1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
function B = ipermute(A, perm)
funcprot(0);
// ipermute : Inverse permute the dimensions of a matrix A.
// B = ipermute(A, perm) returns the array A with dimensions inverted
// according to the permutation vector `perm`.
// Validate the permutation vector
if max(size(perm)) ~= ndims(A) || or(gsort(perm, "g", "i") ~= 1:ndims(A))
error('Permutation vector must contain unique integers from 1 to ndims(A).');
end
// Compute the inverse permutation vector
invPerm = zeros(size(perm,1),size(perm , 2));
for i = 1:max(size(perm))
invPerm(perm(i)) = i;
end
// Use the permute function with the inverse permutation
B = permute(A, invPerm);
endfunction
function zsort = cplxpair (z, tol, dim)
funcprot(0);
if (nargin < 1)
error("Invalid inputs");
end
// default double
realmin = 2.2251e-308
if (isempty (z))
zsort = zeros (size (z,1) , size (z,2));
return;
end
if (nargin < 2 || isempty (tol))
tol = 100* %eps;
elseif (~ isscalar (tol) || tol < 0 || tol >= 1)
error ("cplxpair: TOL must be a scalar number in the range 0 <= TOL < 1");
end
nd = ndims (z);
if (nargin < 3)
// Find the first singleton dimension.
sz = size (z);
dim = find (sz > 1, 1);
if isempty(dim)
dim = 1;
end
else
dim = floor (dim);
if (dim < 1 || dim > nd)
error ("cplxpair: invalid dimension DIM");
end
end
// Move dimension to analyze to first position, and convert to a 2-D matrix.
perm = [dim:nd, 1:dim-1];
z = permute (z, perm);
sz = size (z);
n = sz(1);
m = prod (sz) / n;
z = matrix (z, n, m);
// Sort the sequence in terms of increasing real values.
[temp, idx] = gsort (real (z), 1 , "i");
z = z(idx + n * ones (n, 1) * [0:m-1]);
// Put the purely real values at the end of the returned list.
[idxi, idxj] = find (abs (imag (z)) ./ (abs (z) + realmin) <= tol);
// Force values detected to be real within tolerance to actually be real.
z(idxi + n*(idxj-1)) = real (z(idxi + n*(idxj-1)));
//if idxi and idxj are not scalers
if ~isscalar(idxi) then
v = ones(size(idxi,1),size(idxi,2));
else
v = 1 ;
end
q = sparse ([idxi' idxj'], v, [n m]);
nr = sum (q, 1);
[temp, idx] = gsort (q, 'r','i');
midx = idx + size (idx,1) * ones (size (idx,1), 1) * [0:size(idx,2)-1];
z = z(midx);
zsort = z;
// For each remaining z, place the value and its conjugate at the start of
// the returned list, and remove them from further consideration.
for j = 1:m
p = n - nr(j);
for i = 1:2:p
if (i+1 > p)
error ("cplxpair: could not pair all complex numbers");
end
[v, idx] = min (abs (z(i+1:p,j) - conj (z(i,j))));
if (v >= tol * abs (z(i,j)))
error ("cplxpair: could not pair all complex numbers");
end
// For pairs, select the one with positive imaginary part and use it and
// it's conjugate, but list the negative imaginary pair first.
if (imag (z(i,j)) > 0)
zsort([i, i+1],j) = [conj(z(i,j)), z(i,j)];
else
zsort([i, i+1],j) = [conj(z(idx+i,j)), z(idx+i,j)];
end
z(idx+i,j) = z(i+1,j);
end
end
// Reshape the output matrix.
zsort = ipermute (matrix (zsort, sz), perm);
endfunction
function [zc, zr] = cplxreal (z, tol, dim)
funcprot(0);
if (nargin < 1 || nargin > 3)
error("invalid inputs");
end
if (isempty (z))
zc = zeros (size (z,1),size(z,2));
zr = zeros (size (z,1),size(z,2));
return;
end
if (nargin < 2 || isempty (tol))
tol = 100 * %eps ;
end
if (nargin >= 3)
zcp = cplxpair(z,tol,dim);
else
zcp = cplxpair (z , tol);
end
nz = max(size (z) );
idx = nz;
while ((idx > 0) && (zcp(idx) == 0 || (abs (imag (zcp(idx))) ./ abs (zcp(idx))) <= tol))
zcp(idx) = real (zcp(idx));
idx = idx - 1;
end
if (pmodulo (idx, 2) ~= 0)
error ("cplxreal: odd number of complex values was returned from cplxpair");
end
zc = zcp(2:2:idx);
zr = zcp(idx+1:nz);
endfunction
function [SOS, G] = zp2sos(z, p, k, DoNotCombineReal)
//This function converts filter poles and zeros to second-order sections.
