summaryrefslogtreecommitdiff
path: root/macros/statelevels.sci
blob: d21a4f8550c1a9baa0a3a3f280fd9476276be561 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
function [levels, histogram, bins] = statelevels (x, varargin) // defining function
    
    // This function estimate statelevels of real vector X via histogram.
    // Calling Sequence
    // levels=statelevels(x, nbins, method, bounds)
    // [levels histogram]=statelevels(x, nbins, method, bounds)
    // [levels histogram bins]=statelevels(x, nbins, method, bounds)  
    // [levels histogram bins]=statelevels(x, nbins, method, bounds, 'fig', On or Off)  
    // Parameters
    // x: real vector
    // nbins: number of histogram bins to use in the histogram as a positive scalar, where the default value is 100
    // method: method to estimate the statelevels using specified METHOD as one of 'mean' or 'mode', where the  default value is 'mode'
    // bounds: specify the lower and upper bound for the histogram as a two-element row vector
    // fig: specify the logical input value to display figure as one of 'on' or 'off', where the default input in 'off'.
    // levels: return lower and upper level values
    // histogram: return histogram values
    // bins: return binlevels values
    // Examples
    // x=[1.2, 5, 10, -20, 12]
    // nbins=10
    // method='mode'
    // bounds=[1 10]
    // levels=statelevels(x, nbins, method, bounds) 
    // See also
    // Authors
    // Jitendra Singh
    

   
    
    
  if or(type(x)==10) then
    error ('Input arguments must be double.')
end 
if size(x,2)==1 | size(x,1)==1 then
else
    error("Input x should be a vector");    
end
if length(x) < 2 then // checking the length of input datasat
  error('X must be a vector with more than one element.'); // if length of X is less 2, it will give error
end

if length(varargin)>5 then
    error('Wrong number on input arguments.')
end

if length(varargin)==0 then
     nbins=100;   // defining the default value of no of bins
    method='mode'; // defing the defualt method 'mode'
    bounds=[min(x) max(x)]; 
    fig='off';
end


if length(varargin)==1 then
 
    if varargin(1) =='fig' then
        error('input argument fig required a values.')
    else
           nbins=varargin(1);
 method='mode'; // defing the defualt method 'mode'
    bounds=[min(x) max(x)]; 
    fig='off'; 
        
        end
end


if length(varargin)==2 then
    nbins=100;
     fig='off'; 
    bounds=[min(x) max(x)];    
    method='mode';
    if varargin(1)=='fig'
        fig=varargin(2)
    elseif varargin(2)=='fig' then                      
    nbins=varargin(1);
    error ('input argument fig required a values.')
    
elseif varargin(1)~='fig' & varargin(2)~='on' | varargin(2)~='off' then
    nbins=varargin(1);
    method=varargin(2);
    
end
 
end


if length(varargin)==3 then
    nbins=varargin(1);
    method='mode';
    bounds=[min(x) max(x)];
    fig='off';    
    if varargin(2)== 'fig' then
        fig=varargin(3)
    elseif varargin(3)=='fig' then   
        error ('input argument fig required a values.')
        else 
        method=varargin(2);
        bounds=varargin(3);
    end 
       
    
    end       


if length(varargin)==4 then
    nbins=varargin(1);
    method=varargin(2);
    bounds=[min(x) max(x)];
    fig='off';
    
     if varargin(3)=='fig' then
         fig=varargin(4)
     elseif varargin(4)=='fig' then
          error ('input argument fig required a values.')
      elseif varargin(4)~='fig' then
          error('Unexpected input argument.')
          else
         bounds=varargin(3);
     end
 
end


if length(varargin)==5 then
     nbins=varargin(1);
    method=varargin(2);
    bounds=varargin(3);
    if varargin(4)=='fig' then
        fig=varargin(5);
    else
        error('Wrong input argument.')
    end

end


    if and(x==0) then     
        levels=zeros(1,2)
        histogram1=13;
        xx=zeros(1, (nbins-1));
        histogram=[histogram1,xx];
        bins=zeros(1,nbins);
          
        else

 if type(nbins)==10 then  // checking, if nbins if numeric aur charactr
    error ('Expected NBINS to be one of these types: double, Instead its type was char.');
    end  
if pmodulo(nbins,1)==0 then // checking, if nbins is integert or not
else
    error ('Size inputs must be integers.')
end

if length(nbins)~=1 then
    error('Expected NBINS to be a scalar.')
end



      if method == 'mode' | method == 'mean' then  // method should be either mean or mode
        else 
     error('Expected METHOD to match one of these strings: mean or mode');
           end
           

