diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c')
-rw-r--r-- | ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c | 2222 |
1 files changed, 0 insertions, 2222 deletions
diff --git a/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c b/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c deleted file mode 100644 index dde35551..00000000 --- a/ANDROID_3.4.5/arch/powerpc/platforms/cell/spufs/switch.c +++ /dev/null @@ -1,2222 +0,0 @@ -/* - * spu_switch.c - * - * (C) Copyright IBM Corp. 2005 - * - * Author: Mark Nutter <mnutter@us.ibm.com> - * - * Host-side part of SPU context switch sequence outlined in - * Synergistic Processor Element, Book IV. - * - * A fully premptive switch of an SPE is very expensive in terms - * of time and system resources. SPE Book IV indicates that SPE - * allocation should follow a "serially reusable device" model, - * in which the SPE is assigned a task until it completes. When - * this is not possible, this sequence may be used to premptively - * save, and then later (optionally) restore the context of a - * program executing on an SPE. - * - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2, or (at your option) - * any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - */ - -#include <linux/export.h> -#include <linux/errno.h> -#include <linux/hardirq.h> -#include <linux/sched.h> -#include <linux/kernel.h> -#include <linux/mm.h> -#include <linux/vmalloc.h> -#include <linux/smp.h> -#include <linux/stddef.h> -#include <linux/unistd.h> - -#include <asm/io.h> -#include <asm/spu.h> -#include <asm/spu_priv1.h> -#include <asm/spu_csa.h> -#include <asm/mmu_context.h> - -#include "spufs.h" - -#include "spu_save_dump.h" -#include "spu_restore_dump.h" - -#if 0 -#define POLL_WHILE_TRUE(_c) { \ - do { \ - } while (_c); \ - } -#else -#define RELAX_SPIN_COUNT 1000 -#define POLL_WHILE_TRUE(_c) { \ - do { \ - int _i; \ - for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \ - cpu_relax(); \ - } \ - if (unlikely(_c)) yield(); \ - else break; \ - } while (_c); \ - } -#endif /* debug */ - -#define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c)) - -static inline void acquire_spu_lock(struct spu *spu) -{ - /* Save, Step 1: - * Restore, Step 1: - * Acquire SPU-specific mutual exclusion lock. - * TBD. - */ -} - -static inline void release_spu_lock(struct spu *spu) -{ - /* Restore, Step 76: - * Release SPU-specific mutual exclusion lock. - * TBD. - */ -} - -static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - u32 isolate_state; - - /* Save, Step 2: - * Save, Step 6: - * If SPU_Status[E,L,IS] any field is '1', this - * SPU is in isolate state and cannot be context - * saved at this time. - */ - isolate_state = SPU_STATUS_ISOLATED_STATE | - SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS; - return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0; -} - -static inline void disable_interrupts(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 3: - * Restore, Step 2: - * Save INT_Mask_class0 in CSA. - * Write INT_MASK_class0 with value of 0. - * Save INT_Mask_class1 in CSA. - * Write INT_MASK_class1 with value of 0. - * Save INT_Mask_class2 in CSA. - * Write INT_MASK_class2 with value of 0. - * Synchronize all three interrupts to be sure - * we no longer execute a handler on another CPU. - */ - spin_lock_irq(&spu->register_lock); - if (csa) { - csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0); - csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1); - csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2); - } - spu_int_mask_set(spu, 0, 0ul); - spu_int_mask_set(spu, 1, 0ul); - spu_int_mask_set(spu, 2, 0ul); - eieio(); - spin_unlock_irq(&spu->register_lock); - - /* - * This flag needs to be set before calling synchronize_irq so - * that the update will be visible to the relevant handlers - * via a simple load. - */ - set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags); - clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags); - synchronize_irq(spu->irqs[0]); - synchronize_irq(spu->irqs[1]); - synchronize_irq(spu->irqs[2]); -} - -static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 4: - * Restore, Step 25. - * Set a software watchdog timer, which specifies the - * maximum allowable time for a context save sequence. - * - * For present, this implementation will not set a global - * watchdog timer, as virtualization & variable system load - * may cause unpredictable execution times. - */ -} - -static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 5: - * Restore, Step 3: - * Inhibit user-space access (if provided) to this - * SPU by unmapping the virtual pages assigned to - * the SPU memory-mapped I/O (MMIO) for problem - * state. TBD. - */ -} - -static inline void set_switch_pending(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 7: - * Restore, Step 5: - * Set a software context switch pending flag. - * Done above in Step 3 - disable_interrupts(). - */ -} - -static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 8: - * Suspend DMA and save MFC_CNTL. - */ - switch (in_be64(&priv2->mfc_control_RW) & - MFC_CNTL_SUSPEND_DMA_STATUS_MASK) { - case MFC_CNTL_SUSPEND_IN_PROGRESS: - POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & - MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == - MFC_CNTL_SUSPEND_COMPLETE); - /* fall through */ - case MFC_CNTL_SUSPEND_COMPLETE: - if (csa) - csa->priv2.mfc_control_RW = - in_be64(&priv2->mfc_control_RW) | - MFC_CNTL_SUSPEND_DMA_QUEUE; - break; - case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION: - out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); - POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & - MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == - MFC_CNTL_SUSPEND_COMPLETE); - if (csa) - csa->priv2.mfc_control_RW = - in_be64(&priv2->mfc_control_RW) & - ~MFC_CNTL_SUSPEND_DMA_QUEUE & - ~MFC_CNTL_SUSPEND_MASK; - break; - } -} - -static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 9: - * Save SPU_Runcntl in the CSA. This value contains - * the "Application Desired State". - */ - csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW); -} - -static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 10: - * Save MFC_SR1 in the CSA. - */ - csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu); -} - -static inline void save_spu_status(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 11: - * Read SPU_Status[R], and save to CSA. - */ - if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) { - csa->prob.spu_status_R = in_be32(&prob->spu_status_R); - } else { - u32 stopped; - - out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); - eieio(); - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - stopped = - SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | - SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; - if ((in_be32(&prob->spu_status_R) & stopped) == 0) - csa->prob.spu_status_R = SPU_STATUS_RUNNING; - else - csa->prob.spu_status_R = in_be32(&prob->spu_status_R); - } -} - -static inline void save_mfc_stopped_status(struct spu_state *csa, - struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - const u64 mask = MFC_CNTL_DECREMENTER_RUNNING | - MFC_CNTL_DMA_QUEUES_EMPTY; - - /* Save, Step 12: - * Read MFC_CNTL[Ds]. Update saved copy of - * CSA.MFC_CNTL[Ds]. - * - * update: