summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/arch/x86/kernel/tsc.c
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-11 12:28:04 +0530
committerSrikant Patnaik2015-01-11 12:28:04 +0530
commit871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch)
tree8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/arch/x86/kernel/tsc.c
parent9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff)
downloadFOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/arch/x86/kernel/tsc.c')
-rw-r--r--ANDROID_3.4.5/arch/x86/kernel/tsc.c1026
1 files changed, 0 insertions, 1026 deletions
diff --git a/ANDROID_3.4.5/arch/x86/kernel/tsc.c b/ANDROID_3.4.5/arch/x86/kernel/tsc.c
deleted file mode 100644
index fc0a147e..00000000
--- a/ANDROID_3.4.5/arch/x86/kernel/tsc.c
+++ /dev/null
@@ -1,1026 +0,0 @@
-#include <linux/kernel.h>
-#include <linux/sched.h>
-#include <linux/init.h>
-#include <linux/module.h>
-#include <linux/timer.h>
-#include <linux/acpi_pmtmr.h>
-#include <linux/cpufreq.h>
-#include <linux/delay.h>
-#include <linux/clocksource.h>
-#include <linux/percpu.h>
-#include <linux/timex.h>
-
-#include <asm/hpet.h>
-#include <asm/timer.h>
-#include <asm/vgtod.h>
-#include <asm/time.h>
-#include <asm/delay.h>
-#include <asm/hypervisor.h>
-#include <asm/nmi.h>
-#include <asm/x86_init.h>
-
-unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
-EXPORT_SYMBOL(cpu_khz);
-
-unsigned int __read_mostly tsc_khz;
-EXPORT_SYMBOL(tsc_khz);
-
-/*
- * TSC can be unstable due to cpufreq or due to unsynced TSCs
- */
-static int __read_mostly tsc_unstable;
-
-/* native_sched_clock() is called before tsc_init(), so
- we must start with the TSC soft disabled to prevent
- erroneous rdtsc usage on !cpu_has_tsc processors */
-static int __read_mostly tsc_disabled = -1;
-
-int tsc_clocksource_reliable;
-/*
- * Scheduler clock - returns current time in nanosec units.
- */
-u64 native_sched_clock(void)
-{
- u64 this_offset;
-
- /*
- * Fall back to jiffies if there's no TSC available:
- * ( But note that we still use it if the TSC is marked
- * unstable. We do this because unlike Time Of Day,
- * the scheduler clock tolerates small errors and it's
- * very important for it to be as fast as the platform
- * can achieve it. )
- */
- if (unlikely(tsc_disabled)) {
- /* No locking but a rare wrong value is not a big deal: */
- return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
- }
-
- /* read the Time Stamp Counter: */
- rdtscll(this_offset);
-
- /* return the value in ns */
- return __cycles_2_ns(this_offset);
-}
-
-/* We need to define a real function for sched_clock, to override the
- weak default version */
-#ifdef CONFIG_PARAVIRT
-unsigned long long sched_clock(void)
-{
- return paravirt_sched_clock();
-}
-#else
-unsigned long long
-sched_clock(void) __attribute__((alias("native_sched_clock")));
-#endif
-
-int check_tsc_unstable(void)
-{
- return tsc_unstable;
-}
-EXPORT_SYMBOL_GPL(check_tsc_unstable);
-
-#ifdef CONFIG_X86_TSC
-int __init notsc_setup(char *str)
-{
- printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
- "cannot disable TSC completely.\n");
- tsc_disabled = 1;
- return 1;
-}
-#else
-/*
- * disable flag for tsc. Takes effect by clearing the TSC cpu flag
- * in cpu/common.c
- */
-int __init notsc_setup(char *str)
-{
- setup_clear_cpu_cap(X86_FEATURE_TSC);
- return 1;
-}
-#endif
-
-__setup("notsc", notsc_setup);
-
-static int no_sched_irq_time;
-
-static int __init tsc_setup(char *str)
-{
- if (!strcmp(str, "reliable"))
- tsc_clocksource_reliable = 1;
- if (!strncmp(str, "noirqtime", 9))
- no_sched_irq_time = 1;
- return 1;
-}
-
-__setup("tsc=", tsc_setup);
-
-#define MAX_RETRIES 5
-#define SMI_TRESHOLD 50000
-
-/*
- * Read TSC and the reference counters. Take care of SMI disturbance
