1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
function varargout = iv(varargin)
// Parameters Estimation of IV model by arbitrary instrumental variable method
//
// Calling Sequence
// sys = iv(ioData,[na nb nk])
// sys = iv(ioData,[na nb nk],instData)
// Parameters
// ioData : iddata or [outputData inputData] ,matrix of nx2 dimensions, type plant data
// na : non-negative integer number specified as order of the polynomial A(z^-1)
// nb : non-negative integer number specified as order of the polynomial B(z^-1)+1
// nk : non-negative integer number specified as input output delay, Default value is 1
// instData : arbitrary instrument variable matrix. The size of instriment variable must be equal to the size of outputData
// sys : idpoly type polynomial have estimated coefficients of A(z^-1) and B(z^-1) polynomials
//
// Description
// Fit IV model on given input output data
// The mathematical equation of the IV model
// <latex>
// begin{eqnarray}
// A(q)y(n) = B(q)u(n-k) + e(t)
// end{eqnarray}
// </latex>
// It is SISO type model. Instrument variable method is use to estimate the cofficients. If user does not provide the arbitrary instrument variable matrix
// then the program extracte it by using ARX method.
//
// sys ,an idpoly type class, have different fields that contains estimated coefficients, sampling time, time unit and other estimated data in Report object.
//
// Examples
// u = idinput(1024,'PRBS',[0 1/20],[-1 1])
// a = [1 0.2];b = [0 0.2 0.3];
// model = idpoly(a,b,'Ts',0.1)
// y = sim(u,model) + rand(length(u),1)
// ioData = iddata(y,u,0.1)
// sys = arx(ioData,[2,2,1])
//
// Examples
// u = idinput(1024,'PRBS',[0 1/20],[-1 1])
// a = [1 0.2];b = [0 0.2 0.3];
// model = idpoly(a,b,'Ts',0.1)
// y = sim(u,model) + rand(length(u),1)
// ioData = [y,u]
// sys = iv(ioData,[2,2,1])
//
// Authors
// Ashutosh Kumar Bhargava, Bhushan Manjarekar
[lhs , rhs] = argn(0);
if ( rhs < 2 || rhs > 3) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2 or 3"), "iv", rhs);
error(errmsg)
end
plantData = varargin(1)
if typeof(plantData) == 'iddata' then
Ts = plantData.Ts;unit = plantData.TimeUnit
plantData = [plantData.OutputData plantData.InputData]
elseif typeof(plantData) == 'constant' then
Ts = 1;unit = 'seconds'
end
if ((~size(plantData,2)==2) & (~size(plantData,1)==2)) then
errmsg = msprintf(gettext("%s: input and output data matrix should be of size (number of data)*2"), "iv");
error(errmsg);
end
if (~isreal(plantData)) then
errmsg = msprintf(gettext("%s: input and output data matrix should be a real matrix"), "arx");
error(errmsg);
end
n = varargin(2)
if (size(n,"*")<2| size(n,"*")>3) then
errmsg = msprintf(gettext("%s: The order and delay matrix [na nb nk] should be of size [2 or 3]"), "iv");
error(errmsg);
end
if (size(find(n<0),"*") | size(find(((n-floor(n))<%eps)== %f))) then
errmsg = msprintf(gettext("%s: values of order and delay matrix [na nb nk] should be nonnegative integer number "), "iv");
error(errmsg);
end
na = n(1);nb = n(2)
if size(n,'*') == 2 then
nk = 1
elseif size(n,'*') == 3 then
nk = n(3)
end
yData = plantData(:,1)
uData = plantData(:,2)
noOfSample = size(plantData,'r')
nb1 = nb + nk - 1
n = max(na, nb1)
if rhs == 3 then
if typeof(varargin(3)) <> 'constant' then
errmsg = msprintf(gettext("%s: Incompatible last input argument. "), "iv");
error(errmsg)
elseif size(varargin(3),'r') <> size(uData,'r') then
errmsg = msprintf(gettext("%s: number of samples of output must be equal to the dimensions of plant data "), "iv");
error(errmsg);
end
x = varargin(3)
elseif rhs == 2
arxModel = arx(plantData,[na nb nk])
x = sim(uData,arxModel)
end
phif = zeros(noOfSample,na+nb)
psif = zeros(noOfSample,na+nb)
// arranging samples of y matrix
for ii = 1:na
phif(ii+1:ii+noOfSample,ii) = yData
psif(ii+1:ii+noOfSample,ii) = x
end
// arranging samples of u matrix
for ii = 1:nb
phif(ii+nk:ii+noOfSample+nk-1,ii+na) = uData
psif(ii+nk:ii+noOfSample+nk-1,ii+na) = uData
end
lhs = psif'*phif
lhsinv = pinv(lhs)
// pause
theta = lhsinv * (psif)' * [yData;zeros(n,1)]
ypred = (phif * theta)
ypred = ypred(1:size(yData,'r'))
e = yData - ypred
sigma2 = norm(e)^2/(size(yData,'r') - na - nb)
vcov = sigma2 * pinv((phif)' * phif)
t = idpoly([1; -theta(1:na)],[zeros(nk,1); theta(na+1:$)],1,1,1,1)
// estimating the other parameters
[temp1,temp2,temp3] = predict(plantData,t)
[temp11,temp22,temp33] = pe(plantData,t)
estData = calModelPara(temp1,temp11,na+nb)
// pause
t.Report.Fit.MSE = estData.MSE
t.Report.Fit.FPE = estData.FPE
t.Report.Fit.FitPer = estData.FitPer
t.Report.Fit.AIC = estData.AIC
t.Report.Fit.AICc = estData.AICc
t.Report.Fit.nAIC = estData.nAIC
t.Report.Fit.BIC = estData.BIC
t.TimeUnit = unit
// sys = t
varargout(1) = t
endfunction
|