summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-11 12:28:04 +0530
committerSrikant Patnaik2015-01-11 12:28:04 +0530
commit871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch)
tree8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c
parent9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff)
downloadFOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c')
-rw-r--r--ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c2222
1 files changed, 0 insertions, 2222 deletions
diff --git a/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c b/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c
deleted file mode 100644
index dde35551..00000000
--- a/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c
+++ /dev/null
@@ -1,2222 +0,0 @@
-/*
- * spu_switch.c
- *
- * (C) Copyright IBM Corp. 2005
- *
- * Author: Mark Nutter <mnutter@us.ibm.com>
- *
- * Host-side part of SPU context switch sequence outlined in
- * Synergistic Processor Element, Book IV.
- *
- * A fully premptive switch of an SPE is very expensive in terms
- * of time and system resources. SPE Book IV indicates that SPE
- * allocation should follow a "serially reusable device" model,
- * in which the SPE is assigned a task until it completes. When
- * this is not possible, this sequence may be used to premptively
- * save, and then later (optionally) restore the context of a
- * program executing on an SPE.
- *
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2, or (at your option)
- * any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-#include <linux/export.h>
-#include <linux/errno.h>
-#include <linux/hardirq.h>
-#include <linux/sched.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/vmalloc.h>
-#include <linux/smp.h>
-#include <linux/stddef.h>
-#include <linux/unistd.h>
-
-#include <asm/io.h>
-#include <asm/spu.h>
-#include <asm/spu_priv1.h>
-#include <asm/spu_csa.h>
-#include <asm/mmu_context.h>
-
-#include "spufs.h"
-
-#include "spu_save_dump.h"
-#include "spu_restore_dump.h"
-
-#if 0
-#define POLL_WHILE_TRUE(_c) { \
- do { \
- } while (_c); \
- }
-#else
-#define RELAX_SPIN_COUNT 1000
-#define POLL_WHILE_TRUE(_c) { \
- do { \
- int _i; \
- for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
- cpu_relax(); \
- } \
- if (unlikely(_c)) yield(); \
- else break; \
- } while (_c); \
- }
-#endif /* debug */
-
-#define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
-
-static inline void acquire_spu_lock(struct spu *spu)
-{
- /* Save, Step 1:
- * Restore, Step 1:
- * Acquire SPU-specific mutual exclusion lock.
- * TBD.
- */
-}
-
-static inline void release_spu_lock(struct spu *spu)
-{
- /* Restore, Step 76:
- * Release SPU-specific mutual exclusion lock.
- * TBD.
- */
-}
-
-static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- u32 isolate_state;
-
- /* Save, Step 2:
- * Save, Step 6:
- * If SPU_Status[E,L,IS] any field is '1', this
- * SPU is in isolate state and cannot be context
- * saved at this time.
- */
- isolate_state = SPU_STATUS_ISOLATED_STATE |
- SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
- return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
-}
-
-static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 3:
- * Restore, Step 2:
- * Save INT_Mask_class0 in CSA.
- * Write INT_MASK_class0 with value of 0.
- * Save INT_Mask_class1 in CSA.
- * Write INT_MASK_class1 with value of 0.
- * Save INT_Mask_class2 in CSA.
- * Write INT_MASK_class2 with value of 0.
- * Synchronize all three interrupts to be sure
- * we no longer execute a handler on another CPU.
- */
- spin_lock_irq(&spu->register_lock);
- if (csa) {
- csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
- csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
- csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
- }
- spu_int_mask_set(spu, 0, 0ul);
- spu_int_mask_set(spu, 1, 0ul);
- spu_int_mask_set(spu, 2, 0ul);
- eieio();
- spin_unlock_irq(&spu->register_lock);
-
- /*
- * This flag needs to be set before calling synchronize_irq so
- * that the update will be visible to the relevant handlers
- * via a simple load.
- */
- set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
- clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
- synchronize_irq(spu->irqs[0]);
- synchronize_irq(spu->irqs[1]);
- synchronize_irq(spu->irqs[2]);
-}
-
-static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 4:
- * Restore, Step 25.
- * Set a software watchdog timer, which specifies the
- * maximum allowable time for a context save sequence.
- *
- * For present, this implementation will not set a global
- * watchdog timer, as virtualization & variable system load
- * may cause unpredictable execution times.
- */
-}
-
-static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 5:
- * Restore, Step 3:
- * Inhibit user-space access (if provided) to this
- * SPU by unmapping the virtual pages assigned to
- * the SPU memory-mapped I/O (MMIO) for problem
- * state. TBD.
- */
-}
-
-static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 7:
- * Restore, Step 5:
- * Set a software context switch pending flag.
- * Done above in Step 3 - disable_interrupts().
- */
-}
-
-static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 8:
- * Suspend DMA and save MFC_CNTL.
- */
- switch (in_be64(&priv2->mfc_control_RW) &
- MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
- case MFC_CNTL_SUSPEND_IN_PROGRESS:
- POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
- MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
- MFC_CNTL_SUSPEND_COMPLETE);
- /* fall through */
- case MFC_CNTL_SUSPEND_COMPLETE:
- if (csa)
- csa->priv2.mfc_control_RW =
- in_be64(&priv2->mfc_control_RW) |
- MFC_CNTL_SUSPEND_DMA_QUEUE;
- break;
- case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
- out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
- POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
- MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
- MFC_CNTL_SUSPEND_COMPLETE);
- if (csa)
- csa->priv2.mfc_control_RW =
- in_be64(&priv2->mfc_control_RW) &
- ~MFC_CNTL_SUSPEND_DMA_QUEUE &
- ~MFC_CNTL_SUSPEND_MASK;
- break;
- }
-}
-
-static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 9:
- * Save SPU_Runcntl in the CSA. This value contains
- * the "Application Desired State".
- */
- csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
-}
-
-static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 10:
- * Save MFC_SR1 in the CSA.
- */
- csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
-}
-
-static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 11:
- * Read SPU_Status[R], and save to CSA.
- */
- if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
- csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
- } else {
- u32 stopped;
-
- out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
- eieio();
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- stopped =
- SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
- SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
- if ((in_be32(&prob->spu_status_R) & stopped) == 0)
- csa->prob.spu_status_R = SPU_STATUS_RUNNING;
- else
- csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
- }
-}
-
-static inline void save_mfc_stopped_status(struct spu_state *csa,
- struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
- MFC_CNTL_DMA_QUEUES_EMPTY;
-
- /* Save, Step 12:
- * Read MFC_CNTL[Ds]. Update saved copy of
- * CSA.MFC_CNTL[Ds].
- *
- * update: do the same with MFC_CNTL[Q].
- */
- csa->priv2.mfc_control_RW &= ~mask;
- csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
-}
-
-static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 13:
- * Write MFC_CNTL[Dh] set to a '1' to halt
- * the decrementer.
