tsc = t2; - if ((unsigned long) delta < tscmin) - tscmin = (unsigned int) delta; - if ((unsigned long) delta > tscmax) - tscmax = (unsigned int) delta; - pitcnt++; - } - - /* - * Sanity checks: - * - * If we were not able to read the PIT more than loopmin - * times, then we have been hit by a massive SMI - * - * If the maximum is 10 times larger than the minimum, - * then we got hit by an SMI as well. - */ - if (pitcnt < loopmin || tscmax > 10 * tscmin) - return ULONG_MAX; - - /* Calculate the PIT value */ - delta = t2 - t1; - do_div(delta, ms); - return delta; -} - -/* - * This reads the current MSB of the PIT counter, and - * checks if we are running on sufficiently fast and - * non-virtualized hardware. - * - * Our expectations are: - * - * - the PIT is running at roughly 1.19MHz - * - * - each IO is going to take about 1us on real hardware, - * but we allow it to be much faster (by a factor of 10) or - * _slightly_ slower (ie we allow up to a 2us read+counter - * update - anything else implies a unacceptably slow CPU - * or PIT for the fast calibration to work. - * - * - with 256 PIT ticks to read the value, we have 214us to - * see the same MSB (and overhead like doing a single TSC - * read per MSB value etc). - * - * - We're doing 2 reads per loop (LSB, MSB), and we expect - * them each to take about a microsecond on real hardware. - * So we expect a count value of around 100. But we'll be - * generous, and accept anything over 50. - * - * - if the PIT is stuck, and we see *many* more reads, we - * return early (and the next caller of pit_expect_msb() - * then consider it a failure when they don't see the - * next expected value). - * - * These expectations mean that we know that we have seen the - * transition from one expected value to another with a fairly - * high accuracy, and we didn't miss any events. We can thus - * use the TSC value at the transitions to calculate a pretty - * good value for the TSC frequencty. - */ -static inline int pit_verify_msb(unsigned char val) -{ - /* Ignore LSB */ - inb(0x42); - return inb(0x42) == val; -} - -static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) -{ - int count; - u64 tsc = 0, prev_tsc = 0; - - for (count = 0; count < 50000; count++) { - if (!pit_verify_msb(val)) - break; - prev_tsc = tsc; - tsc = get_cycles(); - } - *deltap = get_cycles() - prev_tsc; - *tscp = tsc; - - /* - * We require _some_ success, but the quality control - * will be based on the error terms on the TSC values. - */ - return count > 5; -} - -/* - * How many MSB values do we want to see? We aim for - * a maximum error rate of 500ppm (in practice the - * real error is much smaller), but refuse to spend - * more than 50ms on it. - */ -#define MAX_QUICK_PIT_MS 50 -#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) - -static unsigned long quick_pit_calibrate(void) -{ - int i; - u64 tsc, delta; - unsigned long d1, d2; - - /* Set the Gate high, disable speaker */ - outb((inb(0x61) & ~0x02) | 0x01, 0x61); - - /* - * Counter 2, mode 0 (one-shot), binary count - * - * NOTE! Mode 2 decrements by two (and then the - * output is flipped each time, giving the same - * final output frequency as a decrement-by-one), - * so mode 0 is much better when looking at the - * individual counts. - */ - outb(0xb0, 0x43); - - /* Start at 0xffff */ - outb(0xff, 0x42); - outb(0xff, 0x42); - - /* - * The PIT starts counting at the next edge, so we - * need to delay for a microsecond. The easiest way - * to do that is to just read back the 16-bit counter - * once from the PIT. - */ - pit_verify_msb(0); - - if (pit_expect_msb(0xff, &tsc, &d1)) { - for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { - if (!pit_expect_msb(0xff-i, &delta, &d2)) - break; - - /* - * Iterate until the error is less than 500 ppm - */ - delta -= tsc; - if (d1+d2 >= delta >> 11) - continue; - - /* - * Check the PIT one more time to verify that - * all TSC reads were stable wrt the PIT. - * - * This also guarantees serialization of the - * last cycle read ('d2') in pit_expect_msb. - */ - if (!pit_verify_msb(0xfe - i)) - break; - goto success; - } - } - printk("Fast TSC calibration failed\n"); - return 0; - -success: - /* - * Ok, if we get here, then we've seen the - * MSB of the PIT decrement 'i' times, and the - * error has shrunk to less than 500 ppm. - * - * As a result, we can depend on there not being - * any odd delays anywhere, and the TSC reads are - * reliable (within the error). - * - * kHz = ticks / time-in-seconds / 1000; - * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 - * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) - */ - delta *= PIT_TICK_RATE; - do_div(delta, i*256*1000); - printk("Fast TSC calibration using PIT\n"); - return delta; -} - -/** - * native_calibrate_tsc - calibrate the tsc on boot - */ -unsigned long native_calibrate_tsc(void) -{ - u64 tsc1, tsc2, delta, ref1, ref2; - unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; - unsigned long flags, latch, ms, fast_calibrate; - int hpet = is_hpet_enabled(), i, loopmin; - - local_irq_save(flags); - fast_calibrate = quick_pit_calibrate(); - local_irq_restore(flags); - if (fast_calibrate) - return fast_calibrate; - - /* - * Run 5 calibration loops to get the lowest frequency value - * (the best estimate). We use two different calibration modes - * here: - * - * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and - * load a timeout of 50ms. We read the time right after we - * started the timer and wait until the PIT count down reaches - * zero. In each wait loop iteration we read the TSC and check - * the delta to the previous read. We keep track of the min - * and max values of that delta. The delta is mostly defined - * by the IO time of the PIT access, so we can detect when a - * SMI/SMM disturbance happened between the two reads. If the - * maximum time is significantly larger than the minimum time, - * then we discard the result and have another try. - * - * 2) Reference counter. If available we use the HPET or the - * PMTIMER as a reference to check the sanity of that value. - * We use separate TSC readouts and check inside of the - * reference read for a SMI/SMM disturbance. We dicard - * disturbed values here as well. We do that around the PIT - * calibration delay loop as we have to wait for a certain - * amount of time anyway. - */ - - /* Preset PIT loop values */ - latch = CAL_LATCH; - ms = CAL_MS; - loopmin = CAL_PIT_LOOPS; - - for (i = 0; i < 3; i++) { - unsigned long tsc_pit_khz; - - /* - * Read the start value and the reference count of - * hpet/pmtimer when available. Then do the PIT - * calibration, which will take at least 50ms, and - * read the end value. - */ - local_irq_save(flags); - tsc1 = tsc_read_refs(&ref1, hpet); - tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); - tsc2 = tsc_read_refs(&ref2, hpet); - local_irq_restore(flags); - - /* Pick the lowest PIT TSC calibration so far */ - tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); - - /* hpet or pmtimer available ? */ - if (ref1 == ref2) - continue; - - /* Check, whether the sampling was disturbed by an SMI */ - if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) - continue; - - tsc2 = (tsc2 - tsc1) * 1000000LL; - if (hpet) - tsc2 = calc_hpet_ref(tsc2, ref1, ref2); - else - tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); - - tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); - - /* Check the reference deviation */ - delta = ((u64) tsc_pit_min) * 100; - do_div(delta, tsc_ref_min); - - /* - * If both calibration results are inside a 10% window - * then we can be sure, that the calibration - * succeeded. We break out of the loop right away. We - * use the reference value, as it is more precise. - */ - if (delta >= 90 && delta <= 110) { - printk(KERN_INFO - "TSC: PIT calibration matches %s. %d loops\n", - hpet ? "HPET" : "PMTIMER", i + 1); - return tsc_ref_min; - } - - /* - * Check whether PIT failed more than once. This - * happens in virtualized environments. We need to - * give the virtual PC a slightly longer timeframe for - * the HPET/PMTIMER to make the result precise. - */ - if (i == 1 && tsc_pit_min == ULONG_MAX) { - latch = CAL2_LATCH; - ms = CAL2_MS; - loopmin = CAL2_PIT_LOOPS; - } - } - - /* - * Now check the results. - */ - if (tsc_pit_min == ULONG_MAX) { - /* PIT gave no useful value */ - printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n"); - - /* We don't have an alternative source, disable TSC */ - if (!hpet && !ref1 && !ref2) { - printk("TSC: No reference (HPET/PMTIMER) available\n"); - return 0; - } - - /* The alternative source failed as well, disable TSC */ - if (tsc_ref_min == ULONG_MAX) { - printk(KERN_WARNING "TSC: HPET/PMTIMER calibration " - "failed.