1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
// Copyright (C) 2018 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Original Source : https://octave.sourceforge.io/signal/
// Modifieded by:Sonu Sharma, RGIT Mumbai
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop)
//Transform band edges of a prototype filter (cutoff at W=1) represented in s-plane zero-pole-gain form (Frequency Transformation in Analog domain).
//Calling Sequence
//[Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop)
//[Sz, Sp] = sftrans (Sz, Sp, Sg, W, stop)
//[Sz] = sftrans (Sz, Sp, Sg, W, stop)
//Parameters
//Sz: Zeros.
//Sp: Poles.
//Sg: Gain.
//W: Edge freuency of target filter.
//stop: True(%T or 1) for high pass and band stop filters or false (%F or 0) for low pass and band pass filters.
//Description
//Theory: Given a low pass filter represented by poles and zeros in the splane, you can convert it to a low pass, high pass, band pass or band stop by transforming each of the poles and zeros individually. The following table summarizes the transformation:
// Transform Zero at x Pole at x
// ---------------- ------------------------- ------------------------
// Low Pass zero: Fc x/C pole: Fc x/C
// S -> C S/Fc gain: C/Fc gain: Fc/C
// ---------------- ------------------------- ------------------------
// High Pass zero: Fc C/x pole: Fc C/x
// S -> C Fc/S pole: 0 zero: 0
// gain: -x gain: -1/x
// ---------------- ------------------------- ------------------------
// Band Pass zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl)
// S^2+FhFl pole: 0 zero: 0
// S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C
// S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2
// ---------------- ------------------------- ------------------------
// Band Stop zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl)
// S(Fh-Fl) pole: +-sqrt(-FhFl) zero: +-sqrt(-FhFl)
// S -> C -------- gain: -x gain: -1/x
// S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2
// ---------------- ------------------------- ------------------------
// Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT)
// 2 z-1 pole: -1 zero: -1
// S -> - --- gain: (2-xT)/T gain: (2-xT)/T
// T z+1
// ---------------- ------------------------- ------------------------
//
//where C is the cutoff frequency of the initial lowpass filter, Fc is the edge of the target low/high pass filter and [Fl,Fh] are the edges of the target band pass/stop filter. With abundant tedious
//algebra, you can derive the above formulae yourself by substituting the transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a pole at x, and converting the result into the form:
//
// H(S)=g prod(S-Xi)/prod(S-Xj)
//Examples
//[Sz, Sp, Sg] = sftrans([1 2 3], [4 5 6], 15, 20, %T)
// Output
// Sg =
//
// 0.75
// Sp =
//
// 5. 4. 3.3333333
// Sz =
//
// 20. 10. 6.6666667
funcprot(0);
[nargout nargin]= argn();
if (nargin ~= 5)
error("sftrans: Wrong number of input arguments.")
end
if stop == %T then
elseif stop == %F
elseif stop == 1
elseif stop == 0
else
error("sftrans: stop must be true (%T or 1) or false (%F or 0)")
end
C = 1;
p = length(Sp);
z = length(Sz);
if z > p | p == 0
error("sftrans: must have at least as many poles as zeros in s-plane");
end
if length(W)==2
Fl = W(1);
Fh = W(2);
if stop
// ---------------- ------------------------- ----------------------
// Band Stop zero: b ± sqrt(b^2-FhFl) pole: b ± sqrt(b^2-FhFl)
// S(Fh-Fl) pole: ±sqrt(-FhFl) zero: ±sqrt(-FhFl)
// S -> C -------- gain: -x gain: -1/x
// S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2
// ---------------- ------------------------- ----------------------
if (isempty(Sz))
Sg = Sg * real (1 ./ prod(-Sp));
elseif (isempty(Sp))
Sg = Sg * real(prod(-Sz));
else
Sg = Sg * real(prod(-Sz)/prod(-Sp));
end
b = (C*(Fh-Fl)/2)./Sp;
Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
extend = [sqrt(-Fh*Fl), -sqrt(-Fh*Fl)];
if isempty(Sz)
Sz = [extend(1+rem([1:2*p],2))];
else
b = (C*(Fh-Fl)/2)./Sz;
Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
if (p > z)
Sz = [Sz, extend(1+rem([1:2*(p-z)],2))];
end
end
else
// ---------------- ------------------------- ----------------------
// Band Pass zero: b ± sqrt(b^2-FhFl) pole: b ± sqrt(b^2-FhFl)
// S^2+FhFl pole: 0 zero: 0
// S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C
// S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2
// ---------------- ------------------------- ----------------------
Sg = Sg * (C/(Fh-Fl))^(z-p);
b = Sp*((Fh-Fl)/(2*C));
Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
if isempty(Sz)
Sz = zeros(1,p);
else
b = Sz*((Fh-Fl)/(2*C));
Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
if (p>z)
Sz = [Sz, zeros(1, (p-z))];
end
end
end
else
Fc = W;
if stop
// ---------------- ------------------------- ----------------------
// High Pass zero: Fc C/x pole: Fc C/x
// S -> C Fc/S pole: 0 zero: 0
// gain: -x gain: -1/x
// ---------------- ------------------------- ----------------------
if (isempty(Sz))
Sg = Sg * real (1 ./ prod(-Sp));
elseif (isempty(Sp))
Sg = Sg * real(prod(-Sz));
else
Sg = Sg * real(prod(-Sz)/prod(-Sp));
end
Sp = C * Fc ./ Sp;
if isempty(Sz)
Sz = zeros(1,p);
else
Sz = [C * Fc ./ Sz];
if (p > z)
Sz = [Sz, zeros(1,p-z)];
end
end
else
// ---------------- ------------------------- ----------------------
// Low Pass zero: Fc x/C pole: Fc x/C
// S -> C S/Fc gain: C/Fc gain: Fc/C
// ---------------- ------------------------- ----------------------
Sg = Sg * (C/Fc)^(z-p);
Sp = Fc * Sp / C;
Sz = Fc * Sz / C;
end
end
endfunction
|