- */
- out_be64(&priv2->mfc_control_RW,
- MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
- eieio();
-}
-
-static inline void save_timebase(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 14:
- * Read PPE Timebase High and Timebase low registers
- * and save in CSA. TBD.
- */
- csa->suspend_time = get_cycles();
-}
-
-static inline void remove_other_spu_access(struct spu_state *csa,
- struct spu *spu)
-{
- /* Save, Step 15:
- * Remove other SPU access to this SPU by unmapping
- * this SPU's pages from their address space. TBD.
- */
-}
-
-static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 16:
- * Restore, Step 11.
- * Write SPU_MSSync register. Poll SPU_MSSync[P]
- * for a value of 0.
- */
- out_be64(&prob->spc_mssync_RW, 1UL);
- POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
-}
-
-static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 17:
- * Restore, Step 12.
- * Restore, Step 48.
- * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
- * Then issue a PPE sync instruction.
- */
- spu_tlb_invalidate(spu);
- mb();
-}
-
-static inline void handle_pending_interrupts(struct spu_state *csa,
- struct spu *spu)
-{
- /* Save, Step 18:
- * Handle any pending interrupts from this SPU
- * here. This is OS or hypervisor specific. One
- * option is to re-enable interrupts to handle any
- * pending interrupts, with the interrupt handlers
- * recognizing the software Context Switch Pending
- * flag, to ensure the SPU execution or MFC command
- * queue is not restarted. TBD.
- */
-}
-
-static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- int i;
-
- /* Save, Step 19:
- * If MFC_Cntl[Se]=0 then save
- * MFC command queues.
- */
- if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
- for (i = 0; i < 8; i++) {
- csa->priv2.puq[i].mfc_cq_data0_RW =
- in_be64(&priv2->puq[i].mfc_cq_data0_RW);
- csa->priv2.puq[i].mfc_cq_data1_RW =
- in_be64(&priv2->puq[i].mfc_cq_data1_RW);
- csa->priv2.puq[i].mfc_cq_data2_RW =
- in_be64(&priv2->puq[i].mfc_cq_data2_RW);
- csa->priv2.puq[i].mfc_cq_data3_RW =
- in_be64(&priv2->puq[i].mfc_cq_data3_RW);
- }
- for (i = 0; i < 16; i++) {
- csa->priv2.spuq[i].mfc_cq_data0_RW =
- in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
- csa->priv2.spuq[i].mfc_cq_data1_RW =
- in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
- csa->priv2.spuq[i].mfc_cq_data2_RW =
- in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
- csa->priv2.spuq[i].mfc_cq_data3_RW =
- in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
- }
- }
-}
-
-static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 20:
- * Save the PPU_QueryMask register
- * in the CSA.
- */
- csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
-}
-
-static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 21:
- * Save the PPU_QueryType register
- * in the CSA.
- */
- csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
-}
-
-static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save the Prxy_TagStatus register in the CSA.
- *
- * It is unnecessary to restore dma_tagstatus_R, however,
- * dma_tagstatus_R in the CSA is accessed via backing_ops, so
- * we must save it.
- */
- csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
-}
-
-static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 22:
- * Save the MFC_CSR_TSQ register
- * in the LSCSA.
- */
- csa->priv2.spu_tag_status_query_RW =
- in_be64(&priv2->spu_tag_status_query_RW);
-}
-
-static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 23:
- * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
- * registers in the CSA.
- */
- csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
- csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
-}
-
-static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 24:
- * Save the MFC_CSR_ATO register in
- * the CSA.
- */
- csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
-}
-
-static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 25:
- * Save the MFC_TCLASS_ID register in
- * the CSA.
- */
- csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
-}
-
-static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 26:
- * Restore, Step 23.
- * Write the MFC_TCLASS_ID register with
- * the value 0x10000000.
- */
- spu_mfc_tclass_id_set(spu, 0x10000000);
- eieio();
-}
-
-static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 27:
- * Restore, Step 14.
- * Write MFC_CNTL[Pc]=1 (purge queue).
- */
- out_be64(&priv2->mfc_control_RW,
- MFC_CNTL_PURGE_DMA_REQUEST |
- MFC_CNTL_SUSPEND_MASK);
- eieio();
-}
-
-static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 28:
- * Poll MFC_CNTL[Ps] until value '11' is read
- * (purge complete).
- */
- POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
- MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
- MFC_CNTL_PURGE_DMA_COMPLETE);
-}
-
-static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 30:
- * Restore, Step 18:
- * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
- * MFC_SR1[TL,R,Pr,T] set correctly for the
- * OS specific environment.
- *
- * Implementation note: The SPU-side code
- * for save/restore is privileged, so the
- * MFC_SR1[Pr] bit is not set.
- *
- */
- spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
- MFC_STATE1_RELOCATE_MASK |
- MFC_STATE1_BUS_TLBIE_MASK));
-}
-
-static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 31:
- * Save SPU_NPC in the CSA.
- */
- csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
-}
-
-static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 32:
- * Save SPU_PrivCntl in the CSA.
- */
- csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
-}
-
-static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 33:
- * Restore, Step 16:
- * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
- */
- out_be64(&priv2->spu_privcntl_RW, 0UL);
- eieio();
-}
-
-static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 34:
- * Save SPU_LSLR in the CSA.
- */
- csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
-}
-
-static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 35:
- * Restore, Step 17.
- * Reset SPU_LSLR.
- */
- out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
- eieio();
-}
-
-static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 36:
- * Save SPU_Cfg in the CSA.
- */
- csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
-}
-
-static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 37:
- * Save PM_Trace_Tag_Wait_Mask in the CSA.
- * Not performed by this implementation.
- */
-}
-
-static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 38:
- * Save RA_GROUP_ID register and the
- * RA_ENABLE reigster in the CSA.
- */
- csa->priv1.resource_allocation_groupID_RW =
- spu_resource_allocation_groupID_get(spu);
- csa->priv1.resource_allocation_enable_RW =
- spu_resource_allocation_enable_get(spu);
-}
-
-static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 39:
- * Save MB_Stat register in the CSA.
- */
- csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
-}
-
-static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 40:
- * Save the PPU_MB register in the CSA.
- */
- csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
-}
-
-static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 41:
- * Save the PPUINT_MB register in the CSA.
- */
- csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
-}
-
-static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
- int i;
-
- /* Save, Step 42:
- */
-
- /* Save CH 1, without channel count */
- out_be64(&priv2->spu_chnlcntptr_RW, 1);
- csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
-
- /* Save the following CH: [0,3,4,24,25,27] */
- for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
- idx = ch_indices[i];
- out_be64(&priv2->spu_chnlcntptr_RW, idx);
- eieio();
- csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
- csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
- out_be64(&priv2->spu_chnldata_RW, 0UL);
- out_be64(&priv2->spu_chnlcnt_RW, 0UL);
- eieio();
- }
-}
-
-static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- int i;
-
- /* Save, Step 43:
- * Save SPU Read Mailbox Channel.