\n"); - return 0; - } - - /* Use the alternative source */ - printk(KERN_INFO "TSC: using %s reference calibration\n", - hpet ? "HPET" : "PMTIMER"); - - return tsc_ref_min; - } - - /* We don't have an alternative source, use the PIT calibration value */ - if (!hpet && !ref1 && !ref2) { - printk(KERN_INFO "TSC: Using PIT calibration value\n"); - return tsc_pit_min; - } - - /* The alternative source failed, use the PIT calibration value */ - if (tsc_ref_min == ULONG_MAX) { - printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. " - "Using PIT calibration\n"); - return tsc_pit_min; - } - - /* - * The calibration values differ too much. In doubt, we use - * the PIT value as we know that there are PMTIMERs around - * running at double speed. At least we let the user know: - */ - printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", - hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); - printk(KERN_INFO "TSC: Using PIT calibration value\n"); - return tsc_pit_min; -} - -int recalibrate_cpu_khz(void) -{ -#ifndef CONFIG_SMP - unsigned long cpu_khz_old = cpu_khz; - - if (cpu_has_tsc) { - tsc_khz = x86_platform.calibrate_tsc(); - cpu_khz = tsc_khz; - cpu_data(0).loops_per_jiffy = - cpufreq_scale(cpu_data(0).loops_per_jiffy, - cpu_khz_old, cpu_khz); - return 0; - } else - return -ENODEV; -#else - return -ENODEV; -#endif -} - -EXPORT_SYMBOL(recalibrate_cpu_khz); - - -/* Accelerators for sched_clock() - * convert from cycles(64bits) => nanoseconds (64bits) - * basic equation: - * ns = cycles / (freq / ns_per_sec) - * ns = cycles * (ns_per_sec / freq) - * ns = cycles * (10^9 / (cpu_khz * 10^3)) - * ns = cycles * (10^6 / cpu_khz) - * - * Then we use scaling math (suggested by george@mvista.com) to get: - * ns = cycles * (10^6 * SC / cpu_khz) / SC - * ns = cycles * cyc2ns_scale / SC - * - * And since SC is a constant power of two, we can convert the div - * into a shift. - * - * We can use khz divisor instead of mhz to keep a better precision, since - * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. - * (mathieu.desnoyers@polymtl.ca) - * - * -johnstul@us.ibm.com "math is hard, lets go shopping!" - */ - -DEFINE_PER_CPU(unsigned long, cyc2ns); -DEFINE_PER_CPU(unsigned long long, cyc2ns_offset); - -static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) -{ - unsigned long long tsc_now, ns_now, *offset; - unsigned long flags, *scale; - - local_irq_save(flags); - sched_clock_idle_sleep_event(); - - scale = &per_cpu(cyc2ns, cpu); - offset = &per_cpu(cyc2ns_offset, cpu); - - rdtscll(tsc_now); - ns_now = __cycles_2_ns(tsc_now); - - if (cpu_khz) { - *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; - *offset = ns_now - mult_frac(tsc_now, *scale, - (1UL << CYC2NS_SCALE_FACTOR)); - } - - sched_clock_idle_wakeup_event(0); - local_irq_restore(flags); -} - -static unsigned long long cyc2ns_suspend; - -void tsc_save_sched_clock_state(void) -{ - if (!sched_clock_stable) - return; - - cyc2ns_suspend = sched_clock(); -} - -/* - * Even on processors with invariant TSC, TSC gets reset in some the - * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to - * arbitrary value (still sync'd across cpu's) during resume from such sleep - * states. To cope up with this, recompute the cyc2ns_offset for each cpu so - * that sched_clock() continues from the point where it was left off during - * suspend. - */ -void tsc_restore_sched_clock_state(void) -{ - unsigned long long offset; - unsigned long flags; - int cpu; - - if (!sched_clock_stable) - return; - - local_irq_save(flags); - - __this_cpu_write(cyc2ns_offset, 0); - offset = cyc2ns_suspend - sched_clock(); - - for_each_possible_cpu(cpu) - per_cpu(cyc2ns_offset, cpu) = offset; - - local_irq_restore(flags); -} - -#ifdef CONFIG_CPU_FREQ - -/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency - * changes. - * - * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's - * not that important because current Opteron setups do not support - * scaling on SMP anyroads. - * - * Should fix up last_tsc too. Currently gettimeofday in the - * first tick after the change will be slightly wrong. - */ - -static unsigned int ref_freq; -static unsigned long loops_per_jiffy_ref; -static unsigned long tsc_khz_ref; - -static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, - void *data) -{ - struct cpufreq_freqs *freq = data; - unsigned long *lpj; - - if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) - return 0; - - lpj = &boot_cpu_data.loops_per_jiffy; -#ifdef CONFIG_SMP - if (!