- */
-static u64 tsc_read_refs(u64 *p, int hpet)
-{
- u64 t1, t2;
- int i;
-
- for (i = 0; i < MAX_RETRIES; i++) {
- t1 = get_cycles();
- if (hpet)
- *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
- else
- *p = acpi_pm_read_early();
- t2 = get_cycles();
- if ((t2 - t1) < SMI_TRESHOLD)
- return t2;
- }
- return ULLONG_MAX;
-}
-
-/*
- * Calculate the TSC frequency from HPET reference
- */
-static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
-{
- u64 tmp;
-
- if (hpet2 < hpet1)
- hpet2 += 0x100000000ULL;
- hpet2 -= hpet1;
- tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
- do_div(tmp, 1000000);
- do_div(deltatsc, tmp);
-
- return (unsigned long) deltatsc;
-}
-
-/*
- * Calculate the TSC frequency from PMTimer reference
- */
-static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
-{
- u64 tmp;
-
- if (!pm1 && !pm2)
- return ULONG_MAX;
-
- if (pm2 < pm1)
- pm2 += (u64)ACPI_PM_OVRRUN;
- pm2 -= pm1;
- tmp = pm2 * 1000000000LL;
- do_div(tmp, PMTMR_TICKS_PER_SEC);
- do_div(deltatsc, tmp);
-
- return (unsigned long) deltatsc;
-}
-
-#define CAL_MS 10
-#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
-#define CAL_PIT_LOOPS 1000
-
-#define CAL2_MS 50
-#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
-#define CAL2_PIT_LOOPS 5000
-
-
-/*
- * Try to calibrate the TSC against the Programmable
- * Interrupt Timer and return the frequency of the TSC
- * in kHz.
- *
- * Return ULONG_MAX on failure to calibrate.
- */
-static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
-{
- u64 tsc, t1, t2, delta;
- unsigned long tscmin, tscmax;
- int pitcnt;
-
- /* Set the Gate high, disable speaker */
- outb((inb(0x61) & ~0x02) | 0x01, 0x61);
-
- /*
- * Setup CTC channel 2* for mode 0, (interrupt on terminal
- * count mode), binary count. Set the latch register to 50ms
- * (LSB then MSB) to begin countdown.
- */
- outb(0xb0, 0x43);
- outb(latch & 0xff, 0x42);
- outb(latch >> 8, 0x42);
-
- tsc = t1 = t2 = get_cycles();
-
- pitcnt = 0;
- tscmax = 0;
- tscmin = ULONG_MAX;
- while ((inb(0x61) & 0x20) == 0) {
- t2 = get_cycles();
- delta = t2 - tsc;
- tsc = t2;
- if ((unsigned long) delta < tscmin)
- tscmin = (unsigned int) delta;
- if ((unsigned long) delta > tscmax)
- tscmax = (unsigned int) delta;
- pitcnt++;
- }
-
- /*
- * Sanity checks:
- *
- * If we were not able to read the PIT more than loopmin
- * times, then we have been hit by a massive SMI
- *
- * If the maximum is 10 times larger than the minimum,
- * then we got hit by an SMI as well.
- */
- if (pitcnt < loopmin || tscmax > 10 * tscmin)
- return ULONG_MAX;
-
- /* Calculate the PIT value */
- delta = t2 - t1;
- do_div(delta, ms);
- return delta;
-}
-
-/*
- * This reads the current MSB of the PIT counter, and
- * checks if we are running on sufficiently fast and
- * non-virtualized hardware.
- *
- * Our expectations are:
- *
- * - the PIT is running at roughly 1.19MHz
- *
- * - each IO is going to take about 1us on real hardware,
- * but we allow it to be much faster (by a factor of 10) or
- * _slightly_ slower (ie we allow up to a 2us read+counter
- * update - anything else implies a unacceptably slow CPU
- * or PIT for the fast calibration to work.
- *
- * - with 256 PIT ticks to read the value, we have 214us to
- * see the same MSB (and overhead like doing a single TSC
- * read per MSB value etc).
- *
- * - We're doing 2 reads per loop (LSB, MSB), and we expect
- * them each to take about a microsecond on real hardware.
- * So we expect a count value of around 100. But we'll be
- * generous, and accept anything over 50.
- *
- * - if the PIT is stuck, and we see *many* more reads, we
- * return early (and the next caller of pit_expect_msb()
- * then consider it a failure when they don't see the
- * next expected value).
