1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/*Description:
The unwrap function adjusts radian phases in the input array x by adding or subtracting multiples of
2π as necessary to remove phase jumps that exceed the specified tolerance tol. If tol is not provided, it defaults to 𝜋
Radian Phases: These are typically angles or phases expressed in radians, commonly encountered in signal processing and communication systems.
Tolerance (tol): Determines the maximum allowable discontinuity in the phases.
If the difference between consecutive phases exceeds tol, unwrap adjusts the phase by adding or subtracting 2π.
Dimension (dim): Specifies the dimension along which the unwrapping operation is applied.
By default, unwrap operates along the first non-singleton dimension of the input array x.
Calling Sequence:
b = unwrap(x)
b = unwrap(x, tol)
b = unwrap(x, tol, dim)
Parameters:
x: Input array containing radian phases to be unwrapped.
tol (optional): Tolerance parameter specifying the maximum jump allowed between consecutive phases before adding or subtracting 2π. Defaults to 𝜋
dim (optional): Dimension along which to unwrap the phases. If unspecified, dim defaults to the first non-singleton dimension of the array x.
Dependencies : ipermute*/
function retval = unwrap2 (x, tol, dim)
nargin = argn(2)
if (nargin < 1)
error("invalid number of inputs");
end
if (~ (type(x) == [ 1 5 8]) || or(type(x)==[4,6]))
error ("unwrap2: X must be numeric");
end
if (nargin < 2 || isempty (tol))
tol = %pi;
end
// Don't let anyone use a negative value for TOL.
tol = abs (tol);
nd = ndims (x);
sz = size (x);
if (nargin == 3)
if (~(or(type(dim)==[1 5 8])&& isscalar (dim) && ...
dim == fix (dim)) || ~(1 <= dim))
error ("unwrap2: DIM must be an integer and a valid dimension");
end
else
// Find the first non-singleton dimension.
dim = find (sz > 1, 1)
if isempty(dim)
dim = 1;
end
end
rng = 2*%pi;
// Handle case where we are trying to unwrap a scalar, or only have
// one sample in the specified dimension (a given when dim > nd).
if ((dim > nd) || ( sz(dim) == 1))
retval = x;
return;
end
if (and(abs(x(:))<%inf ) )
// Take first order difference so that wraps will show up as large values
// and the sign will show direction.
if length(sz) < 3
sz(3) = 1 ;
end
sz(dim) = 1;
zero_padding = zeros (sz(1),sz(2),sz(3));
d = cat (dim, zero_padding, -diff (x, 1, dim));
// Find only the peaks and multiply them by the appropriate amount
// of ranges so that there are kronecker deltas at each wrap point
// multiplied by the appropriate amount of range values.
p = round (abs (d)./rng) .* rng .* (double(double(d > tol) > 0) - double(double(d < -tol) > 0));
// Integrate this so that the deltas become cumulative steps to shift
// the original data.
retval = cumsum (p, dim) + x;
else
// Unwrap needs to skip over NaN, NA, Inf in wrapping calculations.
if (isvector (x))
// Simlpified path for vector inputs.
retval = x;
xfin_idx = abs(x)<%inf ;
xfin = x(xfin_idx);
d = cat (dim, 0, -diff(xfin, 1, dim));
p = round (abs (d)./rng) .* rng .* (double(double(d > tol) > 0) - double(double(d < -tol) > 0));
retval(xfin_idx) = xfin + cumsum (p, dim);
else
// For n-dimensional arrays with a possibly unequal number of non-finite
// values, mask entries with values that do not impact calcualation.
