summaryrefslogtreecommitdiff
path: root/macros/periodogram.sci
blob: 11971d64fce7dcc9e9848797b5a9d285cfb5705b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Copyright (C) 2018 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author:[insert name]
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in






function [pxx, f] = periodogram (x, varargin)
//Calling Sequence:
//[PXX, F] = periodogram (X, WIN, NFFT, FS)
//[PXX, F] = periodogram (..., "RANGE")

//     The possible inputs are:
//
//     X
//
//          data vector.  If X is real-valued a one-sided spectrum is
//          estimated.  If X is complex-valued, or "RANGE" specifies
//          "twosided", the full spectrum is estimated.
//
//     WIN
//          window weight data.  If window is empty or unspecified a
//          default rectangular window is used.  Otherwise, the window is
//          applied to the signal ('X .* WIN') before computing the
//          periodogram.  The window data must be a vector of the same
//          length as X.
//
//     NFFT
//          number of frequency bins.  The default is 256 or the next
//          higher power of 2 greater than the length of X ('max (256,
//          2.^nextpow2 (length (x)))').  If NFFT is greater than the
//          length of the input then X will be zero-padded to the length
//          of NFFT.
//
//     FS
//          sampling rate.  The default is 1.
//
//     RANGE
//          range of spectrum.  "onesided" computes spectrum from
//          [0..nfft/2+1].  "twosided" computes spectrum from [0..nfft-1].
//
//


//Test cases:
////1.
//n=0:319;
//x=cos(%pi/4*n)+rand(size(n,"r"),"normal");
//[pxx,w]=periodogram(x,ones(1,320),256,2000,"onesided");
//plot2d(w,10*log10(pxx))
//xtitle('periodogram','frequency','magnitude(db)')
//xgrid()
//
//

[nargout,nargin]=argn();
  // check input arguments
  if (nargin < 1 | nargin > 5)
   error("wrong no. of input arguments")
  end

  nfft = [];
  fs = [];
  ran = [];
  win = [];
  j = 2;
  for k = 1:length (varargin)
    if (type (varargin(k))==10)
      ran = varargin(k);
    else
      select (j)
        case 2
          win = varargin(k);
        case 3
          nfft   = varargin(k);
        case 4
          fs     = varargin(k);
      end
      j=j+1;
    end
  end

  if (~ isvector (x))
    error ("periodogram: X must be a real or complex vector");
  end
  x = x(:);  // Use column vectors from now on

  n = size(x,"r");

  if (~isempty (win))
    if (~ isvector (win) | length (win) ~= n)
      error ("periodogram: WIN must be a vector of the same length as X");
    end
    win = win(:);
    x =x.* win;
else
    win=window("re",length(x));
    win=win(:);
    x=x.*win;

  end

  if (isempty (nfft))
    nfft = max (256, 2.^nextpow2 (n));
  elseif (~ isscalar (nfft))
    error ("periodogram: NFFT must be a scalar");
  end

  use_w_freq = isempty (fs);
  if (~use_w_freq & ~ isscalar (fs))
    error ("periodogram: FS must be a scalar");
  end

  if (~strcmpi (ran, "onesided"))
    ran = 1;
  elseif (~strcmpi (ran, "twosided"))
    ran = 2;
  elseif (~strcmpi (ran, "centered"))
    error ('periodogram: centered ran type is not implemented');
  else
    ran = 2-isreal (x);
  end

  // compute periodogram

  if (n > nfft)
    Pxx = 0;
    rr = modulo(length (x), nfft);
    if (rr)
      x = [x(:); zeros(nfft-rr, 1)];
    end
    x = sum (matrix (x, nfft,length(x)/nfft), 2);
  end

  if (~ isempty (win))
    n = sum(win.*conj(win));
  end;
  Pxx = (abs (fft (x))) .^ 2 / n;

  if (use_w_freq)
    Pxx =Pxx/ 2*%pi;
  else
    Pxx =Pxx/ fs;
  end

  // generate output arguments

  if (ran == 1)  // onesided
    if (modulo (nfft,2)==0)  // nfft is even
      psd_len = nfft/2+1;
      Pxx = Pxx(1:psd_len) + [0; Pxx(nfft:-1:psd_len+1); 0];
    else                 // nfft is odd
      psd_len = (nfft+1)/2;
      Pxx = Pxx(1:psd_len) + [0; Pxx(nfft:-1:psd_len+1)];
    end
  end

  if (nargout ~= 1)
    if (ran == 1)
      f = (0:nfft/2)' / nfft;
    elseif (ran == 2)
      f = (0:nfft-1)' / nfft;
    end
    if (use_w_freq)
      f =f* 2*pi;  // generate w=2*pi*f
    else
      f =f* fs;
    end
  end



    pxx = Pxx;




endfunction