- *
- * These expectations mean that we know that we have seen the
- * transition from one expected value to another with a fairly
- * high accuracy, and we didn't miss any events. We can thus
- * use the TSC value at the transitions to calculate a pretty
- * good value for the TSC frequencty.
- */
-static inline int pit_verify_msb(unsigned char val)
-{
- /* Ignore LSB */
- inb(0x42);
- return inb(0x42) == val;
-}
-
-static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
-{
- int count;
- u64 tsc = 0, prev_tsc = 0;
-
- for (count = 0; count < 50000; count++) {
- if (!pit_verify_msb(val))
- break;
- prev_tsc = tsc;
- tsc = get_cycles();
- }
- *deltap = get_cycles() - prev_tsc;
- *tscp = tsc;
-
- /*
- * We require _some_ success, but the quality control
- * will be based on the error terms on the TSC values.
- */
- return count > 5;
-}
-
-/*
- * How many MSB values do we want to see? We aim for
- * a maximum error rate of 500ppm (in practice the
- * real error is much smaller), but refuse to spend
- * more than 50ms on it.
- */
-#define MAX_QUICK_PIT_MS 50
-#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
-
-static unsigned long quick_pit_calibrate(void)
-{
- int i;
- u64 tsc, delta;
- unsigned long d1, d2;
-
- /* Set the Gate high, disable speaker */
- outb((inb(0x61) & ~0x02) | 0x01, 0x61);
-
- /*
- * Counter 2, mode 0 (one-shot), binary count
- *
- * NOTE! Mode 2 decrements by two (and then the
- * output is flipped each time, giving the same
- * final output frequency as a decrement-by-one),
- * so mode 0 is much better when looking at the
- * individual counts.
- */
- outb(0xb0, 0x43);
-
- /* Start at 0xffff */
- outb(0xff, 0x42);
- outb(0xff, 0x42);
-
- /*
- * The PIT starts counting at the next edge, so we
- * need to delay for a microsecond. The easiest way
- * to do that is to just read back the 16-bit counter
- * once from the PIT.
- */
- pit_verify_msb(0);
-
- if (pit_expect_msb(0xff, &tsc, &d1)) {
- for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
- if (!pit_expect_msb(0xff-i, &delta, &d2))
- break;
-
- /*
- * Iterate until the error is less than 500 ppm
- */
- delta -= tsc;
- if (d1+d2 >= delta >> 11)
- continue;
-
- /*
- * Check the PIT one more time to verify that
- * all TSC reads were stable wrt the PIT.
- *
- * This also guarantees serialization of the
- * last cycle read ('d2') in pit_expect_msb.
- */
- if (!pit_verify_msb(0xfe - i))
- break;
- goto success;
- }
- }
- printk("Fast TSC calibration failed\n");
- return 0;
-
-success:
- /*
- * Ok, if we get here, then we've seen the
- * MSB of the PIT decrement 'i' times, and the
- * error has shrunk to less than 500 ppm.
- *
- * As a result, we can depend on there not being
- * any odd delays anywhere, and the TSC reads are
- * reliable (within the error).
- *
- * kHz = ticks / time-in-seconds / 1000;
- * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
- * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
- */
- delta *= PIT_TICK_RATE;
- do_div(delta, i*256*1000);
- printk("Fast TSC calibration using PIT\n");
- return delta;
-}
-
-/**
- * native_calibrate_tsc - calibrate the tsc on boot
- */
-unsigned long native_calibrate_tsc(void)
-{
- u64 tsc1, tsc2, delta, ref1, ref2;
- unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
- unsigned long flags, latch, ms, fast_calibrate;
- int hpet = is_hpet_enabled(), i, loopmin;
-
- local_irq_save(flags);
- fast_calibrate = quick_pit_calibrate();
- local_irq_restore(flags);
- if (fast_calibrate)
- return fast_calibrate;
-
- /*
- * Run 5 calibration loops to get the lowest frequency value
- * (the best estimate). We use two different calibration modes
- * here:
- *
- * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
- * load a timeout of 50ms. We read the time right after we
- * started the timer and wait until the PIT count down reaches
- * zero. In each wait loop iteration we read the TSC and check
- * the delta to the previous read. We keep track of the min
- * and max values of that delta. The delta is mostly defined
- * by the IO time of the PIT access, so we can detect when a
- * SMI/SMM disturbance happened between the two reads. If the
- * maximum time is significantly larger than the minimum time,
- * then we discard the result and have another try.