// Locate nonfinite values.
nf_idx = ~ abs(x)<%inf;
if (and(nf_idx(:)))
// Trivial case, all non-finite values
retval = x;
return;
end
// Permute all operations to occur along dim 1. Inverse permute at end.
permuteflag = dim ~= 1;
if (permuteflag)
perm_idx = [1 : nd];
perm_idx([1, dim]) = [dim, 1];
x = permute (x, perm_idx);
nf_idx = permute (nf_idx, perm_idx);
sz([1, dim]) = sz([dim, 1]);
dim = 1;
end
// Substitute next value in dim direction for nonfinite values(ignoring
// any at trailing end) to prevent calculation impact.
x_nf = x(nf_idx); // Store nonfinite values.
zero_padding = zeros ([1, sz(2:$)]);
x = __fill_nonfinite_columnwise__ (x, nf_idx, zero_padding, sz, nd);
d = [zero_padding; -diff(x, 1, 1)];
p = round (abs (d)./rng) .* rng .* ...
(((d > tol) > 0) - ((d < -tol) > 0));
retval = x + cumsum (p, 1);
// Restore nonfinite values.
retval(nf_idx) = x_nf;
// Invert permutation.
if (permuteflag)
retval = ipermute (retval, perm_idx);
end
end
end
endfunction
function y = repelems(x,r)
y = [];
for i = 1:size(r,2)
y = [y, x(r(1,i)*ones(1, r(2,i)))];
end
endfunction
function x = __fill_nonfinite_columnwise__ (x, nonfinite_loc, zero_padding, szx, ndx)
// Replace non-finite values of x, as indicated by logical index
// nonfinite_loc, with next values.
flip_idx(1:ndx) = {':'};
flip_idx(1) = {szx(1):-1:1};
// Isolate nf values by location:
nf_front = cumprod (nonfinite_loc, 1);
nf_back = cumprod (nonfinite_loc(flip_idx{:}), 1)(flip_idx{:});
nf_middle = nonfinite_loc & ~ (nf_back | nf_front);
// Process bound/middle elements
locs_before = [diff(nf_middle, 1, 1); zero_padding] == 1;
locs_after = diff ([zero_padding; nf_middle], 1, 1) == -1;
mid_gap_sizes = find (locs_after) - find (locs_before) - 1;
x(nf_middle) = repelems (x(locs_after), ...
[1 : numel(mid_gap_sizes); mid_gap_sizes'])';
// Process front edge elements
nf_front = nf_front & ~ and (nonfinite_loc, 1); // Remove all nf columns.
locs_after = diff ([zero_padding; nf_front], 1, 1) == -1;
front_gap_sizes = (sum (nf_front, 1))(any (nf_front, 1))(:);
x(nf_front) = repelems (x(locs_after), ...
[1:length(front_gap_sizes); front_gap_sizes'])';
endfunction
/*
//Test cases
i = 0;
t = [];
r = [0:100]; // original vector
w = r - 2*%pi*floor ((r+%pi)/(2*%pi)); // wrapped into [-pi,pi]
tol = 1e3*%eps;
assert_checkalmostequal (r, unwrap2 (w), tol)
assert_checkalmostequal (r', unwrap2 (w'), tol)
assert_checkalmostequal ([r',r'], unwrap2 ([w',w']), tol)
assert_checkalmostequal ([r; r ], unwrap2 ([w; w ], [], 2), tol)
assert_checkalmostequal(r + 10, unwrap2 (10 + w), tol)
assert_checkequal (w', unwrap2 (w', [], 2))
assert_checkequal(w, unwrap2 (w, [], 1))
assert_checkequal([w; w], unwrap2 ([w; w]))
// Test that small values of tol have the same effect as tol = pi
assert_checkalmostequal(r, unwrap2 (w, 0.1), tol)