- */
- out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
- eieio();
- csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
- for (i = 0; i < 4; i++) {
- csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
- }
- out_be64(&priv2->spu_chnlcnt_RW, 0UL);
- eieio();
-}
-
-static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 44:
- * Save MFC_CMD Channel.
- */
- out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
- eieio();
- csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
- eieio();
-}
-
-static inline void reset_ch(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
- u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
- u64 idx;
- int i;
-
- /* Save, Step 45:
- * Reset the following CH: [21, 23, 28, 30]
- */
- for (i = 0; i < 4; i++) {
- idx = ch_indices[i];
- out_be64(&priv2->spu_chnlcntptr_RW, idx);
- eieio();
- out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
- eieio();
- }
-}
-
-static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Save, Step 46:
- * Restore, Step 25.
- * Write MFC_CNTL[Sc]=0 (resume queue processing).
- */
- out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
-}
-
-static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
- unsigned int *code, int code_size)
-{
- /* Save, Step 47:
- * Restore, Step 30.
- * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
- * register, then initialize SLB_VSID and SLB_ESID
- * to provide access to SPU context save code and
- * LSCSA.
- *
- * This implementation places both the context
- * switch code and LSCSA in kernel address space.
- *
- * Further this implementation assumes that the
- * MFC_SR1[R]=1 (in other words, assume that
- * translation is desired by OS environment).
- */
- spu_invalidate_slbs(spu);
- spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
-}
-
-static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
-{
- /* Save, Step 48:
- * Restore, Step 23.
- * Change the software context switch pending flag
- * to context switch active. This implementation does
- * not uses a switch active flag.
- *
- * Now that we have saved the mfc in the csa, we can add in the
- * restart command if an exception occurred.
- */
- if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
- csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
- clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
- mb();
-}
-
-static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
-{
- unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
- CLASS1_ENABLE_STORAGE_FAULT_INTR;
-
- /* Save, Step 49:
- * Restore, Step 22:
- * Reset and then enable interrupts, as
- * needed by OS.
- *
- * This implementation enables only class1
- * (translation) interrupts.
- */
- spin_lock_irq(&spu->register_lock);
- spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
- spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
- spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
- spu_int_mask_set(spu, 0, 0ul);
- spu_int_mask_set(spu, 1, class1_mask);
- spu_int_mask_set(spu, 2, 0ul);
- spin_unlock_irq(&spu->register_lock);
-}
-
-static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
- unsigned int ls_offset, unsigned int size,
- unsigned int tag, unsigned int rclass,
- unsigned int cmd)
-{
- struct spu_problem __iomem *prob = spu->problem;
- union mfc_tag_size_class_cmd command;
- unsigned int transfer_size;
- volatile unsigned int status = 0x0;
-
- while (size > 0) {
- transfer_size =
- (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
- command.u.mfc_size = transfer_size;
- command.u.mfc_tag = tag;
- command.u.mfc_rclassid = rclass;
- command.u.mfc_cmd = cmd;
- do {
- out_be32(&prob->mfc_lsa_W, ls_offset);
- out_be64(&prob->mfc_ea_W, ea);
- out_be64(&prob->mfc_union_W.all64, command.all64);
- status =
- in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
- if (unlikely(status & 0x2)) {
- cpu_relax();
- }
- } while (status & 0x3);
- size -= transfer_size;
- ea += transfer_size;
- ls_offset += transfer_size;
- }
- return 0;
-}
-
-static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
-{
- unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
- unsigned int ls_offset = 0x0;
- unsigned int size = 16384;
- unsigned int tag = 0;
- unsigned int rclass = 0;
- unsigned int cmd = MFC_PUT_CMD;
-
- /* Save, Step 50:
- * Issue a DMA command to copy the first 16K bytes
- * of local storage to the CSA.
- */
- send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
-}
-
-static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 51:
- * Restore, Step 31.
- * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
- * point address of context save code in local
- * storage.
- *
- * This implementation uses SPU-side save/restore
- * programs with entry points at LSA of 0.
- */
- out_be32(&prob->spu_npc_RW, 0);
- eieio();
-}
-
-static inline void set_signot1(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- union {
- u64 ull;
- u32 ui[2];
- } addr64;
-
- /* Save, Step 52:
- * Restore, Step 32:
- * Write SPU_Sig_Notify_1 register with upper 32-bits
- * of the CSA.LSCSA effective address.
- */
- addr64.ull = (u64) csa->lscsa;
- out_be32(&prob->signal_notify1, addr64.ui[0]);
- eieio();
-}
-
-static inline void set_signot2(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- union {
- u64 ull;
- u32 ui[2];
- } addr64;
-
- /* Save, Step 53:
- * Restore, Step 33:
- * Write SPU_Sig_Notify_2 register with lower 32-bits
- * of the CSA.LSCSA effective address.
- */
- addr64.ull = (u64) csa->lscsa;
- out_be32(&prob->signal_notify2, addr64.ui[1]);
- eieio();
-}
-
-static inline void send_save_code(struct spu_state *csa, struct spu *spu)
-{
- unsigned long addr = (unsigned long)&spu_save_code[0];
- unsigned int ls_offset = 0x0;
- unsigned int size = sizeof(spu_save_code);
- unsigned int tag = 0;
- unsigned int rclass = 0;
- unsigned int cmd = MFC_GETFS_CMD;
-
- /* Save, Step 54:
- * Issue a DMA command to copy context save code
- * to local storage and start SPU.
- */
- send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
-}
-
-static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Save, Step 55:
- * Restore, Step 38.
- * Write PPU_QueryMask=1 (enable Tag Group 0)
- * and issue eieio instruction.
- */
- out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
- eieio();
-}
-
-static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- u32 mask = MFC_TAGID_TO_TAGMASK(0);
- unsigned long flags;
-
- /* Save, Step 56:
- * Restore, Step 39.
- * Restore, Step 39.
- * Restore, Step 46.
- * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
- * or write PPU_QueryType[TS]=01 and wait for Tag Group
- * Complete Interrupt. Write INT_Stat_Class0 or
- * INT_Stat_Class2 with value of 'handled'.
- */
- POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
-
- local_irq_save(flags);
- spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
- spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
- local_irq_restore(flags);
-}
-
-static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- unsigned long flags;
-
- /* Save, Step 57:
- * Restore, Step 40.
- * Poll until SPU_Status[R]=0 or wait for SPU Class 0
- * or SPU Class 2 interrupt. Write INT_Stat_class0
- * or INT_Stat_class2 with value of handled.
- */
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
-
- local_irq_save(flags);
- spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
- spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
- local_irq_restore(flags);
-}
-
-static inline int check_save_status(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- u32 complete;
-
- /* Save, Step 54:
- * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
- * context save succeeded, otherwise context save
- * failed.
- */
- complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
- SPU_STATUS_STOPPED_BY_STOP);
- return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
-}
-
-static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 4:
- * If required, notify the "using application" that
- * the SPU task has been terminated. TBD.