 
 
 if type(bounds)==10 then  // checking, if nbins if numeric aur charactr
    error ('Expected BOUNDS to be one of these types: double, Instead its type was char.');
end 

if length(bounds)~=2 then
    s=size(bounds);
    error(strcat(["Expected BOUNDS to be of size 1x2 when it is actually size", " ", string(s(1)), "x", string(s(2))]))
end


//if bounds(2)>0 | bounds (1)>0 then
//
//if bounds(2)>bounds(1) then
//     lower=bounds(1)
// upper=bounds(2);
//    else
//    error('BOUNDS must be strictly increasing.')
//end
//end

if bounds(2)<=bounds(1) then
    error('BOUNDS must be strictly increasing.')
else
    lower=bounds(1);
    upper=bounds(2);
end

if  bounds(2)==0 & bounds (1)==0 then
     lower=0;
 upper=0;
end
 
  if fig == 'off' | fig == 'on' then  // method should be either mean or mode
        else 
     error('Expected fig to match one of these strings: on or off');
           end

  denomm = upper-lower;
  if denomm==0 then
    denomm = 2.220D-16 ;
  end
  
  idx = nbins * (x-lower)/denomm;  
  idx = ceil(idx) + (idx==0);
  idx = idx(idx>=1 & idx<=nbins);
  histo = zeros(nbins, 1);
  for i=1:length(idx)
    histo(idx(i)) = histo(idx(i)) + 1; // calculationf histogram
  end
  

  

dy = (upper - lower) / length(histo);
index=find(histo>0);

if isempty(index) then
   iLowerRegion=[] 
    iUpperRegion=[]

else
  nn=length(index);
  iLowerRegion = index(1);
 
  iUpperRegion = index(nn);
end

  if isempty(iLowerRegion) | isempty(iUpperRegion) then
    levels = ['NaN' 'NaN'];
  else
   
        
    iLow  = iLowerRegion(1);
    iHigh = iUpperRegion(1);

    // define the lower and upper histogram regions halfway
    //between the lowest and highest nonzero bins.    
    lLow  = iLow;
    lHigh = iLow + floor((iHigh - iLow)/2);
    uLow  = iLow + floor((iHigh - iLow)/2);
    uHigh = iHigh;

    lHist = histo(lLow:lHigh); // defing lower and upper histogram
    uHist = histo(uLow:uHigh);
       
      levels = zeros(1,2);
       if (method == 'mode') then // if method is mode, calculate upper and lower levels
     [j iMax] = max(lHist);
      [k iMin] = max(uHist);
      levels(1) = lower + dy * (lLow + iMax(1) - 1.5);
      levels(2) = lower + dy * (uLow + iMin(1) - 1.5);
       elseif (method=='mean') then  // if method is mean, calculate lower and upper levels
           levels(1) = lower + dy * sum(((lLow:lHigh)-0.5).* (lHist)') / sum(lHist);
      levels(2) = lower + dy * sum(((uLow:uHigh)-0.5).* (uHist)') / sum(uHist);
       end
      
      // calculation bins
      
  end

 histogram=histo;  
      bins = lower + ((1:nbins) - 0.5)' * (upper - lower) / nbins; 
      


  if fig=='on' then // if the defined output is only 1, the it will provide the graphical representation of                          //levels
      
      if levels(1)=='NaN' | levels(2)=='NaN' then
          subplot(2,1,1)  
          plot(x, '-k', 'LineWidth',2)
             xlabel("Samples", "fontsize",3, "color", "black" )
      ylabel("Level (Volts)", "fontsize",3, "color", "black" )
      title("Signal",  "fontsize",3)
      
       subplot(2,1,2)
       plot(bins,histogram, '-k', 'LineWidth',2)
       xlabel("Level (Volts)", "fontsize",3, "color", "black" )
      ylabel("Count", "fontsize",3, "color", "black" )
           title("Histogram of the signal levels", "fontsize",3)
           
         else 
      subplot(2,1,1)
      plot(x, '-k', 'LineWidth',2)
      plot([1 length(x)],levels(1) * [1 1],'-.r', 'LineWidth',2)
      plot([1 length(x)],levels(2) * [1 1],'-.r', 'LineWidth',2)
      xlabel("Samples", "fontsize",3, "color", "black" )
      ylabel("Level (Volts)", "fontsize",3, "color", "black" )
      title("Signal",  "fontsize",3)
      
      subplot(2,1,2)
      plot(bins,histogram, '-k', 'LineWidth',2)
       xlabel("Level (Volts)", "fontsize",3, "color", "black" )
      ylabel("Count", "fontsize",3, "color", "black" )
      
      title("Histogram of the signal levels", "fontsize",3)
      end
  end
   end
      
      
  endfunction