summaryrefslogtreecommitdiff
path: root/bj.sci
blob: dd21928319428c0e5cae00e9c1825112c4abad76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

function sys = bj(varargin)
    
// Parameters Estimation of BJ(Box-Jenkins) model using Input Output time-domain data
// 
// Calling Sequence
// sys = bj(ioData,[nb nc nd nf nk])
// 
// Parameters
// ioData : iddata or [outputData inputData] ,matrix of nx2 dimensions, type plant data
// nb : non-negative integer number specified as order of the polynomial B(z^-1)+1
// nc : non-negative integer number specified as order of the polynomial C(z^-1)
// nd : non-negative integer number specified as order of the polynomial D(z^-1)
// nf : non-negative integer number specified as order of the polynomial f(z^-1)
// nk : non-negative integer number specified as input output delay, Default value is 1
// sys : idpoly type polynomial have estimated coefficients of B(z^-1),C(z^-1),D(z^-1) and f(z^-1) polynomials
// 
// Description
// Fit BJ model on given input output data 
// The mathematical equation of the BJ model 
// <latex>   
// begin{eqnarray}
// y(n) = \frac {B(q)}{D(q)}u(n) + \frac {C(q)}{D(q)}e(t)
// end{eqnarray}
// </latex>
// It is SISO type model. It minimizes the sum of the squares of nonlinear functions using Levenberg-Marquardt algorithm.
// sys ,an idpoly type class, have different fields that contains estimated coefficients, sampling time, time unit and other estimated data in Report object.
// 
// Examples
//  u = idinput(1024,'PRBS',[0 1/20],[-1 1])
//  a = [1 0.5];b = [0 2 3];
//  model = idpoly(a,b,'Ts',0.1)
//  y = sim(u,model) + rand(length(u),1)
//  ioData = iddata(y,u,0.1)
//  sys = bj(ioData,[2,2,2,2,1])
// 
// Examples
//  u = idinput(1024,'PRBS',[0 1/20],[-1 1])
//  a = [1 0.5];b = [0 2 3];
//  model = idpoly(a,b,'Ts',0.1)
//  y = sim(u,model) + rand(length(u),1)
//  ioData = [y,u]
//  sys = bj(ioData,[2,2,2,2,1])
// 
// Authors
// Ashutosh Kumar Bhargava, Harpreet,Inderpreet  

	[lhs , rhs] = argn();	
	if ( rhs < 2 ) then
			errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2"), "bj", rhs);
			error(errmsg)
	end

	z = varargin(1)
    if typeof(z) == 'iddata' then
        Ts = z.Ts;unit = z.TimeUnit
        z = [z.OutputData z.InputData]
    elseif typeof(z) == 'constant' then
        Ts = 1;unit = 'seconds'
    end
	if ((~size(z,2)==2) & (~size(z,1)==2)) then
		errmsg = msprintf(gettext("%s: input and output data matrix should be of size (number of data)*2"), "bj");
		error(errmsg);
	end

	if (~isreal(z)) then
		errmsg = msprintf(gettext("%s: input and output data matrix should be a real matrix"), "bj");
		error(errmsg);
	end

	n = varargin(2)
	if (size(n,"*")<4| size(n,"*")>5) then
		errmsg = msprintf(gettext("%s: The order and delay matrix [nb nc nd nf nk] should be of size [4 5]"), "bj");
		error(errmsg);
	end

	if (size(find(n<0),"*") | size(find(((n-floor(n))<%eps)== %f))) then
		errmsg = msprintf(gettext("%s: values of order and delay matrix [nb nc nd nf nk] should be nonnegative integer number "), "bj");
		error(errmsg);
	end

	nb = n(1); nc = n(2); nd = n(3); nf = n(4);
	
	if (size(n,"*") == 4) then
		nk = 1
	else
		nk = n(5);
	end

    //  storing U(k) , y(k) and n data in UDATA,YDATA and NDATA respectively 
    YDATA = z(:,1);
    UDATA = z(:,2);
    NDATA = size(UDATA,"*");
    function e = G(p,m)
        e = YDATA - _objfunbj(UDATA,p,nd,nc,nf,nb,nk);
    endfunction
    tempSum = nb+nc+nd+nf
    p0 = linspace(0.5,0.9,tempSum)';
    [var,errl] = lsqrsolve(p0,G,size(UDATA,"*"));
    
    err = (norm(errl)^2);
    opt_err = err;
	resid = G(var,[]);
    b = poly([repmat(0,nk,1);var(1:nb)]',"q","coeff");
    c = poly([1; var(nb+1:nb+nc)]',"q","coeff");
    d = poly([1; var(nb+nc+1:nb+nc+nd)]',"q","coeff");
    f = poly([1; var(nb+nd+nc+1:nd+nc+nf+nb)]',"q","coeff");
    t = idpoly(1,coeff(b),coeff(c),coeff(d),coeff(f),Ts)
    
    //  estimating the other parameters
    [temp1,temp2,temp3] = predict(z,t)
    [temp11,temp22,temp33] = pe(z,t)
    
    estData = calModelPara(temp1,temp11,sum(n(1:4)))
    // pause
       t.Report.Fit.MSE = estData.MSE 
       t.Report.Fit.FPE = estData.FPE
    t.Report.Fit.FitPer = estData.FitPer
       t.Report.Fit.AIC = estData.AIC
      t.Report.Fit.AICc = estData.AICc
      t.Report.Fit.nAIC = estData.nAIC
       t.Report.Fit.BIC = estData.BIC
             t.TimeUnit = unit
                    sys = t
endfunction

function yhat = _objfunbj(UDATA,x,nd,nc,nf,nb,nk)
    x=x(:)
     q = poly(0,'q')
    tempSum = nb+nc+nd+nf
    //  making polynomials
    b = poly([repmat(0,nk,1);x(1:nb)]',"q","coeff");
    c = poly([1; x(nb+1:nb+nc)]',"q","coeff");
    d = poly([1; x(nb+nc+1:nb+nc+nd)]',"q","coeff");
    f = poly([1; x(nb+nd+nc+1:nd+nc+nf+nb)]',"q","coeff");
    bd = coeff(b*d); cf = coeff(c*f); fc_d = coeff(f*(c-d));
    if size(bd,"*") == 1 then
        bd = repmat(0,nb+nd+1,1)
    end
    maxDelay = max([length(bd) length(cf) length(fc_d)])
    yhat = [YDATA(1:maxDelay)]
    for k=maxDelay+1:size(UDATA,"*")
        bdadd = 0
        for i = 1:size(bd,"*")
            bdadd = bdadd + bd(i)*UDATA(k-i+1)
        end
        
        fc_dadd = 0
        for i = 1:size(fc_d,"*")
            fc_dadd = fc_dadd + fc_d(i)*YDATA(k-i+1)
        end
        cfadd = 0
        for i = 2:size(cf,"*")
            cfadd = cfadd + cf(i)*yhat(k-i+1)
        end
        yhat = [yhat; [ bdadd + fc_dadd - cfadd ]];
    end
endfunction