do the same with MFC_CNTL[Q]. - */ - csa->priv2.mfc_control_RW &= ~mask; - csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask; -} - -static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 13: - * Write MFC_CNTL[Dh] set to a '1' to halt - * the decrementer. - */ - out_be64(&priv2->mfc_control_RW, - MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK); - eieio(); -} - -static inline void save_timebase(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 14: - * Read PPE Timebase High and Timebase low registers - * and save in CSA. TBD. - */ - csa->suspend_time = get_cycles(); -} - -static inline void remove_other_spu_access(struct spu_state *csa, - struct spu *spu) -{ - /* Save, Step 15: - * Remove other SPU access to this SPU by unmapping - * this SPU's pages from their address space. TBD. - */ -} - -static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 16: - * Restore, Step 11. - * Write SPU_MSSync register. Poll SPU_MSSync[P] - * for a value of 0. - */ - out_be64(&prob->spc_mssync_RW, 1UL); - POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING); -} - -static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 17: - * Restore, Step 12. - * Restore, Step 48. - * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register. - * Then issue a PPE sync instruction. - */ - spu_tlb_invalidate(spu); - mb(); -} - -static inline void handle_pending_interrupts(struct spu_state *csa, - struct spu *spu) -{ - /* Save, Step 18: - * Handle any pending interrupts from this SPU - * here. This is OS or hypervisor specific. One - * option is to re-enable interrupts to handle any - * pending interrupts, with the interrupt handlers - * recognizing the software Context Switch Pending - * flag, to ensure the SPU execution or MFC command - * queue is not restarted. TBD. - */ -} - -static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - int i; - - /* Save, Step 19: - * If MFC_Cntl[Se]=0 then save - * MFC command queues. - */ - if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) { - for (i = 0; i < 8; i++) { - csa->priv2.puq[i].mfc_cq_data0_RW = - in_be64(&priv2->puq[i].mfc_cq_data0_RW); - csa->priv2.puq[i].mfc_cq_data1_RW = - in_be64(&priv2->puq[i].mfc_cq_data1_RW); - csa->priv2.puq[i].mfc_cq_data2_RW = - in_be64(&priv2->puq[i].mfc_cq_data2_RW); - csa->priv2.puq[i].mfc_cq_data3_RW = - in_be64(&priv2->puq[i].mfc_cq_data3_RW); - } - for (i = 0; i < 16; i++) { - csa->priv2.spuq[i].mfc_cq_data0_RW = - in_be64(&priv2->spuq[i].mfc_cq_data0_RW); - csa->priv2.spuq[i].mfc_cq_data1_RW = - in_be64(&priv2->spuq[i].mfc_cq_data1_RW); - csa->priv2.spuq[i].mfc_cq_data2_RW = - in_be64(&priv2->spuq[i].mfc_cq_data2_RW); - csa->priv2.spuq[i].mfc_cq_data3_RW = - in_be64(&priv2->spuq[i].mfc_cq_data3_RW); - } - } -} - -static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 20: - * Save the PPU_QueryMask register - * in the CSA. - */ - csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW); -} - -static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 21: - * Save the PPU_QueryType register - * in the CSA. - */ - csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW); -} - -static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save the Prxy_TagStatus register in the CSA. - * - * It is unnecessary to restore dma_tagstatus_R, however, - * dma_tagstatus_R in the CSA is accessed via backing_ops, so - * we must save it. - */ - csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R); -} - -static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 22: - * Save the MFC_CSR_TSQ register - * in the LSCSA. - */ - csa->priv2.spu_tag_status_query_RW = - in_be64(&priv2->spu_tag_status_query_RW); -} - -static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 23: - * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2 - * registers in the CSA. - */ - csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW); - csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW); -} - -static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 24: - * Save the MFC_CSR_ATO register in - * the CSA. - */ - csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW); -} - -static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 25: - * Save the MFC_TCLASS_ID register in - * the CSA. - */ - csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu); -} - -static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 26: - * Restore, Step 23. - * Write the MFC_TCLASS_ID register with - * the value 0x10000000. - */ - spu_mfc_tclass_id_set(spu, 0x10000000); - eieio(); -} - -static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 27: - * Restore, Step 14. - * Write MFC_CNTL[Pc]=1 (purge queue). - */ - out_be64(&priv2->mfc_control_RW, - MFC_CNTL_PURGE_DMA_REQUEST | - MFC_CNTL_SUSPEND_MASK); - eieio(); -} - -static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 28: - * Poll MFC_CNTL[Ps] until value '11' is read - * (purge complete). - */ - POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & - MFC_CNTL_PURGE_DMA_STATUS_MASK) == - MFC_CNTL_PURGE_DMA_COMPLETE); -} - -static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 30: - * Restore, Step 18: - * Write MFC_SR1 with MFC_SR1[D=0,S=1] and - * MFC_SR1[TL,R,Pr,T] set correctly for the - * OS specific environment. - * - * Implementation note: The SPU-side code - * for save/restore is privileged, so the - * MFC_SR1[Pr] bit is not set. - * - */ - spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK | - MFC_STATE1_RELOCATE_MASK | - MFC_STATE1_BUS_TLBIE_MASK)); -} - -static inline void save_spu_npc(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 31: - * Save SPU_NPC in the CSA. - */ - csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW); -} - -static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 32: - * Save SPU_PrivCntl in the CSA. - */ - csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW); -} - -static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 33: - * Restore, Step 16: - * Write SPU_PrivCntl[S,Le,A] fields reset to 0. - */ - out_be64(&priv2->spu_privcntl_RW, 0UL); - eieio(); -} - -static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 34: - * Save SPU_LSLR in the CSA. - */ - csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW); -} - -static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 35: - * Restore, Step 17. - * Reset SPU_LSLR. - */ - out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK); - eieio(); -} - -static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 36: - * Save SPU_Cfg in the CSA. - */ - csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW); -} - -static inline void save_pm_trace(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 37: - * Save PM_Trace_Tag_Wait_Mask in the CSA. - * Not performed by this implementation. - */ -} - -static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 38: - * Save RA_GROUP_ID register and the - * RA_ENABLE reigster in the CSA. - */ - csa->priv1.resource_allocation_groupID_RW = - spu_resource_allocation_groupID_get(spu); - csa->priv1.resource_allocation_enable_RW = - spu_resource_allocation_enable_get(spu); -} - -static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 39: - * Save MB_Stat register in the CSA. - */ - csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R); -} - -static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 