- *
- * 2) Reference counter. If available we use the HPET or the
- * PMTIMER as a reference to check the sanity of that value.
- * We use separate TSC readouts and check inside of the
- * reference read for a SMI/SMM disturbance. We dicard
- * disturbed values here as well. We do that around the PIT
- * calibration delay loop as we have to wait for a certain
- * amount of time anyway.
- */
-
- /* Preset PIT loop values */
- latch = CAL_LATCH;
- ms = CAL_MS;
- loopmin = CAL_PIT_LOOPS;
-
- for (i = 0; i < 3; i++) {
- unsigned long tsc_pit_khz;
-
- /*
- * Read the start value and the reference count of
- * hpet/pmtimer when available. Then do the PIT
- * calibration, which will take at least 50ms, and
- * read the end value.
- */
- local_irq_save(flags);
- tsc1 = tsc_read_refs(&ref1, hpet);
- tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
- tsc2 = tsc_read_refs(&ref2, hpet);
- local_irq_restore(flags);
-
- /* Pick the lowest PIT TSC calibration so far */
- tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
-
- /* hpet or pmtimer available ? */
- if (ref1 == ref2)
- continue;
-
- /* Check, whether the sampling was disturbed by an SMI */
- if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
- continue;
-
- tsc2 = (tsc2 - tsc1) * 1000000LL;
- if (hpet)
- tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
- else
- tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
-
- tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
-
- /* Check the reference deviation */
- delta = ((u64) tsc_pit_min) * 100;
- do_div(delta, tsc_ref_min);
-
- /*
- * If both calibration results are inside a 10% window
- * then we can be sure, that the calibration
- * succeeded. We break out of the loop right away. We
- * use the reference value, as it is more precise.
- */
- if (delta >= 90 && delta <= 110) {
- printk(KERN_INFO
- "TSC: PIT calibration matches %s. %d loops\n",
- hpet ? "HPET" : "PMTIMER", i + 1);
- return tsc_ref_min;
- }
-
- /*
- * Check whether PIT failed more than once. This
- * happens in virtualized environments. We need to
- * give the virtual PC a slightly longer timeframe for
- * the HPET/PMTIMER to make the result precise.
- */
- if (i == 1 && tsc_pit_min == ULONG_MAX) {
- latch = CAL2_LATCH;
- ms = CAL2_MS;
- loopmin = CAL2_PIT_LOOPS;
- }
- }
-
- /*
- * Now check the results.
- */
- if (tsc_pit_min == ULONG_MAX) {
- /* PIT gave no useful value */
- printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
-
- /* We don't have an alternative source, disable TSC */
- if (!hpet && !ref1 && !ref2) {
- printk("TSC: No reference (HPET/PMTIMER) available\n");
- return 0;
- }
-
- /* The alternative source failed as well, disable TSC */
- if (tsc_ref_min == ULONG_MAX) {
- printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
- "failed.\n");
- return 0;
- }
-
- /* Use the alternative source */
- printk(KERN_INFO "TSC: using %s reference calibration\n",
- hpet ? "HPET" : "PMTIMER");
-
- return tsc_ref_min;
- }
-
- /* We don't have an alternative source, use the PIT calibration value */
- if (!hpet && !ref1 && !ref2) {
- printk(KERN_INFO "TSC: Using PIT calibration value\n");
- return tsc_pit_min;
- }
-
- /* The alternative source failed, use the PIT calibration value */
- if (tsc_ref_min == ULONG_MAX) {
- printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
- "Using PIT calibration\n");
- return tsc_pit_min;
- }
-
- /*
- * The calibration values differ too much. In doubt, we use
- * the PIT value as we know that there are PMTIMERs around
- * running at double speed. At least we let the user know:
- */
- printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
- hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
- printk(KERN_INFO "TSC: Using PIT calibration value\n");
- return tsc_pit_min;
-}
-
-int recalibrate_cpu_khz(void)
-{
-#ifndef CONFIG_SMP
- unsigned long cpu_khz_old = cpu_khz;
-
- if (cpu_has_tsc) {
- tsc_khz = x86_platform.calibrate_tsc();
- cpu_khz = tsc_khz;
- cpu_data(0).loops_per_jiffy =
- cpufreq_scale(cpu_data(0).loops_per_jiffy,
- cpu_khz_old, cpu_khz);
- return 0;
- } else
- return -ENODEV;
-#else
- return -ENODEV;
-#endif
-}
-
-EXPORT_SYMBOL(recalibrate_cpu_khz);
-
-
-/* Accelerators for sched_clock()
- * convert from cycles(64bits) => nanoseconds (64bits)
- * basic equation:
- * ns = cycles / (freq / ns_per_sec)
- * ns = cycles * (ns_per_sec / freq)
- * ns = cycles * (10^9 / (cpu_khz * 10^3))
- * ns = cycles * (10^6 / cpu_khz)
- *
- * Then we use scaling math (suggested by george@mvista.com) to get:
- * ns = cycles * (10^6 * SC / cpu_khz) / SC
- * ns = cycles * cyc2ns_scale / SC
- *
- * And since SC is a constant power of two, we can convert the div
- * into a shift.
