1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
// Transfer function to zero pole conversion
//[z,p,k]= tf2zp(b,a);
//z=zeros of the corrsponding tf
//p=poles of the corresponding tf
//k=gain of the tf
//b=vector containing the numerator coefficients of the transfer function in descending powers of s
//a=vector containing the denominator coefficients of the transfer function in descending powers of s
//For discrete-time transfer functions, it is highly recommended to
//make the length of the numerator and denominator equal to ensure
//correct results. You can do this using the function EQTFLENGTH in
//the Signal Processing Toolbox.
//
//
//Author
//Debdeep Dey
function [z,p,k]=tf2zp(num,den)
numop=argn(1);
//take only the first row of numerator into consideration
num=num(1,:);
//remove leading columns of zeros from numerator
if ~isempty(num) then
while(num(:,1)==0 & length(num)>1)
num(:,1)=[];
end
end
[rd,cod]=size(den);
[ny,np]=size(num);
if(rd>1) then
error("Denominator must be row vector");
elseif np>cod then
error("Improper transfer function");
end
if (~isempty(den)) then
coef=den(1);
else
coef=1;
end
if coef ==0 then
error("Denominator must have non zero leading coefficient");
end
//remove leading columns of zeros from numerator
if ~isempty(num) then
while(num(:,1)==0 & length(num)>1)
num(:,1)=[];
end
end
if (find(den==%inf) ~= [] | find(num==%inf) ~= []) then
error("Input to ROOTS must not contain NaN or Inf")
end
//poles
p=roots(den);
//zeros and gain
k=zeros(ny,1);
linf=%inf;
z=linf(ones(np-1,1),ones(ny,1));
for i=1:ny
zz=roots(num(i,:));
if ~isempty(zz), z(1:length(zz), i) = zz; end
ndx = find(num(i,:)~=0);
if ~isempty(ndx), k(i,1) = num(i,ndx(1))./coef; end
end
z=roots(num);
endfunction
|