40: - * Save the PPU_MB register in the CSA. - */ - csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R); -} - -static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 41: - * Save the PPUINT_MB register in the CSA. - */ - csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R); -} - -static inline void save_ch_part1(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; - int i; - - /* Save, Step 42: - */ - - /* Save CH 1, without channel count */ - out_be64(&priv2->spu_chnlcntptr_RW, 1); - csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW); - - /* Save the following CH: [0,3,4,24,25,27] */ - for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { - idx = ch_indices[i]; - out_be64(&priv2->spu_chnlcntptr_RW, idx); - eieio(); - csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW); - csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW); - out_be64(&priv2->spu_chnldata_RW, 0UL); - out_be64(&priv2->spu_chnlcnt_RW, 0UL); - eieio(); - } -} - -static inline void save_spu_mb(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - int i; - - /* Save, Step 43: - * Save SPU Read Mailbox Channel. - */ - out_be64(&priv2->spu_chnlcntptr_RW, 29UL); - eieio(); - csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW); - for (i = 0; i < 4; i++) { - csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW); - } - out_be64(&priv2->spu_chnlcnt_RW, 0UL); - eieio(); -} - -static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 44: - * Save MFC_CMD Channel. - */ - out_be64(&priv2->spu_chnlcntptr_RW, 21UL); - eieio(); - csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW); - eieio(); -} - -static inline void reset_ch(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL }; - u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL }; - u64 idx; - int i; - - /* Save, Step 45: - * Reset the following CH: [21, 23, 28, 30] - */ - for (i = 0; i < 4; i++) { - idx = ch_indices[i]; - out_be64(&priv2->spu_chnlcntptr_RW, idx); - eieio(); - out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); - eieio(); - } -} - -static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Save, Step 46: - * Restore, Step 25. - * Write MFC_CNTL[Sc]=0 (resume queue processing). - */ - out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE); -} - -static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu, - unsigned int *code, int code_size) -{ - /* Save, Step 47: - * Restore, Step 30. - * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All - * register, then initialize SLB_VSID and SLB_ESID - * to provide access to SPU context save code and - * LSCSA. - * - * This implementation places both the context - * switch code and LSCSA in kernel address space. - * - * Further this implementation assumes that the - * MFC_SR1[R]=1 (in other words, assume that - * translation is desired by OS environment). - */ - spu_invalidate_slbs(spu); - spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size); -} - -static inline void set_switch_active(struct spu_state *csa, struct spu *spu) -{ - /* Save, Step 48: - * Restore, Step 23. - * Change the software context switch pending flag - * to context switch active. This implementation does - * not uses a switch active flag. - * - * Now that we have saved the mfc in the csa, we can add in the - * restart command if an exception occurred. - */ - if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags)) - csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND; - clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags); - mb(); -} - -static inline void enable_interrupts(struct spu_state *csa, struct spu *spu) -{ - unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR | - CLASS1_ENABLE_STORAGE_FAULT_INTR; - - /* Save, Step 49: - * Restore, Step 22: - * Reset and then enable interrupts, as - * needed by OS. - * - * This implementation enables only class1 - * (translation) interrupts. - */ - spin_lock_irq(&spu->register_lock); - spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); - spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); - spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); - spu_int_mask_set(spu, 0, 0ul); - spu_int_mask_set(spu, 1, class1_mask); - spu_int_mask_set(spu, 2, 0ul); - spin_unlock_irq(&spu->register_lock); -} - -static inline int send_mfc_dma(struct spu *spu, unsigned long ea, - unsigned int ls_offset, unsigned int size, - unsigned int tag, unsigned int rclass, - unsigned int cmd) -{ - struct spu_problem __iomem *prob = spu->problem; - union mfc_tag_size_class_cmd command; - unsigned int transfer_size; - volatile unsigned int status = 0x0; - - while (size > 0) { - transfer_size = - (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size; - command.u.mfc_size = transfer_size; - command.u.mfc_tag = tag; - command.u.mfc_rclassid = rclass; - command.u.mfc_cmd = cmd; - do { - out_be32(&prob->mfc_lsa_W, ls_offset); - out_be64(&prob->mfc_ea_W, ea); - out_be64(&prob->mfc_union_W.all64, command.all64); - status = - in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32); - if (unlikely(status & 0x2)) { - cpu_relax(); - } - } while (status & 0x3); - size -= transfer_size; - ea += transfer_size; - ls_offset += transfer_size; - } - return 0; -} - -static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu) -{ - unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; - unsigned int ls_offset = 0x0; - unsigned int size = 16384; - unsigned int tag = 0; - unsigned int rclass = 0; - unsigned int cmd = MFC_PUT_CMD; - - /* Save, Step 50: - * Issue a DMA command to copy the first 16K bytes - * of local storage to the CSA. - */ - send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); -} - -static inline void set_spu_npc(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 51: - * Restore, Step 31. - * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry - * point address of context save code in local - * storage. - * - * This implementation uses SPU-side save/restore - * programs with entry points at LSA of 0. - */ - out_be32(&prob->spu_npc_RW, 0); - eieio(); -} - -static inline void set_signot1(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - union { - u64 ull; - u32 ui[2]; - } addr64; - - /* Save, Step 52: - * Restore, Step 32: - * Write SPU_Sig_Notify_1 register with upper 32-bits - * of the CSA.LSCSA effective address. - */ - addr64.ull = (u64) csa->lscsa; - out_be32(&prob->signal_notify1, addr64.ui[0]); - eieio(); -} - -static inline void set_signot2(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - union { - u64 ull; - u32 ui[2]; - } addr64; - - /* Save, Step 53: - * Restore, Step 33: - * Write SPU_Sig_Notify_2 register with lower 32-bits - * of the CSA.LSCSA effective address. - */ - addr64.ull = (u64) csa->lscsa; - out_be32(&prob->signal_notify2, addr64.ui[1]); - eieio(); -} - -static inline void send_save_code(struct spu_state *csa, struct spu *spu) -{ - unsigned long addr = (unsigned long)&spu_save_code[0]; - unsigned int ls_offset = 0x0; - unsigned int size = sizeof(spu_save_code); - unsigned int tag = 0; - unsigned int rclass = 0; - unsigned int cmd = MFC_GETFS_CMD; - - /* Save, Step 54: - * Issue a DMA command to copy context save code - * to local storage and start SPU. - */ - send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); -} - -static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Save, Step 