- */
-}
-
-static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
- struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 7:
- * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
- * the queue and halt the decrementer.
- */
- out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
- MFC_CNTL_DECREMENTER_HALTED);
- eieio();
-}
-
-static inline void wait_suspend_mfc_complete(struct spu_state *csa,
- struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 8:
- * Restore, Step 47.
- * Poll MFC_CNTL[Ss] until 11 is returned.
- */
- POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
- MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
- MFC_CNTL_SUSPEND_COMPLETE);
-}
-
-static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Restore, Step 9:
- * If SPU_Status[R]=1, stop SPU execution
- * and wait for stop to complete.
- *
- * Returns 1 if SPU_Status[R]=1 on entry.
- * 0 otherwise
- */
- if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
- if (in_be32(&prob->spu_status_R) &
- SPU_STATUS_ISOLATED_EXIT_STATUS) {
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- }
- if ((in_be32(&prob->spu_status_R) &
- SPU_STATUS_ISOLATED_LOAD_STATUS)
- || (in_be32(&prob->spu_status_R) &
- SPU_STATUS_ISOLATED_STATE)) {
- out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
- eieio();
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- out_be32(&prob->spu_runcntl_RW, 0x2);
- eieio();
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- }
- if (in_be32(&prob->spu_status_R) &
- SPU_STATUS_WAITING_FOR_CHANNEL) {
- out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
- eieio();
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- }
- return 1;
- }
- return 0;
-}
-
-static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Restore, Step 10:
- * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
- * release SPU from isolate state.
- */
- if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
- if (in_be32(&prob->spu_status_R) &
- SPU_STATUS_ISOLATED_EXIT_STATUS) {
- spu_mfc_sr1_set(spu,
- MFC_STATE1_MASTER_RUN_CONTROL_MASK);
- eieio();
- out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
- eieio();
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- }
- if ((in_be32(&prob->spu_status_R) &
- SPU_STATUS_ISOLATED_LOAD_STATUS)
- || (in_be32(&prob->spu_status_R) &
- SPU_STATUS_ISOLATED_STATE)) {
- spu_mfc_sr1_set(spu,
- MFC_STATE1_MASTER_RUN_CONTROL_MASK);
- eieio();
- out_be32(&prob->spu_runcntl_RW, 0x2);
- eieio();
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- }
- }
-}
-
-static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
- u64 idx;
- int i;
-
- /* Restore, Step 20:
- */
-
- /* Reset CH 1 */
- out_be64(&priv2->spu_chnlcntptr_RW, 1);
- out_be64(&priv2->spu_chnldata_RW, 0UL);
-
- /* Reset the following CH: [0,3,4,24,25,27] */
- for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
- idx = ch_indices[i];
- out_be64(&priv2->spu_chnlcntptr_RW, idx);
- eieio();
- out_be64(&priv2->spu_chnldata_RW, 0UL);
- out_be64(&priv2->spu_chnlcnt_RW, 0UL);
- eieio();
- }
-}
-
-static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
- u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
- u64 idx;
- int i;
-
- /* Restore, Step 21:
- * Reset the following CH: [21, 23, 28, 29, 30]
- */
- for (i = 0; i < 5; i++) {
- idx = ch_indices[i];
- out_be64(&priv2->spu_chnlcntptr_RW, idx);
- eieio();
- out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
- eieio();
- }
-}
-
-static inline void setup_spu_status_part1(struct spu_state *csa,
- struct spu *spu)
-{
- u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
- u32 status_I = SPU_STATUS_INVALID_INSTR;
- u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
- u32 status_S = SPU_STATUS_SINGLE_STEP;
- u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
- u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
- u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
- u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
- u32 status_code;
-
- /* Restore, Step 27:
- * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
- * instruction sequence to the end of the SPU based restore
- * code (after the "context restored" stop and signal) to
- * restore the correct SPU status.
- *
- * NOTE: Rather than modifying the SPU executable, we
- * instead add a new 'stopped_status' field to the
- * LSCSA. The SPU-side restore reads this field and
- * takes the appropriate action when exiting.
- */
-
- status_code =
- (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
- if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
-
- /* SPU_Status[P,I]=1 - Illegal Instruction followed
- * by Stop and Signal instruction, followed by 'br -4'.
- *
- */
- csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
- csa->lscsa->stopped_status.slot[1] = status_code;
-
- } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
-
- /* SPU_Status[P,H]=1 - Halt Conditional, followed
- * by Stop and Signal instruction, followed by
- * 'br -4'.
- */
- csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
- csa->lscsa->stopped_status.slot[1] = status_code;
-
- } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
-
- /* SPU_Status[S,P]=1 - Stop and Signal instruction
- * followed by 'br -4'.
- */
- csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
- csa->lscsa->stopped_status.slot[1] = status_code;
-
- } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
-
- /* SPU_Status[S,I]=1 - Illegal instruction followed
- * by 'br -4'.
- */
- csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
- csa->lscsa->stopped_status.slot[1] = status_code;
-
- } else if ((csa->prob.spu_status_R & status_P) == status_P) {
-
- /* SPU_Status[P]=1 - Stop and Signal instruction
- * followed by 'br -4'.
- */
- csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
- csa->lscsa->stopped_status.slot[1] = status_code;
-
- } else if ((csa->prob.spu_status_R & status_H) == status_H) {
-
- /* SPU_Status[H]=1 - Halt Conditional, followed
- * by 'br -4'.
- */
- csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
-
- } else if ((csa->prob.spu_status_R & status_S) == status_S) {
-
- /* SPU_Status[S]=1 - Two nop instructions.
- */
- csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
-
- } else if ((csa->prob.spu_status_R & status_I) == status_I) {
-
- /* SPU_Status[I]=1 - Illegal instruction followed
- * by 'br -4'.
- */
- csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
-
- }
-}
-
-static inline void setup_spu_status_part2(struct spu_state *csa,
- struct spu *spu)
-{
- u32 mask;
-
- /* Restore, Step 28:
- * If the CSA.SPU_Status[I,S,H,P,R]=0 then
- * add a 'br *' instruction to the end of
- * the SPU based restore code.
- *
- * NOTE: Rather than modifying the SPU executable, we
- * instead add a new 'stopped_status' field to the
- * LSCSA. The SPU-side restore reads this field and
- * takes the appropriate action when exiting.
- */
- mask = SPU_STATUS_INVALID_INSTR |
- SPU_STATUS_SINGLE_STEP |
- SPU_STATUS_STOPPED_BY_HALT |
- SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
- if (!(csa->prob.spu_status_R & mask)) {
- csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
- }
-}
-
-static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 29:
- * Restore RA_GROUP_ID register and the
- * RA_ENABLE reigster from the CSA.