(freq->flags & CPUFREQ_CONST_LOOPS)) - lpj = &cpu_data(freq->cpu).loops_per_jiffy; -#endif - - if (!ref_freq) { - ref_freq = freq->old; - loops_per_jiffy_ref = *lpj; - tsc_khz_ref = tsc_khz; - } - if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || - (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || - (val == CPUFREQ_RESUMECHANGE)) { - *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); - - tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); - if (!(freq->flags & CPUFREQ_CONST_LOOPS)) - mark_tsc_unstable("cpufreq changes"); - } - - set_cyc2ns_scale(tsc_khz, freq->cpu); - - return 0; -} - -static struct notifier_block time_cpufreq_notifier_block = { - .notifier_call = time_cpufreq_notifier -}; - -static int __init cpufreq_tsc(void) -{ - if (!cpu_has_tsc) - return 0; - if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) - return 0; - cpufreq_register_notifier(&time_cpufreq_notifier_block, - CPUFREQ_TRANSITION_NOTIFIER); - return 0; -} - -core_initcall(cpufreq_tsc); - -#endif /* CONFIG_CPU_FREQ */ - -/* clocksource code */ - -static struct clocksource clocksource_tsc; - -/* - * We compare the TSC to the cycle_last value in the clocksource - * structure to avoid a nasty time-warp. This can be observed in a - * very small window right after one CPU updated cycle_last under - * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which - * is smaller than the cycle_last reference value due to a TSC which - * is slighty behind. This delta is nowhere else observable, but in - * that case it results in a forward time jump in the range of hours - * due to the unsigned delta calculation of the time keeping core - * code, which is necessary to support wrapping clocksources like pm - * timer. - */ -static cycle_t read_tsc(struct clocksource *cs) -{ - cycle_t ret = (cycle_t)get_cycles(); - - return ret >= clocksource_tsc.cycle_last ? - ret : clocksource_tsc.cycle_last; -} - -static void resume_tsc(struct clocksource *cs) -{ - clocksource_tsc.cycle_last = 0; -} - -static struct clocksource clocksource_tsc = { - .name = "tsc", - .rating = 300, - .read = read_tsc, - .resume = resume_tsc, - .mask = CLOCKSOURCE_MASK(64), - .flags = CLOCK_SOURCE_IS_CONTINUOUS | - CLOCK_SOURCE_MUST_VERIFY, -#ifdef CONFIG_X86_64 - .archdata = { .vclock_mode = VCLOCK_TSC }, -#endif -}; - -void mark_tsc_unstable(char *reason) -{ - if (!tsc_unstable) { - tsc_unstable = 1; - sched_clock_stable = 0; - disable_sched_clock_irqtime(); - printk(KERN_INFO "Marking TSC unstable due to %s\n", reason); - /* Change only the rating, when not registered */ - if (clocksource_tsc.mult) - clocksource_mark_unstable(&clocksource_tsc); - else { - clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; - clocksource_tsc.rating = 0; - } - } -} - -EXPORT_SYMBOL_GPL(mark_tsc_unstable); - -static void __init check_system_tsc_reliable(void) -{ -#ifdef CONFIG_MGEODE_LX - /* RTSC counts during suspend */ -#define RTSC_SUSP 0x100 - unsigned long res_low, res_high; - - rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); - /* Geode_LX - the OLPC CPU has a very reliable TSC */ - if (res_low & RTSC_SUSP) - tsc_clocksource_reliable = 1; -#endif - if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) - tsc_clocksource_reliable = 1; -} - -/* - * Make an educated guess if the TSC is trustworthy and synchronized - * over all CPUs. - */ -__cpuinit int unsynchronized_tsc(void) -{ - if (!cpu_has_tsc || tsc_unstable) - return 1; - -#ifdef CONFIG_SMP - if (apic_is_clustered_box()) - return 1; -#endif - - if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) - return 0; - - if (tsc_clocksource_reliable) - return 0; - /* - * Intel systems are normally all synchronized. - * Exceptions must mark TSC as unstable: - */ - if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { - /* assume multi socket systems are not synchronized: */ - if (num_possible_cpus() > 1) - return 1; - } - - return 0; -} - - -static void tsc_refine_calibration_work(struct work_struct *work); -static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); -/** - * tsc_refine_calibration_work - Further refine tsc freq calibration - * @work - ignored. - * - * This functions uses delayed work over a period of a - * second to further refine the TSC freq