55: - * Restore, Step 38. - * Write PPU_QueryMask=1 (enable Tag Group 0) - * and issue eieio instruction. - */ - out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0)); - eieio(); -} - -static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - u32 mask = MFC_TAGID_TO_TAGMASK(0); - unsigned long flags; - - /* Save, Step 56: - * Restore, Step 39. - * Restore, Step 39. - * Restore, Step 46. - * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete) - * or write PPU_QueryType[TS]=01 and wait for Tag Group - * Complete Interrupt. Write INT_Stat_Class0 or - * INT_Stat_Class2 with value of 'handled'. - */ - POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask); - - local_irq_save(flags); - spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); - spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); - local_irq_restore(flags); -} - -static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - unsigned long flags; - - /* Save, Step 57: - * Restore, Step 40. - * Poll until SPU_Status[R]=0 or wait for SPU Class 0 - * or SPU Class 2 interrupt. Write INT_Stat_class0 - * or INT_Stat_class2 with value of handled. - */ - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); - - local_irq_save(flags); - spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); - spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); - local_irq_restore(flags); -} - -static inline int check_save_status(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - u32 complete; - - /* Save, Step 54: - * If SPU_Status[P]=1 and SPU_Status[SC] = "success", - * context save succeeded, otherwise context save - * failed. - */ - complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) | - SPU_STATUS_STOPPED_BY_STOP); - return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; -} - -static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 4: - * If required, notify the "using application" that - * the SPU task has been terminated. TBD. - */ -} - -static inline void suspend_mfc_and_halt_decr(struct spu_state *csa, - struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 7: - * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend - * the queue and halt the decrementer. - */ - out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE | - MFC_CNTL_DECREMENTER_HALTED); - eieio(); -} - -static inline void wait_suspend_mfc_complete(struct spu_state *csa, - struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 8: - * Restore, Step 47. - * Poll MFC_CNTL[Ss] until 11 is returned. - */ - POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & - MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == - MFC_CNTL_SUSPEND_COMPLETE); -} - -static inline int suspend_spe(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Restore, Step 9: - * If SPU_Status[R]=1, stop SPU execution - * and wait for stop to complete. - * - * Returns 1 if SPU_Status[R]=1 on entry. - * 0 otherwise - */ - if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) { - if (in_be32(&prob->spu_status_R) & - SPU_STATUS_ISOLATED_EXIT_STATUS) { - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - } - if ((in_be32(&prob->spu_status_R) & - SPU_STATUS_ISOLATED_LOAD_STATUS) - || (in_be32(&prob->spu_status_R) & - SPU_STATUS_ISOLATED_STATE)) { - out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); - eieio(); - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - out_be32(&prob->spu_runcntl_RW, 0x2); - eieio(); - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - } - if (in_be32(&prob->spu_status_R) & - SPU_STATUS_WAITING_FOR_CHANNEL) { - out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); - eieio(); - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - } - return 1; - } - return 0; -} - -static inline void clear_spu_status(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Restore, Step 10: - * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1, - * release SPU from isolate state. - */ - if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) { - if (in_be32(&prob->spu_status_R) & - SPU_STATUS_ISOLATED_EXIT_STATUS) { - spu_mfc_sr1_set(spu, - MFC_STATE1_MASTER_RUN_CONTROL_MASK); - eieio(); - out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); - eieio(); - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - } - if ((in_be32(&prob->spu_status_R) & - SPU_STATUS_ISOLATED_LOAD_STATUS) - || (in_be32(&prob->spu_status_R) & - SPU_STATUS_ISOLATED_STATE)) { - spu_mfc_sr1_set(spu, - MFC_STATE1_MASTER_RUN_CONTROL_MASK); - eieio(); - out_be32(&prob->spu_runcntl_RW, 0x2); - eieio(); - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - } - } -} - -static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; - u64 idx; - int i; - - /* Restore, Step 20: - */ - - /* Reset CH 1 */ - out_be64(&priv2->spu_chnlcntptr_RW, 1); - out_be64(&priv2->spu_chnldata_RW, 0UL); - - /* Reset the following CH: [0,3,4,24,25,27] */ - for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { - idx = ch_indices[i]; - out_be64(&priv2->spu_chnlcntptr_RW, idx); - eieio(); - out_be64(&priv2->spu_chnldata_RW, 0UL); - out_be64(&priv2->spu_chnlcnt_RW, 0UL); - eieio(); - } -} - -static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL }; - u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL }; - u64 idx; - int i; - - /* Restore, Step 21: - * Reset the following CH: [21, 23, 28, 29, 30] - */ - for (i = 0; i < 5; i++) { - idx = ch_indices[i]; - out_be64(&priv2->spu_chnlcntptr_RW, idx); - eieio(); - out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); - eieio(); - } -} - -static inline void setup_spu_status_part1(struct spu_state *csa, - struct spu *spu) -{ - u32 status_P = SPU_STATUS_STOPPED_BY_STOP; - u32 status_I = SPU_STATUS_INVALID_INSTR; - u32 status_H = SPU_STATUS_STOPPED_BY_HALT; - u32 status_S = SPU_STATUS_SINGLE_STEP; - u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR; - u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP; - u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP; - u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR; - u32 status_code; - - /* Restore, Step 27: - * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct - * instruction sequence to the end of the SPU based restore - * code (after the "context restored" stop and signal) to - * restore the correct SPU status. - * - * NOTE: Rather than modifying the SPU executable, we - * instead add a new 'stopped_status' field to the - * LSCSA. The SPU-side restore reads this field and - * takes the appropriate action when exiting. - */ - - status_code = - (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF; - if ((csa->prob.spu_status_R & status_P_I) == status_P_I) { - - /* SPU_Status[P,I]=1 - Illegal Instruction followed - * by Stop and Signal instruction, followed by 'br -4'. - * - */ - csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I; - csa->lscsa->stopped_status.slot[1] = status_code; - - } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) { - - /* SPU_Status[P,H]=1 - Halt Conditional, followed - * by Stop and Signal instruction, followed by - * 'br -4'. - */ - csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H; - csa->lscsa->stopped_status.slot[1] = status_code; - - } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) { - - /* SPU_Status[S,P]=1 - Stop and Signal