- */
- spu_resource_allocation_groupID_set(spu,
- csa->priv1.resource_allocation_groupID_RW);
- spu_resource_allocation_enable_set(spu,
- csa->priv1.resource_allocation_enable_RW);
-}
-
-static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
-{
- unsigned long addr = (unsigned long)&spu_restore_code[0];
- unsigned int ls_offset = 0x0;
- unsigned int size = sizeof(spu_restore_code);
- unsigned int tag = 0;
- unsigned int rclass = 0;
- unsigned int cmd = MFC_GETFS_CMD;
-
- /* Restore, Step 37:
- * Issue MFC DMA command to copy context
- * restore code to local storage.
- */
- send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
-}
-
-static inline void setup_decr(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 34:
- * If CSA.MFC_CNTL[Ds]=1 (decrementer was
- * running) then adjust decrementer, set
- * decrementer running status in LSCSA,
- * and set decrementer "wrapped" status
- * in LSCSA.
- */
- if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
- cycles_t resume_time = get_cycles();
- cycles_t delta_time = resume_time - csa->suspend_time;
-
- csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
- if (csa->lscsa->decr.slot[0] < delta_time) {
- csa->lscsa->decr_status.slot[0] |=
- SPU_DECR_STATUS_WRAPPED;
- }
-
- csa->lscsa->decr.slot[0] -= delta_time;
- } else {
- csa->lscsa->decr_status.slot[0] = 0;
- }
-}
-
-static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 35:
- * Copy the CSA.PU_MB data into the LSCSA.
- */
- csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
-}
-
-static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 36:
- * Copy the CSA.PUINT_MB data into the LSCSA.
- */
- csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
-}
-
-static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- u32 complete;
-
- /* Restore, Step 40:
- * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
- * context restore succeeded, otherwise context restore
- * failed.
- */
- complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
- SPU_STATUS_STOPPED_BY_STOP);
- return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
-}
-
-static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 41:
- * Restore SPU_PrivCntl from the CSA.
- */
- out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
- eieio();
-}
-
-static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- u32 mask;
-
- /* Restore, Step 42:
- * If any CSA.SPU_Status[I,S,H,P]=1, then
- * restore the error or single step state.
- */
- mask = SPU_STATUS_INVALID_INSTR |
- SPU_STATUS_SINGLE_STEP |
- SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
- if (csa->prob.spu_status_R & mask) {
- out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
- eieio();
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- }
-}
-
-static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- u32 mask;
-
- /* Restore, Step 43:
- * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
- * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
- * then write '00' to SPU_RunCntl[R0R1] and wait
- * for SPU_Status[R]=0.
- */
- mask = SPU_STATUS_INVALID_INSTR |
- SPU_STATUS_SINGLE_STEP |
- SPU_STATUS_STOPPED_BY_HALT |
- SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
- if (!(csa->prob.spu_status_R & mask)) {
- out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
- eieio();
- POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
- eieio();
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
- SPU_STATUS_RUNNING);
- }
-}
-
-static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
-{
- unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
- unsigned int ls_offset = 0x0;
- unsigned int size = 16384;
- unsigned int tag = 0;
- unsigned int rclass = 0;
- unsigned int cmd = MFC_GET_CMD;
-
- /* Restore, Step 44:
- * Issue a DMA command to restore the first
- * 16kb of local storage from CSA.
- */
- send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
-}
-
-static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 47.
- * Write MFC_Cntl[Sc,Sm]='1','0' to suspend
- * the queue.
- */
- out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
- eieio();
-}
-
-static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 49:
- * Write INT_MASK_class0 with value of 0.
- * Write INT_MASK_class1 with value of 0.
- * Write INT_MASK_class2 with value of 0.
- * Write INT_STAT_class0 with value of -1.
- * Write INT_STAT_class1 with value of -1.
- * Write INT_STAT_class2 with value of -1.
- */
- spin_lock_irq(&spu->register_lock);
- spu_int_mask_set(spu, 0, 0ul);
- spu_int_mask_set(spu, 1, 0ul);
- spu_int_mask_set(spu, 2, 0ul);
- spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
- spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
- spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
- spin_unlock_irq(&spu->register_lock);
-}
-
-static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- int i;
-
- /* Restore, Step 50:
- * If MFC_Cntl[Se]!=0 then restore
- * MFC command queues.
- */
- if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
- for (i = 0; i < 8; i++) {
- out_be64(&priv2->puq[i].mfc_cq_data0_RW,
- csa->priv2.puq[i].mfc_cq_data0_RW);
- out_be64(&priv2->puq[i].mfc_cq_data1_RW,
- csa->priv2.puq[i].mfc_cq_data1_RW);
- out_be64(&priv2->puq[i].mfc_cq_data2_RW,
- csa->priv2.puq[i].mfc_cq_data2_RW);
- out_be64(&priv2->puq[i].mfc_cq_data3_RW,
- csa->priv2.puq[i].mfc_cq_data3_RW);
- }
- for (i = 0; i < 16; i++) {
- out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
- csa->priv2.spuq[i].mfc_cq_data0_RW);
- out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
- csa->priv2.spuq[i].mfc_cq_data1_RW);
- out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
- csa->priv2.spuq[i].mfc_cq_data2_RW);
- out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
- csa->priv2.spuq[i].mfc_cq_data3_RW);
- }
- }
- eieio();
-}
-
-static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Restore, Step 51:
- * Restore the PPU_QueryMask register from CSA.
- */
- out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
- eieio();
-}
-
-static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Restore, Step 52:
- * Restore the PPU_QueryType register from CSA.
- */
- out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
- eieio();
-}
-
-static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 53:
- * Restore the MFC_CSR_TSQ register from CSA.
- */
- out_be64(&priv2->spu_tag_status_query_RW,
- csa->priv2.spu_tag_status_query_RW);
- eieio();
-}
-
-static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 54:
- * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
- * registers from CSA.
- */
- out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
- out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
- eieio();
-}
-
-static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 55:
- * Restore the MFC_CSR_ATO register from CSA.
- */
- out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
-}
-
-static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 56:
- * Restore the MFC_TCLASS_ID register from CSA.
- */
- spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
- eieio();
-}
-
-static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
-{
- u64 ch0_cnt, ch0_data;
- u64 ch1_data;
-
- /* Restore, Step 57:
- * Set the Lock Line Reservation Lost Event by:
- * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
- * 2. If CSA.SPU_Channel_0_Count=0 and
- * CSA.SPU_Wr_Event_Mask[Lr]=1 and
- * CSA.SPU_Event_Status[Lr]=0 then set
- * CSA.SPU_Event_Status_Count=1.
- */
- ch0_cnt = csa->spu_chnlcnt_RW[0];
- ch0_data = csa->spu_chnldata_RW[0];
- ch1_data = csa->spu_chnldata_RW[1];
- csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
- if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
- (ch1_data & MFC_LLR_LOST_EVENT)) {
- csa->spu_chnlcnt_RW[0] = 1;
- }
-}
-
-static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 58:
- * If the status of the CSA software decrementer
- * "wrapped" flag is set, OR in a '1' to
- * CSA.SPU_Event_Status[Tm].