value. Since this is - * timer based, instead of loop based, we don't block the boot - * process while this longer calibration is done. - * - * If there are any calibration anomalies (too many SMIs, etc), - * or the refined calibration is off by 1% of the fast early - * calibration, we throw out the new calibration and use the - * early calibration. - */ -static void tsc_refine_calibration_work(struct work_struct *work) -{ - static u64 tsc_start = -1, ref_start; - static int hpet; - u64 tsc_stop, ref_stop, delta; - unsigned long freq; - - /* Don't bother refining TSC on unstable systems */ - if (check_tsc_unstable()) - goto out; - - /* - * Since the work is started early in boot, we may be - * delayed the first time we expire. So set the workqueue - * again once we know timers are working. - */ - if (tsc_start == -1) { - /* - * Only set hpet once, to avoid mixing hardware - * if the hpet becomes enabled later. - */ - hpet = is_hpet_enabled(); - schedule_delayed_work(&tsc_irqwork, HZ); - tsc_start = tsc_read_refs(&ref_start, hpet); - return; - } - - tsc_stop = tsc_read_refs(&ref_stop, hpet); - - /* hpet or pmtimer available ? */ - if (ref_start == ref_stop) - goto out; - - /* Check, whether the sampling was disturbed by an SMI */ - if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) - goto out; - - delta = tsc_stop - tsc_start; - delta *= 1000000LL; - if (hpet) - freq = calc_hpet_ref(delta, ref_start, ref_stop); - else - freq = calc_pmtimer_ref(delta, ref_start, ref_stop); - - /* Make sure we're within 1% */ - if (abs(tsc_khz - freq) > tsc_khz/100) - goto out; - - tsc_khz = freq; - printk(KERN_INFO "Refined TSC clocksource calibration: " - "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000, - (unsigned long)tsc_khz % 1000); - -out: - clocksource_register_khz(&clocksource_tsc, tsc_khz); -} - - -static int __init init_tsc_clocksource(void) -{ - if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz) - return 0; - - if (tsc_clocksource_reliable) - clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; - /* lower the rating if we already know its unstable: */ - if (check_tsc_unstable()) { - clocksource_tsc.rating = 0; - clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; - } - - /* - * Trust the results of the earlier calibration on systems - * exporting a reliable TSC. - */ - if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { - clocksource_register_khz(&clocksource_tsc, tsc_khz); - return 0; - } - - schedule_delayed_work(&tsc_irqwork, 0); - return 0; -} -/* - * We use device_initcall here, to ensure we run after the hpet - * is fully initialized, which may occur at fs_initcall time. - */ -device_initcall(init_tsc_clocksource); - -void __init tsc_init(void) -{ - u64 lpj; - int cpu; - - x86_init.timers.tsc_pre_init(); - - if (!cpu_has_tsc) - return; - - tsc_khz = x86_platform.calibrate_tsc(); - cpu_khz = tsc_khz; - - if (!tsc_khz) { - mark_tsc_unstable("could not calculate TSC khz"); - return; - } - - printk("Detected %lu.%03lu MHz processor.\n", - (unsigned long)cpu_khz / 1000, - (unsigned long)cpu_khz % 1000); - - /* - * Secondary CPUs do not run through tsc_init(), so set up - * all the scale factors for all CPUs, assuming the same - * speed as the bootup CPU. (cpufreq notifiers will fix this - * up if their speed diverges) - */ - for_each_possible_cpu(cpu) - set_cyc2ns_scale(cpu_khz, cpu); - - if (tsc_disabled > 0) - return; - - /* now allow native_sched_clock() to use rdtsc */ - tsc_disabled = 0; - - if (!no_sched_irq_time) - enable_sched_clock_irqtime(); - - lpj = ((u64)tsc_khz * 1000); - do_div(lpj, HZ); - lpj_fine = lpj; - - use_tsc_delay(); - - if (unsynchronized_tsc()) - mark_tsc_unstable("TSCs unsynchronized"); - - check_system_tsc_reliable(); -} - -#ifdef CONFIG_SMP -/* - * If we have a constant TSC and are using the TSC for the delay loop, - * we can skip clock calibration if another cpu in the same socket has already - * been calibrated. This assumes that CONSTANT_TSC applies to all - * cpus in the socket - this should be a safe assumption. - */ -unsigned long __cpuinit calibrate_delay_is_known(void) -{ - int i, cpu = smp_processor_id(); - - if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) - return 0; - - for_each_online_cpu(i) - if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id) - return cpu_data(i).loops_per_jiffy; - return 0; -} -#endif |