instruction - * followed by 'br -4'. - */ - csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P; - csa->lscsa->stopped_status.slot[1] = status_code; - - } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) { - - /* SPU_Status[S,I]=1 - Illegal instruction followed - * by 'br -4'. - */ - csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I; - csa->lscsa->stopped_status.slot[1] = status_code; - - } else if ((csa->prob.spu_status_R & status_P) == status_P) { - - /* SPU_Status[P]=1 - Stop and Signal instruction - * followed by 'br -4'. - */ - csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P; - csa->lscsa->stopped_status.slot[1] = status_code; - - } else if ((csa->prob.spu_status_R & status_H) == status_H) { - - /* SPU_Status[H]=1 - Halt Conditional, followed - * by 'br -4'. - */ - csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H; - - } else if ((csa->prob.spu_status_R & status_S) == status_S) { - - /* SPU_Status[S]=1 - Two nop instructions. - */ - csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S; - - } else if ((csa->prob.spu_status_R & status_I) == status_I) { - - /* SPU_Status[I]=1 - Illegal instruction followed - * by 'br -4'. - */ - csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I; - - } -} - -static inline void setup_spu_status_part2(struct spu_state *csa, - struct spu *spu) -{ - u32 mask; - - /* Restore, Step 28: - * If the CSA.SPU_Status[I,S,H,P,R]=0 then - * add a 'br *' instruction to the end of - * the SPU based restore code. - * - * NOTE: Rather than modifying the SPU executable, we - * instead add a new 'stopped_status' field to the - * LSCSA. The SPU-side restore reads this field and - * takes the appropriate action when exiting. - */ - mask = SPU_STATUS_INVALID_INSTR | - SPU_STATUS_SINGLE_STEP | - SPU_STATUS_STOPPED_BY_HALT | - SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; - if (!(csa->prob.spu_status_R & mask)) { - csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R; - } -} - -static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 29: - * Restore RA_GROUP_ID register and the - * RA_ENABLE reigster from the CSA. - */ - spu_resource_allocation_groupID_set(spu, - csa->priv1.resource_allocation_groupID_RW); - spu_resource_allocation_enable_set(spu, - csa->priv1.resource_allocation_enable_RW); -} - -static inline void send_restore_code(struct spu_state *csa, struct spu *spu) -{ - unsigned long addr = (unsigned long)&spu_restore_code[0]; - unsigned int ls_offset = 0x0; - unsigned int size = sizeof(spu_restore_code); - unsigned int tag = 0; - unsigned int rclass = 0; - unsigned int cmd = MFC_GETFS_CMD; - - /* Restore, Step 37: - * Issue MFC DMA command to copy context - * restore code to local storage. - */ - send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); -} - -static inline void setup_decr(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 34: - * If CSA.MFC_CNTL[Ds]=1 (decrementer was - * running) then adjust decrementer, set - * decrementer running status in LSCSA, - * and set decrementer "wrapped" status - * in LSCSA. - */ - if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) { - cycles_t resume_time = get_cycles(); - cycles_t delta_time = resume_time - csa->suspend_time; - - csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING; - if (csa->lscsa->decr.slot[0] < delta_time) { - csa->lscsa->decr_status.slot[0] |= - SPU_DECR_STATUS_WRAPPED; - } - - csa->lscsa->decr.slot[0] -= delta_time; - } else { - csa->lscsa->decr_status.slot[0] = 0; - } -} - -static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 35: - * Copy the CSA.PU_MB data into the LSCSA. - */ - csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R; -} - -static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 36: - * Copy the CSA.PUINT_MB data into the LSCSA. - */ - csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R; -} - -static inline int check_restore_status(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - u32 complete; - - /* Restore, Step 40: - * If SPU_Status[P]=1 and SPU_Status[SC] = "success", - * context restore succeeded, otherwise context restore - * failed. - */ - complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) | - SPU_STATUS_STOPPED_BY_STOP); - return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; -} - -static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 41: - * Restore SPU_PrivCntl from the CSA. - */ - out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW); - eieio(); -} - -static inline void restore_status_part1(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - u32 mask; - - /* Restore, Step 42: - * If any CSA.SPU_Status[I,S,H,P]=1, then - * restore the error or single step state. - */ - mask = SPU_STATUS_INVALID_INSTR | - SPU_STATUS_SINGLE_STEP | - SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; - if (csa->prob.spu_status_R & mask) { - out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); - eieio(); - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - } -} - -static inline void restore_status_part2(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - u32 mask; - - /* Restore, Step 43: - * If all CSA.SPU_Status[I,S,H,P,R]=0 then write - * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1, - * then write '00' to SPU_RunCntl[R0R1] and wait - * for SPU_Status[R]=0. - */ - mask = SPU_STATUS_INVALID_INSTR | - SPU_STATUS_SINGLE_STEP | - SPU_STATUS_STOPPED_BY_HALT | - SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; - if (!(csa->prob.spu_status_R & mask)) { - out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); - eieio(); - POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); - eieio(); - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & - SPU_STATUS_RUNNING); - } -} - -static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu) -{ - unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; - unsigned int ls_offset = 0x0; - unsigned int size = 16384; - unsigned int tag = 0; - unsigned int rclass = 0; - unsigned int cmd = MFC_GET_CMD; - - /* Restore, Step 44: - * Issue a DMA command to restore the first - * 16kb of local storage from CSA. - */ - send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd); -} - -static inline void suspend_mfc(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 47. - * Write MFC_Cntl[Sc,Sm]='1','0' to suspend - * the queue. - */ - out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); - eieio(); -} - -static inline void clear_interrupts(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 49: - * Write INT_MASK_class0 with value of 0. - * Write INT_MASK_class1 with value of 0. - * Write INT_MASK_class2 with value of 0. - * Write INT_STAT_class0 with value of -1. - * Write INT_STAT_class1 with value of -1. - * Write INT_STAT_class2 with value of -1. - */ - spin_lock_irq(&spu->register_lock); - spu_int_mask_set(spu, 0, 0ul); - spu_int_mask_set(spu, 1, 0ul); - spu_int_mask_set(spu, 2, 0ul); - spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); - spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); - spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); - spin_unlock_irq(&spu->register_lock); -} - -static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - int i; - - /* Restore, Step 50: - * If MFC_Cntl[Se]!