//Calling Sequence
//[sos] = zp2sos(z)
//[sos] = zp2sos(z, p)
//[sos] = zp2sos(z, p, k)
//[sos, g] = zp2sos(...)
//Parameters
//z: column vector
//p: column vector
//k: real or complex value, default value is 1
//Description
//This function converts filter poles and zeros to second-order sections.
//The first and second parameters are column vectors containing zeros and poles. The third parameter is the overall filter gain, the default value of which is 1.
//The output is the sos matrix and the overall gain.
//If there is only one output argument, the overall filter gain is applied to the first second-order section in the sos matrix.
//Examples
//zp2sos([1, 2, 3], 2, 6)
//ans =
// 6 -18 12 1 -2 0
// 1 -3 0 1 0 0
if argn(2) < 3 then
k = 1;
end
if argn(2) < 2 then
p = [];
end
DoNotCombineReal = 0;
[zc, zr] = cplxreal(z(:));
[pc, pr] = cplxreal(p(:));
nzc = length(zc);
npc = length(pc);
nzr = length(zr);
npr = length(pr);
if DoNotCombineReal then
// Handling complex conjugate poles
for count = 1:npc
SOS(count, 4:6) = [1, -2 * real(pc(count)), abs(pc(count))^2];
end
// Handling real poles
for count = 1:npr
SOS(count + npc, 4:6) = [0, 1, -pr(count)];
end
// Handling complex conjugate zeros
for count = 1:nzc
SOS(count, 1:3) = [1, -2 * real(zc(count)), abs(zc(count))^2];
end
// Handling real zeros
for count = 1:nzr
SOS(count + nzc, 1:3) = [0, 1, -zr(count)];
end
// Completing SOS if needed (sections without pole or zero)
if npc + npr > nzc + nzr then
for count = nzc + nzr + 1 : npc + npr // sections without zero
SOS(count, 1:3) = [0, 0, 1];
end
else
for count = npc + npr + 1 : nzc + nzr // sections without pole
SOS(count, 4:6) = [0, 0, 1];
end
end
else
// Handling complex conjugate poles
for count = 1:npc
SOS(count, 4:6) = [1, -2 * real(pc(count)), abs(pc(count))^2];
end
// Handling pair of real poles
for count = 1:floor(npr / 2)
SOS(count + npc, 4:6) = [1, -pr(2 * count - 1) - pr(2 * count), pr(2 * count - 1) * pr(2 * count)];
end
// Handling last real pole (if any)
if pmodulo(npr, 2) == 1 then
SOS(npc + floor(npr / 2) + 1, 4:6) = [0, 1, -pr($)];
end
// Handling complex conjugate zeros
for count = 1:nzc
SOS(count, 1:3) = [1, -2 * real(zc(count)), abs(zc(count))^2];
end
// Handling pair of real zeros
for count = 1:floor(nzr / 2)
SOS(count + nzc, 1:3) = [1, -zr(2 * count - 1) - zr(2 * count), zr(2 * count - 1) * zr(2 * count)];
end
// Handling last real zero (if any)
if pmodulo(nzr, 2) == 1 then
SOS(nzc + floor(nzr / 2) + 1, 1:3) = [0, 1, -zr($)];
end
// Completing SOS if needed (sections without pole or zero)
if npc + ceil(npr / 2) > nzc + ceil(nzr / 2) then
for count = nzc + ceil(nzr / 2) + 1 : npc + ceil(npr / 2) // sections without zero
SOS(count, 1:3) = [0, 0, 1];
end
else
for count = npc + ceil(npr / 2) + 1 : nzc + ceil(nzr / 2) // sections without pole
SOS(count, 4:6) = [0, 0, 1];
end
end
end
if ~exists('SOS') then
SOS = [0, 0, 1, 0, 0, 1]; // leading zeros will be removed
end
// Removing leading zeros if present in numerator and denominator
for count = 1:size(SOS, 1)
B = SOS(count, 1:3);
A = SOS(count, 4:6);
while B(1) == 0 & A(1) == 0 do
A(1) = [];
A($ + 1) = 0;
B(1) = [];
B($ + 1) = 0;
end
SOS(count, :) = [B, A];
end
// If no output argument for the overall gain, combine it into the first section.
if argn(1) < 2 then
SOS(1, 1:3) = k * SOS(1, 1:3);
else
G = k;
end
endfunction
//tests
//sos = zp2sos ([]);
//sos = zp2sos ([], []);
//sos = zp2sos ([], [], 2);
//[sos, g] = zp2sos ([], [], 2);
//sos = zp2sos([], [0], 1);
//sos = zp2sos([0], [], 1);
//sos = zp2sos([1,2,3,4,5,6], 2);
//sos = zp2sos([-1-%i, -1+%i], [-1-2*%i, -1+2*%i], 10);
|