- */
- if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
- return;
-
- if ((csa->spu_chnlcnt_RW[0] == 0) &&
- (csa->spu_chnldata_RW[1] & 0x20) &&
- !(csa->spu_chnldata_RW[0] & 0x20))
- csa->spu_chnlcnt_RW[0] = 1;
-
- csa->spu_chnldata_RW[0] |= 0x20;
-}
-
-static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
- int i;
-
- /* Restore, Step 59:
- * Restore the following CH: [0,3,4,24,25,27]
- */
- for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
- idx = ch_indices[i];
- out_be64(&priv2->spu_chnlcntptr_RW, idx);
- eieio();
- out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
- out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
- eieio();
- }
-}
-
-static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- u64 ch_indices[3] = { 9UL, 21UL, 23UL };
- u64 ch_counts[3] = { 1UL, 16UL, 1UL };
- u64 idx;
- int i;
-
- /* Restore, Step 60:
- * Restore the following CH: [9,21,23].
- */
- ch_counts[0] = 1UL;
- ch_counts[1] = csa->spu_chnlcnt_RW[21];
- ch_counts[2] = 1UL;
- for (i = 0; i < 3; i++) {
- idx = ch_indices[i];
- out_be64(&priv2->spu_chnlcntptr_RW, idx);
- eieio();
- out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
- eieio();
- }
-}
-
-static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 61:
- * Restore the SPU_LSLR register from CSA.
- */
- out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
- eieio();
-}
-
-static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 62:
- * Restore the SPU_Cfg register from CSA.
- */
- out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
- eieio();
-}
-
-static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 63:
- * Restore PM_Trace_Tag_Wait_Mask from CSA.
- * Not performed by this implementation.
- */
-}
-
-static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Restore, Step 64:
- * Restore SPU_NPC from CSA.
- */
- out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
- eieio();
-}
-
-static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- int i;
-
- /* Restore, Step 65:
- * Restore MFC_RdSPU_MB from CSA.
- */
- out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
- eieio();
- out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
- for (i = 0; i < 4; i++) {
- out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
- }
- eieio();
-}
-
-static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- u32 dummy = 0;
-
- /* Restore, Step 66:
- * If CSA.MB_Stat[P]=0 (mailbox empty) then
- * read from the PPU_MB register.
- */
- if ((csa->prob.mb_stat_R & 0xFF) == 0) {
- dummy = in_be32(&prob->pu_mb_R);
- eieio();
- }
-}
-
-static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
- u64 dummy = 0UL;
-
- /* Restore, Step 66:
- * If CSA.MB_Stat[I]=0 (mailbox empty) then
- * read from the PPUINT_MB register.
- */
- if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
- dummy = in_be64(&priv2->puint_mb_R);
- eieio();
- spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
- eieio();
- }
-}
-
-static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 69:
- * Restore the MFC_SR1 register from CSA.
- */
- spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
- eieio();
-}
-
-static inline void set_int_route(struct spu_state *csa, struct spu *spu)
-{
- struct spu_context *ctx = spu->ctx;
-
- spu_cpu_affinity_set(spu, ctx->last_ran);
-}
-
-static inline void restore_other_spu_access(struct spu_state *csa,
- struct spu *spu)
-{
- /* Restore, Step 70:
- * Restore other SPU mappings to this SPU. TBD.
- */
-}
-
-static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- /* Restore, Step 71:
- * If CSA.SPU_Status[R]=1 then write
- * SPU_RunCntl[R0R1]='01'.
- */
- if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
- out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
- eieio();
- }
-}
-
-static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
-{
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Restore, Step 72:
- * Restore the MFC_CNTL register for the CSA.
- */
- out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
- eieio();
-
- /*
- * The queue is put back into the same state that was evident prior to
- * the context switch. The suspend flag is added to the saved state in
- * the csa, if the operational state was suspending or suspended. In
- * this case, the code that suspended the mfc is responsible for
- * continuing it. Note that SPE faults do not change the operational
- * state of the spu.
- */
-}
-
-static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 73:
- * Enable user-space access (if provided) to this
- * SPU by mapping the virtual pages assigned to
- * the SPU memory-mapped I/O (MMIO) for problem
- * state. TBD.
- */
-}
-
-static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 74:
- * Reset the "context switch active" flag.
- * Not performed by this implementation.
- */
-}
-
-static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
-{
- /* Restore, Step 75:
- * Re-enable SPU interrupts.
- */
- spin_lock_irq(&spu->register_lock);
- spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
- spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
- spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
- spin_unlock_irq(&spu->register_lock);
-}
-
-static int quiece_spu(struct spu_state *prev, struct spu *spu)
-{
- /*
- * Combined steps 2-18 of SPU context save sequence, which
- * quiesce the SPU state (disable SPU execution, MFC command
- * queues, decrementer, SPU interrupts, etc.).
- *
- * Returns 0 on success.
- * 2 if failed step 2.
- * 6 if failed step 6.
- */
-
- if (check_spu_isolate(prev, spu)) { /* Step 2. */
- return 2;
- }
- disable_interrupts(prev, spu); /* Step 3. */
- set_watchdog_timer(prev, spu); /* Step 4. */
- inhibit_user_access(prev, spu); /* Step 5. */
- if (check_spu_isolate(prev, spu)) { /* Step 6. */
- return 6;
- }
- set_switch_pending(prev, spu); /* Step 7. */
- save_mfc_cntl(prev, spu); /* Step 8. */
- save_spu_runcntl(prev, spu); /* Step 9. */
- save_mfc_sr1(prev, spu); /* Step 10. */
- save_spu_status(prev, spu); /* Step 11. */
- save_mfc_stopped_status(prev, spu); /* Step 12. */
- halt_mfc_decr(prev, spu); /* Step 13. */
- save_timebase(prev, spu); /* Step 14. */
- remove_other_spu_access(prev, spu); /* Step 15. */
- do_mfc_mssync(prev, spu); /* Step 16. */
- issue_mfc_tlbie(prev, spu); /* Step 17. */
- handle_pending_interrupts(prev, spu); /* Step 18. */
-
- return 0;
-}
-
-static void save_csa(struct spu_state *prev, struct spu *spu)
-{
- /*
- * Combine steps 19-44 of SPU context save sequence, which
- * save regions of the privileged & problem state areas.