=0 then restore - * MFC command queues. - */ - if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) { - for (i = 0; i < 8; i++) { - out_be64(&priv2->puq[i].mfc_cq_data0_RW, - csa->priv2.puq[i].mfc_cq_data0_RW); - out_be64(&priv2->puq[i].mfc_cq_data1_RW, - csa->priv2.puq[i].mfc_cq_data1_RW); - out_be64(&priv2->puq[i].mfc_cq_data2_RW, - csa->priv2.puq[i].mfc_cq_data2_RW); - out_be64(&priv2->puq[i].mfc_cq_data3_RW, - csa->priv2.puq[i].mfc_cq_data3_RW); - } - for (i = 0; i < 16; i++) { - out_be64(&priv2->spuq[i].mfc_cq_data0_RW, - csa->priv2.spuq[i].mfc_cq_data0_RW); - out_be64(&priv2->spuq[i].mfc_cq_data1_RW, - csa->priv2.spuq[i].mfc_cq_data1_RW); - out_be64(&priv2->spuq[i].mfc_cq_data2_RW, - csa->priv2.spuq[i].mfc_cq_data2_RW); - out_be64(&priv2->spuq[i].mfc_cq_data3_RW, - csa->priv2.spuq[i].mfc_cq_data3_RW); - } - } - eieio(); -} - -static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Restore, Step 51: - * Restore the PPU_QueryMask register from CSA. - */ - out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW); - eieio(); -} - -static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Restore, Step 52: - * Restore the PPU_QueryType register from CSA. - */ - out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW); - eieio(); -} - -static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 53: - * Restore the MFC_CSR_TSQ register from CSA. - */ - out_be64(&priv2->spu_tag_status_query_RW, - csa->priv2.spu_tag_status_query_RW); - eieio(); -} - -static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 54: - * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2 - * registers from CSA. - */ - out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW); - out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW); - eieio(); -} - -static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 55: - * Restore the MFC_CSR_ATO register from CSA. - */ - out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW); -} - -static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 56: - * Restore the MFC_TCLASS_ID register from CSA. - */ - spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW); - eieio(); -} - -static inline void set_llr_event(struct spu_state *csa, struct spu *spu) -{ - u64 ch0_cnt, ch0_data; - u64 ch1_data; - - /* Restore, Step 57: - * Set the Lock Line Reservation Lost Event by: - * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1. - * 2. If CSA.SPU_Channel_0_Count=0 and - * CSA.SPU_Wr_Event_Mask[Lr]=1 and - * CSA.SPU_Event_Status[Lr]=0 then set - * CSA.SPU_Event_Status_Count=1. - */ - ch0_cnt = csa->spu_chnlcnt_RW[0]; - ch0_data = csa->spu_chnldata_RW[0]; - ch1_data = csa->spu_chnldata_RW[1]; - csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT; - if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) && - (ch1_data & MFC_LLR_LOST_EVENT)) { - csa->spu_chnlcnt_RW[0] = 1; - } -} - -static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 58: - * If the status of the CSA software decrementer - * "wrapped" flag is set, OR in a '1' to - * CSA.SPU_Event_Status[Tm]. - */ - if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED)) - return; - - if ((csa->spu_chnlcnt_RW[0] == 0) && - (csa->spu_chnldata_RW[1] & 0x20) && - !(csa->spu_chnldata_RW[0] & 0x20)) - csa->spu_chnlcnt_RW[0] = 1; - - csa->spu_chnldata_RW[0] |= 0x20; -} - -static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; - int i; - - /* Restore, Step 59: - * Restore the following CH: [0,3,4,24,25,27] - */ - for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { - idx = ch_indices[i]; - out_be64(&priv2->spu_chnlcntptr_RW, idx); - eieio(); - out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]); - out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]); - eieio(); - } -} - -static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - u64 ch_indices[3] = { 9UL, 21UL, 23UL }; - u64 ch_counts[3] = { 1UL, 16UL, 1UL }; - u64 idx; - int i; - - /* Restore, Step 60: - * Restore the following CH: [9,21,23]. - */ - ch_counts[0] = 1UL; - ch_counts[1] = csa->spu_chnlcnt_RW[21]; - ch_counts[2] = 1UL; - for (i = 0; i < 3; i++) { - idx = ch_indices[i]; - out_be64(&priv2->spu_chnlcntptr_RW, idx); - eieio(); - out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); - eieio(); - } -} - -static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 61: - * Restore the SPU_LSLR register from CSA. - */ - out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW); - eieio(); -} - -static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 62: - * Restore the SPU_Cfg register from CSA. - */ - out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW); - eieio(); -} - -static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 63: - * Restore PM_Trace_Tag_Wait_Mask from CSA. - * Not performed by this implementation. - */ -} - -static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Restore, Step 64: - * Restore SPU_NPC from CSA. - */ - out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW); - eieio(); -} - -static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - int i; - - /* Restore, Step 65: - * Restore MFC_RdSPU_MB from CSA. - */ - out_be64(&priv2->spu_chnlcntptr_RW, 29UL); - eieio(); - out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]); - for (i = 0; i < 4; i++) { - out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]); - } - eieio(); -} - -static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - u32 dummy = 0; - - /* Restore, Step 66: - * If CSA.MB_Stat[P]=0 (mailbox empty) then - * read from the PPU_MB register. - */ - if ((csa->prob.mb_stat_R & 0xFF) == 0) { - dummy = in_be32(&prob->pu_mb_R); - eieio(); - } -} - -static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - u64 dummy = 0UL; - - /* Restore, Step 66: - * If CSA.MB_Stat[I]=0 (mailbox empty) then - * read from the PPUINT_MB register. - */ - if ((csa->prob.mb_stat_R & 0xFF0000) == 0) { - dummy = in_be64(&priv2->puint_mb_R); - eieio(); - spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR); - eieio(); - } -} - -static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 69: - * Restore the MFC_SR1 register from CSA. - */ - spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW); - eieio(); -} - -static inline void set_int_route(struct spu_state *csa, struct spu *spu) -{ - struct spu_context *ctx = spu->ctx; - - spu_cpu_affinity_set(spu, ctx->last_ran); -} - -static inline void restore_other_spu_access(struct spu_state *csa, - struct spu *spu) -{ - /* Restore, Step 70: - * Restore other SPU mappings to this SPU. TBD. - */ -} - -static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - /* Restore, Step 71: - * If CSA.SPU_Status[R]=1 then write - * SPU_RunCntl[R0R1]='01'. - */ - if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) { - out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); - eieio(); - } -} - -static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu) -{ - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Restore, Step 72: - * Restore the MFC_CNTL register for the CSA. - */ - out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW); - eieio(); - - /* - * The queue is put back into the same state that was evident prior to - * the context switch. The suspend flag is added to the saved state in - * the csa, if the operational state was suspending or suspended. In - * this case, the code that suspended the mfc is responsible