- *
- * We can use khz divisor instead of mhz to keep a better precision, since
- * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
- * (mathieu.desnoyers@polymtl.ca)
- *
- * -johnstul@us.ibm.com "math is hard, lets go shopping!"
- */
-
-DEFINE_PER_CPU(unsigned long, cyc2ns);
-DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
-
-static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
-{
- unsigned long long tsc_now, ns_now, *offset;
- unsigned long flags, *scale;
-
- local_irq_save(flags);
- sched_clock_idle_sleep_event();
-
- scale = &per_cpu(cyc2ns, cpu);
- offset = &per_cpu(cyc2ns_offset, cpu);
-
- rdtscll(tsc_now);
- ns_now = __cycles_2_ns(tsc_now);
-
- if (cpu_khz) {
- *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
- *offset = ns_now - mult_frac(tsc_now, *scale,
- (1UL << CYC2NS_SCALE_FACTOR));
- }
-
- sched_clock_idle_wakeup_event(0);
- local_irq_restore(flags);
-}
-
-static unsigned long long cyc2ns_suspend;
-
-void tsc_save_sched_clock_state(void)
-{
- if (!sched_clock_stable)
- return;
-
- cyc2ns_suspend = sched_clock();
-}
-
-/*
- * Even on processors with invariant TSC, TSC gets reset in some the
- * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
- * arbitrary value (still sync'd across cpu's) during resume from such sleep
- * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
- * that sched_clock() continues from the point where it was left off during
- * suspend.
- */
-void tsc_restore_sched_clock_state(void)
-{
- unsigned long long offset;
- unsigned long flags;
- int cpu;
-
- if (!sched_clock_stable)
- return;
-
- local_irq_save(flags);
-
- __this_cpu_write(cyc2ns_offset, 0);
- offset = cyc2ns_suspend - sched_clock();
-
- for_each_possible_cpu(cpu)
- per_cpu(cyc2ns_offset, cpu) = offset;
-
- local_irq_restore(flags);
-}
-
-#ifdef CONFIG_CPU_FREQ
-
-/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
- * changes.
- *
- * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
- * not that important because current Opteron setups do not support
- * scaling on SMP anyroads.
- *
- * Should fix up last_tsc too. Currently gettimeofday in the
- * first tick after the change will be slightly wrong.
- */
-
-static unsigned int ref_freq;
-static unsigned long loops_per_jiffy_ref;
-static unsigned long tsc_khz_ref;
-
-static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
- void *data)
-{
- struct cpufreq_freqs *freq = data;
- unsigned long *lpj;
-
- if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
- return 0;
-
- lpj = &boot_cpu_data.loops_per_jiffy;
-#ifdef CONFIG_SMP
- if (!(freq->flags & CPUFREQ_CONST_LOOPS))
- lpj = &cpu_data(freq->cpu).loops_per_jiffy;
-#endif
-
- if (!ref_freq) {
- ref_freq = freq->old;
- loops_per_jiffy_ref = *lpj;
- tsc_khz_ref = tsc_khz;
- }
- if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
- (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
- (val == CPUFREQ_RESUMECHANGE)) {
- *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
-
- tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
- if (!(freq->flags & CPUFREQ_CONST_LOOPS))
- mark_tsc_unstable("cpufreq changes");
- }
-
- set_cyc2ns_scale(tsc_khz, freq->cpu);
-
- return 0;
-}
-
-static struct notifier_block time_cpufreq_notifier_block = {
- .notifier_call = time_cpufreq_notifier
-};
-
-static int __init cpufreq_tsc(void)
-{
- if (!cpu_has_tsc)
- return 0;
- if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
- return 0;
- cpufreq_register_notifier(&time_cpufreq_notifier_block,
- CPUFREQ_TRANSITION_NOTIFIER);
- return 0;
-}
-
-core_initcall(cpufreq_tsc);
-
-#endif /* CONFIG_CPU_FREQ */
-
-/* clocksource code */
-
-static struct clocksource clocksource_tsc;
-
-/*
- * We compare the TSC to the cycle_last value in the clocksource
- * structure to avoid a nasty time-warp. This can be observed in a
- * very small window right after one CPU updated cycle_last under
- * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
- * is smaller than the cycle_last reference value due to a TSC which
- * is slighty behind. This delta is nowhere else observable, but in
- * that case it results in a forward time jump in the range of hours
- * due to the unsigned delta calculation of the time keeping core
- * code, which is necessary to support wrapping clocksources like pm
- * timer.
