1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
function [p,num]=seqperiod(x)
//Calculates the period of a sequence
//Calling Sequence
//[p,num]=seqperiod(x)
//Parameters
//x: A vector matrix or n-dimensional array
//Description
//[p,num]=seqperiod(x)
//Returns an integer p such that x(1:p) is the smallest subsequence that repeats in x
//The number of times the subsequence repeats is returned in num (may not be an integer)
//Repetitions may be incomplete at the end of the sequence but no breaks are permitted between repetitions
//If there is no subsequence that repeats in x then p=length(x)
//If x is a matrix or n-dimesnional array, the function operates along the first non-singleton dimension of x
//Examples
//x = [4 0 1 5;
// 1 1 2 5;
// 2 0 3 5;
// 3 1 1 5];
//p = seqperiod(x)
//p =
//
// 4. 2. 3. 1.
//A=zeros(4,1,4);
//A(:,1,:)=x;
//p1=seqperiod(A);
//p1 =
//
//(:,:,1)
//
//4.
//(:,:,2)
//
//2.
//(:,:,3)
//
//3.
//(:,:,4)
//
//1.
//Authors
//Ankur Mallick
funcprot(0);
if(argn(2)~=1)
error('Incorrect number of input arguments.');
else
S=size(x);
S1=S(S>1);
if(length(S1)==1)
u=0,v=0;
x=matrix(x,S1,1);
for i=1:S1
if(S1>=2*i)
L=ceil((S1-i)/i);
v=matrix(x(1:i)*ones(1,L),i*L,1);
u=x(i+1:S1);
v=v(1:length(u));
else
u=x(i+1:S1);
v=x(1:length(u));
end
if(v==u|i==S1)
p=i;
num=S1/p;
break;
end
end
else
x1=squeeze(x);
S2=size(x1);
p=zeros(sum(x1,1)); //summing x along first dimension gives p a leading singleton dimensionn
num=zeros(p);
for i=1:prod(S2(2:length(S2)))
[p1,num1]=seqperiod(x1(:,i));
p(i)=p1; //Linear indexing
num(i)=num1; //Linear indexing
end
p=matrix(p,[1,S(2:length(S))]);
num1=matrix(num,[1,S(2:length(S))]);
end
end
endfunction
|