for - * continuing it. Note that SPE faults do not change the operational - * state of the spu. - */ -} - -static inline void enable_user_access(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 73: - * Enable user-space access (if provided) to this - * SPU by mapping the virtual pages assigned to - * the SPU memory-mapped I/O (MMIO) for problem - * state. TBD. - */ -} - -static inline void reset_switch_active(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 74: - * Reset the "context switch active" flag. - * Not performed by this implementation. - */ -} - -static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu) -{ - /* Restore, Step 75: - * Re-enable SPU interrupts. - */ - spin_lock_irq(&spu->register_lock); - spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW); - spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW); - spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW); - spin_unlock_irq(&spu->register_lock); -} - -static int quiece_spu(struct spu_state *prev, struct spu *spu) -{ - /* - * Combined steps 2-18 of SPU context save sequence, which - * quiesce the SPU state (disable SPU execution, MFC command - * queues, decrementer, SPU interrupts, etc.). - * - * Returns 0 on success. - * 2 if failed step 2. - * 6 if failed step 6. - */ - - if (check_spu_isolate(prev, spu)) { /* Step 2. */ - return 2; - } - disable_interrupts(prev, spu); /* Step 3. */ - set_watchdog_timer(prev, spu); /* Step 4. */ - inhibit_user_access(prev, spu); /* Step 5. */ - if (check_spu_isolate(prev, spu)) { /* Step 6. */ - return 6; - } - set_switch_pending(prev, spu); /* Step 7. */ - save_mfc_cntl(prev, spu); /* Step 8. */ - save_spu_runcntl(prev, spu); /* Step 9. */ - save_mfc_sr1(prev, spu); /* Step 10. */ - save_spu_status(prev, spu); /* Step 11. */ - save_mfc_stopped_status(prev, spu); /* Step 12. */ - halt_mfc_decr(prev, spu); /* Step 13. */ - save_timebase(prev, spu); /* Step 14. */ - remove_other_spu_access(prev, spu); /* Step 15. */ - do_mfc_mssync(prev, spu); /* Step 16. */ - issue_mfc_tlbie(prev, spu); /* Step 17. */ - handle_pending_interrupts(prev, spu); /* Step 18. */ - - return 0; -} - -static void save_csa(struct spu_state *prev, struct spu *spu) -{ - /* - * Combine steps 19-44 of SPU context save sequence, which - * save regions of the privileged & problem state areas. - */ - - save_mfc_queues(prev, spu); /* Step 19. */ - save_ppu_querymask(prev, spu); /* Step 20. */ - save_ppu_querytype(prev, spu); /* Step 21. */ - save_ppu_tagstatus(prev, spu); /* NEW. */ - save_mfc_csr_tsq(prev, spu); /* Step 22. */ - save_mfc_csr_cmd(prev, spu); /* Step 23. */ - save_mfc_csr_ato(prev, spu); /* Step 24. */ - save_mfc_tclass_id(prev, spu); /* Step 25. */ - set_mfc_tclass_id(prev, spu); /* Step 26. */ - save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */ - purge_mfc_queue(prev, spu); /* Step 27. */ - wait_purge_complete(prev, spu); /* Step 28. */ - setup_mfc_sr1(prev, spu); /* Step 30. */ - save_spu_npc(prev, spu); /* Step 31. */ - save_spu_privcntl(prev, spu); /* Step 32. */ - reset_spu_privcntl(prev, spu); /* Step 33. */ - save_spu_lslr(prev, spu); /* Step 34. */ - reset_spu_lslr(prev, spu); /* Step 35. */ - save_spu_cfg(prev, spu); /* Step 36. */ - save_pm_trace(prev, spu); /* Step 37. */ - save_mfc_rag(prev, spu); /* Step 38. */ - save_ppu_mb_stat(prev, spu); /* Step 39. */ - save_ppu_mb(prev, spu); /* Step 40. */ - save_ppuint_mb(prev, spu); /* Step 41. */ - save_ch_part1(prev, spu); /* Step 42. */ - save_spu_mb(prev, spu); /* Step 43. */ - reset_ch(prev, spu); /* Step 45. */ -} - -static void save_lscsa(struct spu_state *prev, struct spu *spu) -{ - /* - * Perform steps 46-57 of SPU context save sequence, - * which save regions of the local store and register - * file. - */ - - resume_mfc_queue(prev, spu); /* Step 46. */ - /* Step 47. */ - setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code)); - set_switch_active(prev, spu); /* Step 48. */ - enable_interrupts(prev, spu); /* Step 49. */ - save_ls_16kb(prev, spu); /* Step 50. */ - set_spu_npc(prev, spu); /* Step 51. */ - set_signot1(prev, spu); /* Step 52. */ - set_signot2(prev, spu); /* Step 53. */ - send_save_code(prev, spu); /* Step 54. */ - set_ppu_querymask(prev, spu); /* Step 55. */ - wait_tag_complete(prev, spu); /* Step 56. */ - wait_spu_stopped(prev, spu); /* Step 57. */ -} - -static void force_spu_isolate_exit(struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - struct spu_priv2 __iomem *priv2 = spu->priv2; - - /* Stop SPE execution and wait for completion. */ - out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); - iobarrier_rw(); - POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); - - /* Restart SPE master runcntl. */ - spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK); - iobarrier_w(); - - /* Initiate isolate exit request and wait for completion. */ - out_be64(&priv2->spu_privcntl_RW, 4LL); - iobarrier_w(); - out_be32(&prob->spu_runcntl_RW, 2); - iobarrier_rw(); - POLL_WHILE_FALSE((in_be32(&prob->spu_status_R) - & SPU_STATUS_STOPPED_BY_STOP)); - - /* Reset load request to normal. */ - out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL); - iobarrier_w(); -} - -/** - * stop_spu_isolate - * Check SPU run-control state and force isolated - * exit function as necessary. - */ -static void stop_spu_isolate(struct spu *spu) -{ - struct spu_problem __iomem *prob = spu->problem; - - if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) { - /* The SPU is in isolated state; the only way - * to get it out is to perform an isolated - * exit (clean) operation. - */ - force_spu_isolate_exit(spu); - } -} - -static void harvest(struct spu_state *prev, struct spu *spu) -{ - /* - * Perform steps 2-25 of SPU context restore sequence, - * which resets an SPU either after a failed save, or - * when using SPU for first time. - */ - - disable_interrupts(prev, spu); /* Step 2. */ - inhibit_user_access(prev, spu); /* Step 3. */ - terminate_spu_app(prev, spu); /* Step 4. */ - set_switch_pending(prev, spu); /* Step 5. */ - stop_spu_isolate(spu); /* NEW. */ - remove_other_spu_access(prev, spu); /* Step 6. */ - suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */ - wait_suspend_mfc_complete(prev, spu); /* Step 8. */ - if (!suspend_spe(prev, spu)) /* Step 9. */ - clear_spu_status(prev, spu); /* Step 10. */ - do_mfc_mssync(prev, spu); /* Step 11. */ - issue_mfc_tlbie(prev, spu); /* Step 12. */ - handle_pending_interrupts(prev, spu); /* Step 13. */ - purge_mfc_queue(prev, spu); /* Step 14. */ - wait_purge_complete(prev, spu); /* Step 15. */ - reset_spu_privcntl(prev, spu); /* Step 16. */ - reset_spu_lslr(prev, spu); /* Step 17. */ - setup_mfc_sr1(prev, spu); /* Step 18. */ - spu_invalidate_slbs(spu); /* Step 19. */ - reset_ch_part1(prev, spu); /* Step 20. */ - reset_ch_part2(prev, spu); /* Step 21. */ - enable_interrupts(prev, spu); /* Step 22. */ - set_switch_active(prev, spu); /* Step 23. */ - set_mfc_tclass_id(prev, spu); /* Step 24. */ - resume_mfc_queue(prev, spu); /* Step 25. */ -} - -static void restore_lscsa(struct spu_state *next, struct spu *spu) -{ - /* - * Perform steps 26-40 of SPU context restore sequence, - * which restores regions of the local store and register - * file. - */ - - set_watchdog_timer(next, spu); /* Step 26. */ - setup_spu_status_part1(next, spu); /* Step 