- */
-static cycle_t read_tsc(struct clocksource *cs)
-{
- cycle_t ret = (cycle_t)get_cycles();
-
- return ret >= clocksource_tsc.cycle_last ?
- ret : clocksource_tsc.cycle_last;
-}
-
-static void resume_tsc(struct clocksource *cs)
-{
- clocksource_tsc.cycle_last = 0;
-}
-
-static struct clocksource clocksource_tsc = {
- .name = "tsc",
- .rating = 300,
- .read = read_tsc,
- .resume = resume_tsc,
- .mask = CLOCKSOURCE_MASK(64),
- .flags = CLOCK_SOURCE_IS_CONTINUOUS |
- CLOCK_SOURCE_MUST_VERIFY,
-#ifdef CONFIG_X86_64
- .archdata = { .vclock_mode = VCLOCK_TSC },
-#endif
-};
-
-void mark_tsc_unstable(char *reason)
-{
- if (!tsc_unstable) {
- tsc_unstable = 1;
- sched_clock_stable = 0;
- disable_sched_clock_irqtime();
- printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
- /* Change only the rating, when not registered */
- if (clocksource_tsc.mult)
- clocksource_mark_unstable(&clocksource_tsc);
- else {
- clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
- clocksource_tsc.rating = 0;
- }
- }
-}
-
-EXPORT_SYMBOL_GPL(mark_tsc_unstable);
-
-static void __init check_system_tsc_reliable(void)
-{
-#ifdef CONFIG_MGEODE_LX
- /* RTSC counts during suspend */
-#define RTSC_SUSP 0x100
- unsigned long res_low, res_high;
-
- rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
- /* Geode_LX - the OLPC CPU has a very reliable TSC */
- if (res_low & RTSC_SUSP)
- tsc_clocksource_reliable = 1;
-#endif
- if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
- tsc_clocksource_reliable = 1;
-}
-
-/*
- * Make an educated guess if the TSC is trustworthy and synchronized
- * over all CPUs.
- */
-__cpuinit int unsynchronized_tsc(void)
-{
- if (!cpu_has_tsc || tsc_unstable)
- return 1;
-
-#ifdef CONFIG_SMP
- if (apic_is_clustered_box())
- return 1;
-#endif
-
- if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
- return 0;
-
- if (tsc_clocksource_reliable)
- return 0;
- /*
- * Intel systems are normally all synchronized.
- * Exceptions must mark TSC as unstable:
- */
- if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
- /* assume multi socket systems are not synchronized: */
- if (num_possible_cpus() > 1)
- return 1;
- }
-
- return 0;
-}
-
-
-static void tsc_refine_calibration_work(struct work_struct *work);
-static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
-/**
- * tsc_refine_calibration_work - Further refine tsc freq calibration
- * @work - ignored.
- *
- * This functions uses delayed work over a period of a
- * second to further refine the TSC freq value. Since this is
- * timer based, instead of loop based, we don't block the boot
- * process while this longer calibration is done.
- *
- * If there are any calibration anomalies (too many SMIs, etc),
- * or the refined calibration is off by 1% of the fast early
- * calibration, we throw out the new calibration and use the
- * early calibration.
