summaryrefslogtreecommitdiff
path: root/macros/sftrans.sci
blob: 2dfd2bbf3b65e99b05415545ddd53b36686cce10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// Copyright (C) 2018 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Original Source : https://octave.sourceforge.io/signal/
// Modifieded by:Sonu Sharma, RGIT Mumbai
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in

function [Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop)
    //Transform band edges of a prototype filter (cutoff at W=1) represented in s-plane zero-pole-gain form (Frequency Transformation in Analog domain).

    //Calling Sequence
    //[Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop)
    //[Sz, Sp] = sftrans (Sz, Sp, Sg, W, stop)
    //[Sz] = sftrans (Sz, Sp, Sg, W, stop)

    //Parameters
    //Sz: Zeros.
    //Sp: Poles.
    //Sg: Gain.
    //W: Edge freuency of target filter.
    //stop: True(%T or 1) for high pass and band stop filters or false (%F or 0) for low pass and band pass filters.

    //Description
    //Theory: Given a low pass filter represented by poles and zeros in the splane, you can convert it to a low pass, high pass, band pass or band stop by transforming each of the poles and zeros individually. The following table summarizes the transformation:

    // Transform         Zero at x                  Pole at x
    // ----------------  -------------------------  ------------------------
    // Low Pass          zero: Fc x/C               pole: Fc x/C
    // S -> C S/Fc       gain: C/Fc                 gain: Fc/C
    // ----------------  -------------------------  ------------------------
    // High Pass         zero: Fc C/x               pole: Fc C/x
    // S -> C Fc/S       pole: 0                    zero: 0
    //                   gain: -x                   gain: -1/x
    // ----------------  -------------------------  ------------------------
    // Band Pass         zero: b +- sqrt(b^2-FhFl)  pole: b +- sqrt(b^2-FhFl)
    //        S^2+FhFl   pole: 0                    zero: 0
    // S -> C --------   gain: C/(Fh-Fl)            gain: (Fh-Fl)/C
    //        S(Fh-Fl)   b=x/C (Fh-Fl)/2            b=x/C (Fh-Fl)/2
    // ----------------  -------------------------  ------------------------
    // Band Stop         zero: b +- sqrt(b^2-FhFl)  pole: b +- sqrt(b^2-FhFl)
    //        S(Fh-Fl)   pole: +-sqrt(-FhFl)        zero: +-sqrt(-FhFl)
    // S -> C --------   gain: -x                   gain: -1/x
    //        S^2+FhFl   b=C/x (Fh-Fl)/2            b=C/x (Fh-Fl)/2
    // ----------------  -------------------------  ------------------------
    // Bilinear          zero: (2+xT)/(2-xT)        pole: (2+xT)/(2-xT)
    //      2 z-1        pole: -1                   zero: -1
    // S -> - ---        gain: (2-xT)/T             gain: (2-xT)/T
    //      T z+1
    // ----------------  -------------------------  ------------------------
    //
    //where C is the cutoff frequency of the initial lowpass filter, Fc is the edge of the target low/high pass filter and [Fl,Fh] are the edges of the target band pass/stop filter. With abundant tedious
    //algebra, you can derive the above formulae yourself by substituting the transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a pole at x, and converting the result into the form:
    //
    //    H(S)=g prod(S-Xi)/prod(S-Xj)


    //Examples
      //[Sz, Sp, Sg] = sftrans([1 2 3], [4 5 6], 15, 20, %T)
    // Output
    // Sg  =
    //
    //    0.75
    // Sp  =
    //
    //    5.    4.    3.3333333
    // Sz  =
    //
    //    20.    10.    6.6666667

    funcprot(0);
    [nargout nargin]= argn();

    if (nargin ~= 5)
        error("sftrans: Wrong number of input arguments.")
    end

    if stop == %T then
    elseif stop == %F
    elseif stop == 1
    elseif stop == 0
    else
        error("sftrans: stop must be true (%T or 1) or false (%F or 0)")
    end

    C = 1;
    p = length(Sp);
    z = length(Sz);
    if z > p | p == 0
        error("sftrans: must have at least as many poles as zeros in s-plane");
    end

    if length(W)==2
        Fl = W(1);
        Fh = W(2);
        if stop
            // ----------------  -------------------------  ----------------------
            // Band Stop         zero: b ± sqrt(b^2-FhFl)   pole: b ± sqrt(b^2-FhFl)
            //        S(Fh-Fl)   pole: ±sqrt(-FhFl)         zero: ±sqrt(-FhFl)
            // S -> C --------   gain: -x                   gain: -1/x
            //        S^2+FhFl   b=C/x (Fh-Fl)/2            b=C/x (Fh-Fl)/2
            // ----------------  -------------------------  ----------------------
            if (isempty(Sz))
                Sg = Sg * real (1 ./ prod(-Sp));
            elseif (isempty(Sp))
                Sg = Sg * real(prod(-Sz));
            else
                Sg = Sg * real(prod(-Sz)/prod(-Sp));
            end
            b = (C*(Fh-Fl)/2)./Sp;
            Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
            extend = [sqrt(-Fh*Fl), -sqrt(-Fh*Fl)];
            if isempty(Sz)
                Sz = [extend(1+rem([1:2*p],2))];
            else
                b = (C*(Fh-Fl)/2)./Sz;
                Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
                if (p > z)
                    Sz = [Sz, extend(1+rem([1:2*(p-z)],2))];
                end
            end
        else
            // ----------------  -------------------------  ----------------------
            // Band Pass         zero: b ± sqrt(b^2-FhFl)   pole: b ± sqrt(b^2-FhFl)
            //        S^2+FhFl   pole: 0                    zero: 0
            // S -> C --------   gain: C/(Fh-Fl)            gain: (Fh-Fl)/C
            //        S(Fh-Fl)   b=x/C (Fh-Fl)/2            b=x/C (Fh-Fl)/2
            // ----------------  -------------------------  ----------------------
            Sg = Sg * (C/(Fh-Fl))^(z-p);
            b = Sp*((Fh-Fl)/(2*C));
            Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
            if isempty(Sz)
                Sz = zeros(1,p);
            else
                b = Sz*((Fh-Fl)/(2*C));
                Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
                if (p>z)
                    Sz = [Sz, zeros(1, (p-z))];
                end
            end
        end
    else
        Fc = W;
        if stop
            // ----------------  -------------------------  ----------------------
            // High Pass         zero: Fc C/x               pole: Fc C/x
            // S -> C Fc/S       pole: 0                    zero: 0
            //                   gain: -x                   gain: -1/x
            // ----------------  -------------------------  ----------------------
            if (isempty(Sz))
                Sg = Sg * real (1 ./ prod(-Sp));
            elseif (isempty(Sp))
                Sg = Sg * real(prod(-Sz));
            else
                Sg = Sg * real(prod(-Sz)/prod(-Sp));
            end
            Sp = C * Fc ./ Sp;
            if isempty(Sz)
                Sz = zeros(1,p);
            else
                Sz = [C * Fc ./ Sz];
                if (p > z)
                    Sz = [Sz, zeros(1,p-z)];
                end
            end
        else
            // ----------------  -------------------------  ----------------------
            // Low Pass          zero: Fc x/C               pole: Fc x/C
            // S -> C S/Fc       gain: C/Fc                 gain: Fc/C
            // ----------------  -------------------------  ----------------------
            Sg = Sg * (C/Fc)^(z-p);
            Sp = Fc * Sp / C;
            Sz = Fc * Sz / C;
        end
    end
endfunction