27. */ - setup_spu_status_part2(next, spu); /* Step 28. */ - restore_mfc_rag(next, spu); /* Step 29. */ - /* Step 30. */ - setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code)); - set_spu_npc(next, spu); /* Step 31. */ - set_signot1(next, spu); /* Step 32. */ - set_signot2(next, spu); /* Step 33. */ - setup_decr(next, spu); /* Step 34. */ - setup_ppu_mb(next, spu); /* Step 35. */ - setup_ppuint_mb(next, spu); /* Step 36. */ - send_restore_code(next, spu); /* Step 37. */ - set_ppu_querymask(next, spu); /* Step 38. */ - wait_tag_complete(next, spu); /* Step 39. */ - wait_spu_stopped(next, spu); /* Step 40. */ -} - -static void restore_csa(struct spu_state *next, struct spu *spu) -{ - /* - * Combine steps 41-76 of SPU context restore sequence, which - * restore regions of the privileged & problem state areas. - */ - - restore_spu_privcntl(next, spu); /* Step 41. */ - restore_status_part1(next, spu); /* Step 42. */ - restore_status_part2(next, spu); /* Step 43. */ - restore_ls_16kb(next, spu); /* Step 44. */ - wait_tag_complete(next, spu); /* Step 45. */ - suspend_mfc(next, spu); /* Step 46. */ - wait_suspend_mfc_complete(next, spu); /* Step 47. */ - issue_mfc_tlbie(next, spu); /* Step 48. */ - clear_interrupts(next, spu); /* Step 49. */ - restore_mfc_queues(next, spu); /* Step 50. */ - restore_ppu_querymask(next, spu); /* Step 51. */ - restore_ppu_querytype(next, spu); /* Step 52. */ - restore_mfc_csr_tsq(next, spu); /* Step 53. */ - restore_mfc_csr_cmd(next, spu); /* Step 54. */ - restore_mfc_csr_ato(next, spu); /* Step 55. */ - restore_mfc_tclass_id(next, spu); /* Step 56. */ - set_llr_event(next, spu); /* Step 57. */ - restore_decr_wrapped(next, spu); /* Step 58. */ - restore_ch_part1(next, spu); /* Step 59. */ - restore_ch_part2(next, spu); /* Step 60. */ - restore_spu_lslr(next, spu); /* Step 61. */ - restore_spu_cfg(next, spu); /* Step 62. */ - restore_pm_trace(next, spu); /* Step 63. */ - restore_spu_npc(next, spu); /* Step 64. */ - restore_spu_mb(next, spu); /* Step 65. */ - check_ppu_mb_stat(next, spu); /* Step 66. */ - check_ppuint_mb_stat(next, spu); /* Step 67. */ - spu_invalidate_slbs(spu); /* Modified Step 68. */ - restore_mfc_sr1(next, spu); /* Step 69. */ - set_int_route(next, spu); /* NEW */ - restore_other_spu_access(next, spu); /* Step 70. */ - restore_spu_runcntl(next, spu); /* Step 71. */ - restore_mfc_cntl(next, spu); /* Step 72. */ - enable_user_access(next, spu); /* Step 73. */ - reset_switch_active(next, spu); /* Step 74. */ - reenable_interrupts(next, spu); /* Step 75. */ -} - -static int __do_spu_save(struct spu_state *prev, struct spu *spu) -{ - int rc; - - /* - * SPU context save can be broken into three phases: - * - * (a) quiesce [steps 2-16]. - * (b) save of CSA, performed by PPE [steps 17-42] - * (c) save of LSCSA, mostly performed by SPU [steps 43-52]. - * - * Returns 0 on success. - * 2,6 if failed to quiece SPU - * 53 if SPU-side of save failed. - */ - - rc = quiece_spu(prev, spu); /* Steps 2-16. */ - switch (rc) { - default: - case 2: - case 6: - harvest(prev, spu); - return rc; - break; - case 0: - break; - } - save_csa(prev, spu); /* Steps 17-43. */ - save_lscsa(prev, spu); /* Steps 44-53. */ - return check_save_status(prev, spu); /* Step 54. */ -} - -static int __do_spu_restore(struct spu_state *next, struct spu *spu) -{ - int rc; - - /* - * SPU context restore can be broken into three phases: - * - * (a) harvest (or reset) SPU [steps 2-24]. - * (b) restore LSCSA [steps 25-40], mostly performed by SPU. - * (c) restore CSA [steps 41-76], performed by PPE. - * - * The 'harvest' step is not performed here, but rather - * as needed below. - */ - - restore_lscsa(next, spu); /* Steps 24-39. */ - rc = check_restore_status(next, spu); /* Step 40. */ - switch (rc) { - default: - /* Failed. Return now. */ - return rc; - break; - case 0: - /* Fall through to next step. */ - break; - } - restore_csa(next, spu); - - return 0; -} - -/** - * spu_save - SPU context save, with locking. - * @prev: pointer to SPU context save area, to be saved. - * @spu: pointer to SPU iomem structure. - * - * Acquire locks, perform the save operation then return. - */ -int spu_save(struct spu_state *prev, struct spu *spu) -{ - int rc; - - acquire_spu_lock(spu); /* Step 1. */ - rc = __do_spu_save(prev, spu); /* Steps 2-53. */ - release_spu_lock(spu); - if (rc != 0 && rc != 2 && rc != 6) { - panic("%s failed on SPU[%d], rc=%d.\n", - __func__, spu->number, rc); - } - return 0; -} -EXPORT_SYMBOL_GPL(spu_save); - -/** - * spu_restore - SPU context restore, with harvest and locking. - * @new: pointer to SPU context save area, to be restored. - * @spu: pointer to SPU iomem structure. - * - * Perform harvest + restore, as we may not be coming - * from a previous successful save operation, and the - * hardware state is unknown. - */ -int spu_restore(struct spu_state *new, struct spu *spu) -{ - int rc; - - acquire_spu_lock(spu); - harvest(NULL, spu); - spu->slb_replace = 0; - rc = __do_spu_restore(new, spu); - release_spu_lock(spu); - if (rc) { - panic("%s failed on SPU[%d] rc=%d.\n", - __func__, spu->number, rc); - } - return rc; -} -EXPORT_SYMBOL_GPL(spu_restore); - -static void init_prob(struct spu_state *csa) -{ - csa->spu_chnlcnt_RW[9] = 1; - csa->spu_chnlcnt_RW[21] = 16; - csa->spu_chnlcnt_RW[23] = 1; - csa->spu_chnlcnt_RW[28] = 1; - csa->spu_chnlcnt_RW[30] = 1; - csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP; - csa->prob.mb_stat_R = 0x000400; -} - -static void init_priv1(struct spu_state *csa) -{ - /* Enable decode, relocate, tlbie response, master runcntl. */ - csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK | - MFC_STATE1_MASTER_RUN_CONTROL_MASK | - MFC_STATE1_PROBLEM_STATE_MASK | - MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK; - - /* Enable OS-specific set of interrupts. */ - csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR | - CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR | - CLASS0_ENABLE_SPU_ERROR_INTR; - csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR | - CLASS1_ENABLE_STORAGE_FAULT_INTR; - csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR | - CLASS2_ENABLE_SPU_HALT_INTR | - CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR; -} - -static void init_priv2(struct spu_state *csa) -{ - csa->priv2.spu_lslr_RW = LS_ADDR_MASK; - csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE | - MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION | - MFC_CNTL_DMA_QUEUES_EMPTY_MASK; -} - -/** - * spu_alloc_csa - allocate and initialize an SPU context save area. - * - * Allocate and initialize the contents of an SPU context save area. - * This includes enabling address translation, interrupt masks, etc., - * as appropriate for the given OS environment. - * - * Note that storage for the 'lscsa' is allocated separately, - * as it is by far the largest of the context save regions, - * and may need to be pinned or otherwise specially aligned. - */ -int spu_init_csa(struct spu_state *csa) -{ - int rc; - - if (!csa) - return -EINVAL; - memset(csa, 0, sizeof(struct spu_state)); - - rc = spu_alloc_lscsa(csa); - if (rc) - return rc; - - spin_lock_init(&csa->register_lock); - - init_prob(csa); - init_priv1(csa); - init_priv2(csa); - - return 0; -} - -void spu_fini_csa(struct spu_state *csa) -{ - spu_free_lscsa(csa); -} |