1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
/*
Description:
Ordinary least squares estimation.
OLS applies to the multivariate model y = x*b + e with mean (e) = 0 and
cov (vec (e)) = kron (s, I). where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, and e is a t by p matrix.
Each row of y and x is an observation and each column a variable.
The return values beta, sigma, and r are defined as follows.
Calling Sequence:
[beta, sigma, r] = ols (y, x)
Arguments:
beta:
The OLS estimator for b. beta is calculated directly via inv (x'*x) * x' * y if the matrix x'*x is of full rank. Otherwise, beta = pinv (x) * y where pinv (x) denotes the pseudoinverse of x.
sigma
The OLS estimator for the matrix s,
sigma = (y-x*beta)'* (y-x*beta) / (t-rank(x))
r
The matrix of OLS residuals, r = y - x*beta.
*/
function [bt, sigma, r] = ols (y, x)
function [u , p] = formatted_chol(z)
//p flags whether the matrix A was positive definite and chol does not fail. A zero value of p indicates that matrix A is positive definite and R gives the factorization. Otherwise, p will have a positive value.
ierr = execstr (" u = chol (z);",'errcatch' )
if ( ierr == 29 )
p = %T ;
warning("chol: Matrix is not positive definite.")
u = %nan
else
p = %F ;
end
endfunction
nargin = argn ( 2 )
if (nargin ~= 2)
error ("null");
end
if (~ (or (type(x) == [ 1 5 8] ) && or (type(y) == [1 5 8])))
error ("ols: X and Y must be numeric matrices or vectors");
end
if (ndims (x) ~= 2 || ndims (y) ~= 2)
error ("ols: X and Y must be 2-D matrices or vectors");
end
[nr, nc] = size (x);
[ry, cy] = size (y);
if (nr ~= ry)
error ("ols: number of rows of X and Y must be equal");
end
if (type(x) == 8)
x = double (x);
end
if ( type(y) == 8 )
y = double (y);
end
// Start of algorithm
z = x' * x;
[u, p] = formatted_chol (z);
if (p)
bt = pinv (x) * y;
else
bt = u \ (u' \ (x' * y));
end
if (nargout > 1)
r = y - x * bt;
// z is of full rank, avoid the SVD in rnk
if (p == 0)
rnk = size (z,2);
else
rnk = rank (z);
end
sigma = r' * r / (nr - rnk);
end
endfunction
|