- */
-
- save_mfc_queues(prev, spu); /* Step 19. */
- save_ppu_querymask(prev, spu); /* Step 20. */
- save_ppu_querytype(prev, spu); /* Step 21. */
- save_ppu_tagstatus(prev, spu); /* NEW. */
- save_mfc_csr_tsq(prev, spu); /* Step 22. */
- save_mfc_csr_cmd(prev, spu); /* Step 23. */
- save_mfc_csr_ato(prev, spu); /* Step 24. */
- save_mfc_tclass_id(prev, spu); /* Step 25. */
- set_mfc_tclass_id(prev, spu); /* Step 26. */
- save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */
- purge_mfc_queue(prev, spu); /* Step 27. */
- wait_purge_complete(prev, spu); /* Step 28. */
- setup_mfc_sr1(prev, spu); /* Step 30. */
- save_spu_npc(prev, spu); /* Step 31. */
- save_spu_privcntl(prev, spu); /* Step 32. */
- reset_spu_privcntl(prev, spu); /* Step 33. */
- save_spu_lslr(prev, spu); /* Step 34. */
- reset_spu_lslr(prev, spu); /* Step 35. */
- save_spu_cfg(prev, spu); /* Step 36. */
- save_pm_trace(prev, spu); /* Step 37. */
- save_mfc_rag(prev, spu); /* Step 38. */
- save_ppu_mb_stat(prev, spu); /* Step 39. */
- save_ppu_mb(prev, spu); /* Step 40. */
- save_ppuint_mb(prev, spu); /* Step 41. */
- save_ch_part1(prev, spu); /* Step 42. */
- save_spu_mb(prev, spu); /* Step 43. */
- reset_ch(prev, spu); /* Step 45. */
-}
-
-static void save_lscsa(struct spu_state *prev, struct spu *spu)
-{
- /*
- * Perform steps 46-57 of SPU context save sequence,
- * which save regions of the local store and register
- * file.
- */
-
- resume_mfc_queue(prev, spu); /* Step 46. */
- /* Step 47. */
- setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
- set_switch_active(prev, spu); /* Step 48. */
- enable_interrupts(prev, spu); /* Step 49. */
- save_ls_16kb(prev, spu); /* Step 50. */
- set_spu_npc(prev, spu); /* Step 51. */
- set_signot1(prev, spu); /* Step 52. */
- set_signot2(prev, spu); /* Step 53. */
- send_save_code(prev, spu); /* Step 54. */
- set_ppu_querymask(prev, spu); /* Step 55. */
- wait_tag_complete(prev, spu); /* Step 56. */
- wait_spu_stopped(prev, spu); /* Step 57. */
-}
-
-static void force_spu_isolate_exit(struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
- struct spu_priv2 __iomem *priv2 = spu->priv2;
-
- /* Stop SPE execution and wait for completion. */
- out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
- iobarrier_rw();
- POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
-
- /* Restart SPE master runcntl. */
- spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
- iobarrier_w();
-
- /* Initiate isolate exit request and wait for completion. */
- out_be64(&priv2->spu_privcntl_RW, 4LL);
- iobarrier_w();
- out_be32(&prob->spu_runcntl_RW, 2);
- iobarrier_rw();
- POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
- & SPU_STATUS_STOPPED_BY_STOP));
-
- /* Reset load request to normal. */
- out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
- iobarrier_w();
-}
-
-/**
- * stop_spu_isolate
- * Check SPU run-control state and force isolated
- * exit function as necessary.
- */
-static void stop_spu_isolate(struct spu *spu)
-{
- struct spu_problem __iomem *prob = spu->problem;
-
- if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
- /* The SPU is in isolated state; the only way
- * to get it out is to perform an isolated
- * exit (clean) operation.
- */
- force_spu_isolate_exit(spu);
- }
-}
-
-static void harvest(struct spu_state *prev, struct spu *spu)
-{
- /*
- * Perform steps 2-25 of SPU context restore sequence,
- * which resets an SPU either after a failed save, or
- * when using SPU for first time.
- */
-
- disable_interrupts(prev, spu); /* Step 2. */
- inhibit_user_access(prev, spu); /* Step 3. */
- terminate_spu_app(prev, spu); /* Step 4. */
- set_switch_pending(prev, spu); /* Step 5. */
- stop_spu_isolate(spu); /* NEW. */
- remove_other_spu_access(prev, spu); /* Step 6. */
- suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */
- wait_suspend_mfc_complete(prev, spu); /* Step 8. */
- if (!suspend_spe(prev, spu)) /* Step 9. */
- clear_spu_status(prev, spu); /* Step 10. */
- do_mfc_mssync(prev, spu); /* Step 11. */
- issue_mfc_tlbie(prev, spu); /* Step 12. */
- handle_pending_interrupts(prev, spu); /* Step 13. */
- purge_mfc_queue(prev, spu); /* Step 14. */
- wait_purge_complete(prev, spu); /* Step 15. */
- reset_spu_privcntl(prev, spu); /* Step 16. */
- reset_spu_lslr(prev, spu); /* Step 17. */
- setup_mfc_sr1(prev, spu); /* Step 18. */
- spu_invalidate_slbs(spu); /* Step 19. */
- reset_ch_part1(prev, spu); /* Step 20. */
- reset_ch_part2(prev, spu); /* Step 21. */
- enable_interrupts(prev, spu); /* Step 22. */
- set_switch_active(prev, spu); /* Step 23. */
- set_mfc_tclass_id(prev, spu); /* Step 24. */
- resume_mfc_queue(prev, spu); /* Step 25. */
-}
-
-static void restore_lscsa(struct spu_state *next, struct spu *spu)
-{
- /*
- * Perform steps 26-40 of SPU context restore sequence,
- * which restores regions of the local store and register
- * file.
- */
-
- set_watchdog_timer(next, spu); /* Step 26. */
- setup_spu_status_part1(next, spu); /* Step 27. */
- setup_spu_status_part2(next, spu); /* Step 28. */
- restore_mfc_rag(next, spu); /* Step 29. */
- /* Step 30. */
- setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
- set_spu_npc(next, spu); /* Step 31. */
- set_signot1(next, spu); /* Step 32. */
- set_signot2(next, spu); /* Step 33. */
- setup_decr(next, spu); /* Step 34. */
- setup_ppu_mb(next, spu); /* Step 35. */
- setup_ppuint_mb(next, spu); /* Step 36. */
- send_restore_code(next, spu); /* Step 37. */
- set_ppu_querymask(next, spu); /* Step 38. */
- wait_tag_complete(next, spu); /* Step 39. */
- wait_spu_stopped(next, spu); /* Step 40. */
-}
-
-static void restore_csa(struct spu_state *next, struct spu *spu)
-{
- /*
- * Combine steps 41-76 of SPU context restore sequence, which
- * restore regions of the privileged & problem state areas.