- */
-static void tsc_refine_calibration_work(struct work_struct *work)
-{
- static u64 tsc_start = -1, ref_start;
- static int hpet;
- u64 tsc_stop, ref_stop, delta;
- unsigned long freq;
-
- /* Don't bother refining TSC on unstable systems */
- if (check_tsc_unstable())
- goto out;
-
- /*
- * Since the work is started early in boot, we may be
- * delayed the first time we expire. So set the workqueue
- * again once we know timers are working.
- */
- if (tsc_start == -1) {
- /*
- * Only set hpet once, to avoid mixing hardware
- * if the hpet becomes enabled later.
- */
- hpet = is_hpet_enabled();
- schedule_delayed_work(&tsc_irqwork, HZ);
- tsc_start = tsc_read_refs(&ref_start, hpet);
- return;
- }
-
- tsc_stop = tsc_read_refs(&ref_stop, hpet);
-
- /* hpet or pmtimer available ? */
- if (ref_start == ref_stop)
- goto out;
-
- /* Check, whether the sampling was disturbed by an SMI */
- if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
- goto out;
-
- delta = tsc_stop - tsc_start;
- delta *= 1000000LL;
- if (hpet)
- freq = calc_hpet_ref(delta, ref_start, ref_stop);
- else
- freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
-
- /* Make sure we're within 1% */
- if (abs(tsc_khz - freq) > tsc_khz/100)
- goto out;
-
- tsc_khz = freq;
- printk(KERN_INFO "Refined TSC clocksource calibration: "
- "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
- (unsigned long)tsc_khz % 1000);
-
-out:
- clocksource_register_khz(&clocksource_tsc, tsc_khz);
-}
-
-
-static int __init init_tsc_clocksource(void)
-{
- if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
- return 0;
-
- if (tsc_clocksource_reliable)
- clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
- /* lower the rating if we already know its unstable: */
- if (check_tsc_unstable()) {
- clocksource_tsc.rating = 0;
- clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
- }
-
- /*
- * Trust the results of the earlier calibration on systems
- * exporting a reliable TSC.
- */
- if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
- clocksource_register_khz(&clocksource_tsc, tsc_khz);
- return 0;
- }
-
- schedule_delayed_work(&tsc_irqwork, 0);
- return 0;
-}
-/*
- * We use device_initcall here, to ensure we run after the hpet
- * is fully initialized, which may occur at fs_initcall time.
- */
-device_initcall(init_tsc_clocksource);
-
-void __init tsc_init(void)
-{
- u64 lpj;
- int cpu;
-
- x86_init.timers.tsc_pre_init();
-
- if (!cpu_has_tsc)
- return;
-
- tsc_khz = x86_platform.calibrate_tsc();
- cpu_khz = tsc_khz;
-
- if (!tsc_khz) {
- mark_tsc_unstable("could not calculate TSC khz");
- return;
- }
-
- printk("Detected %lu.%03lu MHz processor.\n",
- (unsigned long)cpu_khz / 1000,
- (unsigned long)cpu_khz % 1000);
-
- /*
- * Secondary CPUs do not run through tsc_init(), so set up
- * all the scale factors for all CPUs, assuming the same
- * speed as the bootup CPU. (cpufreq notifiers will fix this
- * up if their speed diverges)
- */
- for_each_possible_cpu(cpu)
- set_cyc2ns_scale(cpu_khz, cpu);
-
- if (tsc_disabled > 0)
- return;
-
- /* now allow native_sched_clock() to use rdtsc */
- tsc_disabled = 0;
-
- if (!no_sched_irq_time)
- enable_sched_clock_irqtime();
-
- lpj = ((u64)tsc_khz * 1000);
- do_div(lpj, HZ);
- lpj_fine = lpj;
-
- use_tsc_delay();
-
- if (unsynchronized_tsc())
- mark_tsc_unstable("TSCs unsynchronized");
-
- check_system_tsc_reliable();
-}
-
-#ifdef CONFIG_SMP
-/*
- * If we have a constant TSC and are using the TSC for the delay loop,
- * we can skip clock calibration if another cpu in the same socket has already
- * been calibrated. This assumes that CONSTANT_TSC applies to all
- * cpus in the socket - this should be a safe assumption.
- */
-unsigned long __cpuinit calibrate_delay_is_known(void)
-{
- int i, cpu = smp_processor_id();
-
- if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
- return 0;
-
- for_each_online_cpu(i)
- if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
- return cpu_data(i).loops_per_jiffy;
- return 0;
-}
-#endif