assert_checkalmostequal(r, unwrap2 (w, %eps), tol)
// Test that phase changes larger than 2*pi unwrap properly
assert_checkalmostequal([0; 1], unwrap2([0; 1]))
assert_checkalmostequal([0; 4 - 2*%pi], unwrap2 ([0; 4]))
assert_checkalmostequal([0; 7 - 2*%pi], unwrap2 ([0; 7]))
assert_checkalmostequal([0; 10 - 4*%pi], unwrap2 ([0; 10]))
assert_checkalmostequal([0; 13 - 4*%pi], unwrap2 ([0; 13]))
assert_checkalmostequal([0; 16 - 6*%pi], unwrap2 ([0; 16]))
assert_checkalmostequal([0; 19 - 6*%pi], unwrap2 ([0; 19]))
//test
A = [%pi*(-4), %pi*(-2+1/6), %pi/4, %pi*(2+1/3), %pi*(4+1/2), %pi*(8+2/3), %pi*(16+1), %pi*(32+3/2), %pi*64];
assert_checkalmostequal (unwrap2 (A), unwrap2 (A, %pi));
assert_checkalmostequal (unwrap2 (A, %pi), unwrap2 (A, %pi, 2));
assert_checkalmostequal (unwrap2 (A', %pi), unwrap2 (A', %pi, 1));
//test
A = [%pi*(-4); %pi*(2+1/3); %pi*(16+1)];
B = [%pi*(-2+1/6); %pi*(4+1/2); %pi*(32+3/2)];
C = [%pi/4; %pi*(8+2/3); %pi*64];
D = [%pi*(-2+1/6); %pi*(2+1/3); %pi*(8+2/3)];
E(:, :, 1) = [A, B, C, D];
E(:, :, 2) = [A+B, B+C, C+D, D+A];
F(:, :, 1) = [unwrap2(A), unwrap2(B), unwrap2(C), unwrap2(D)];
F(:, :, 2) = [unwrap2(A+B), unwrap2(B+C), unwrap2(C+D), unwrap2(D+A)];
assert_checkalmostequal (unwrap2 (E), F);
// Test trivial return for m = 1 and dim > nd
assert_checkalmostequal (unwrap2 (ones(4,1), [], 1), ones(4,1))
assert_checkalmostequal (unwrap2 (ones(4,1), [], 2), ones(4,1))
assert_checkalmostequal (unwrap2 (ones(4,1), [], 3), ones(4,1))
assert_checkalmostequal (unwrap2 (ones(4,3,2), [], 99), ones(4,3,2))
// Test empty input return
assert_checkalmostequal (unwrap2 ([]), [])
assert_checkalmostequal (unwrap2 (ones (1,0)), ones (1,0))
assert_checkalmostequal (unwrap2 (ones (1,0), [], 1), ones (1,0))
assert_checkalmostequal (unwrap2 (ones (1,0), [], 2), ones (1,0))
assert_checkalmostequal (unwrap2 (ones (1,0), [], 3), ones (1,0))
// Test trivial return for m = 1 and dim > nd
assert_checkalmostequal (unwrap2 (ones(4,1), [], 1), ones(4,1))
assert_checkalmostequal (unwrap2 (ones(4,1), [], 2), ones(4,1))
assert_checkalmostequal (unwrap2 (ones(4,1), [], 3), ones(4,1))
assert_checkalmostequal (unwrap2 (ones(4,3,2), [], 99), ones(4,3,2))
// Test empty input return
assert_checkalmostequal (unwrap2 ([]), [])
assert_checkalmostequal (unwrap2 (ones (1,0)), ones (1,0))
assert_checkalmostequal (unwrap2 (ones (1,0), [], 1), ones (1,0))
assert_checkalmostequal (unwrap2 (ones (1,0), [], 2), ones (1,0))
assert_checkalmostequal (unwrap2 (ones (1,0), [], 3), ones (1,0))
// Test handling of non-finite values
x = %pi * [-%inf, 0.5, -1, %nan, %inf, -0.5, 1];
assert_checkalmostequal (unwrap2 (x), %pi * [-%inf, 0.5, 1, %nan, %inf, 1.5, 1], %eps)
assert_checkalmostequal (unwrap2 (x.'), %pi * [-%inf, 0.5, 1, %nan, %inf, 1.5, 1].', %eps)
*/
|