- */
-
- restore_spu_privcntl(next, spu); /* Step 41. */
- restore_status_part1(next, spu); /* Step 42. */
- restore_status_part2(next, spu); /* Step 43. */
- restore_ls_16kb(next, spu); /* Step 44. */
- wait_tag_complete(next, spu); /* Step 45. */
- suspend_mfc(next, spu); /* Step 46. */
- wait_suspend_mfc_complete(next, spu); /* Step 47. */
- issue_mfc_tlbie(next, spu); /* Step 48. */
- clear_interrupts(next, spu); /* Step 49. */
- restore_mfc_queues(next, spu); /* Step 50. */
- restore_ppu_querymask(next, spu); /* Step 51. */
- restore_ppu_querytype(next, spu); /* Step 52. */
- restore_mfc_csr_tsq(next, spu); /* Step 53. */
- restore_mfc_csr_cmd(next, spu); /* Step 54. */
- restore_mfc_csr_ato(next, spu); /* Step 55. */
- restore_mfc_tclass_id(next, spu); /* Step 56. */
- set_llr_event(next, spu); /* Step 57. */
- restore_decr_wrapped(next, spu); /* Step 58. */
- restore_ch_part1(next, spu); /* Step 59. */
- restore_ch_part2(next, spu); /* Step 60. */
- restore_spu_lslr(next, spu); /* Step 61. */
- restore_spu_cfg(next, spu); /* Step 62. */
- restore_pm_trace(next, spu); /* Step 63. */
- restore_spu_npc(next, spu); /* Step 64. */
- restore_spu_mb(next, spu); /* Step 65. */
- check_ppu_mb_stat(next, spu); /* Step 66. */
- check_ppuint_mb_stat(next, spu); /* Step 67. */
- spu_invalidate_slbs(spu); /* Modified Step 68. */
- restore_mfc_sr1(next, spu); /* Step 69. */
- set_int_route(next, spu); /* NEW */
- restore_other_spu_access(next, spu); /* Step 70. */
- restore_spu_runcntl(next, spu); /* Step 71. */
- restore_mfc_cntl(next, spu); /* Step 72. */
- enable_user_access(next, spu); /* Step 73. */
- reset_switch_active(next, spu); /* Step 74. */
- reenable_interrupts(next, spu); /* Step 75. */
-}
-
-static int __do_spu_save(struct spu_state *prev, struct spu *spu)
-{
- int rc;
-
- /*
- * SPU context save can be broken into three phases:
- *
- * (a) quiesce [steps 2-16].
- * (b) save of CSA, performed by PPE [steps 17-42]
- * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
- *
- * Returns 0 on success.
- * 2,6 if failed to quiece SPU
- * 53 if SPU-side of save failed.
- */
-
- rc = quiece_spu(prev, spu); /* Steps 2-16. */
- switch (rc) {
- default:
- case 2:
- case 6:
- harvest(prev, spu);
- return rc;
- break;
- case 0:
- break;
- }
- save_csa(prev, spu); /* Steps 17-43. */
- save_lscsa(prev, spu); /* Steps 44-53. */
- return check_save_status(prev, spu); /* Step 54. */
-}
-
-static int __do_spu_restore(struct spu_state *next, struct spu *spu)
-{
- int rc;
-
- /*
- * SPU context restore can be broken into three phases:
- *
- * (a) harvest (or reset) SPU [steps 2-24].
- * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
- * (c) restore CSA [steps 41-76], performed by PPE.
- *
- * The 'harvest' step is not performed here, but rather
- * as needed below.
- */
-
- restore_lscsa(next, spu); /* Steps 24-39. */
- rc = check_restore_status(next, spu); /* Step 40. */
- switch (rc) {
- default:
- /* Failed. Return now. */
- return rc;
- break;
- case 0:
- /* Fall through to next step. */
- break;
- }
- restore_csa(next, spu);
-
- return 0;
-}
-
-/**
- * spu_save - SPU context save, with locking.
- * @prev: pointer to SPU context save area, to be saved.
- * @spu: pointer to SPU iomem structure.
- *
- * Acquire locks, perform the save operation then return.
- */
-int spu_save(struct spu_state *prev, struct spu *spu)
-{
- int rc;
-
- acquire_spu_lock(spu); /* Step 1. */
- rc = __do_spu_save(prev, spu); /* Steps 2-53. */
- release_spu_lock(spu);
- if (rc != 0 && rc != 2 && rc != 6) {
- panic("%s failed on SPU[%d], rc=%d.\n",
- __func__, spu->number, rc);
- }
- return 0;
-}
-EXPORT_SYMBOL_GPL(spu_save);
-
-/**
- * spu_restore - SPU context restore, with harvest and locking.
- * @new: pointer to SPU context save area, to be restored.
- * @spu: pointer to SPU iomem structure.
- *
- * Perform harvest + restore, as we may not be coming
- * from a previous successful save operation, and the
- * hardware state is unknown.
- */
-int spu_restore(struct spu_state *new, struct spu *spu)
-{
- int rc;
-
- acquire_spu_lock(spu);
- harvest(NULL, spu);
- spu->slb_replace = 0;
- rc = __do_spu_restore(new, spu);
- release_spu_lock(spu);
- if (rc) {
- panic("%s failed on SPU[%d] rc=%d.\n",
- __func__, spu->number, rc);
- }
- return rc;
-}
-EXPORT_SYMBOL_GPL(spu_restore);
-
-static void init_prob(struct spu_state *csa)
-{
- csa->spu_chnlcnt_RW[9] = 1;
- csa->spu_chnlcnt_RW[21] = 16;
- csa->spu_chnlcnt_RW[23] = 1;
- csa->spu_chnlcnt_RW[28] = 1;
- csa->spu_chnlcnt_RW[30] = 1;
- csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
- csa->prob.mb_stat_R = 0x000400;
-}
-
-static void init_priv1(struct spu_state *csa)
-{
- /* Enable decode, relocate, tlbie response, master runcntl. */
- csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
- MFC_STATE1_MASTER_RUN_CONTROL_MASK |
- MFC_STATE1_PROBLEM_STATE_MASK |
- MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
-
- /* Enable OS-specific set of interrupts. */
- csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
- CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
- CLASS0_ENABLE_SPU_ERROR_INTR;
- csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
- CLASS1_ENABLE_STORAGE_FAULT_INTR;
- csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
- CLASS2_ENABLE_SPU_HALT_INTR |
- CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
-}
-
-static void init_priv2(struct spu_state *csa)
-{
- csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
- csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
- MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
- MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
-}
-
-/**
- * spu_alloc_csa - allocate and initialize an SPU context save area.
- *
- * Allocate and initialize the contents of an SPU context save area.
- * This includes enabling address translation, interrupt masks, etc.,
- * as appropriate for the given OS environment.
- *
- * Note that storage for the 'lscsa' is allocated separately,
- * as it is by far the largest of the context save regions,
- * and may need to be pinned or otherwise specially aligned.
- */
-int spu_init_csa(struct spu_state *csa)
-{
- int rc;
-
- if (!csa)
- return -EINVAL;
- memset(csa, 0, sizeof(struct spu_state));
-
- rc = spu_alloc_lscsa(csa);
- if (rc)
- return rc;
-
- spin_lock_init(&csa->register_lock);
-
- init_prob(csa);
- init_priv1(csa);
- init_priv2(csa);
-
- return 0;
-}
-
-void spu_fini_csa(struct spu_state *csa)
-{
- spu_free_lscsa(csa);
-}