summaryrefslogtreecommitdiff
path: root/macros/lpc.sci
blob: 02ab1a5da7faa4e8c2e2a58bd2a2e4201fa53f5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
function [a,g] = lpc(x,varargin)
    // Linear prediction filter coefficients
    //
    //
    // Calling Sequence
    // [a,g] = lpc(x)
    // [a,g] = lpc(x,p)
    //
    //
    // Description
    // [a,g] = lpc(x,p)
    //      Determines the coefficients of a pth order forward linear predictor 
    //      filter by minimizing the squared error. If p is unspecified, a 
    //      default value of length(x)-1 is used.
    //
    // Parameters
    // x: double
    //      The input signal. If x is a matrix, each column in treated as an 
    //      independent computation
    // p: int, natural number, scalar
    //      The order of the linear prediction filter to be inferred. Value must
    //      be a scalar and a positive natural number. p must be less than or 
    //      equal to the length of the signal vector
    // a: double
    //      The coefficients of the forward linear predictor. Coefficient for 
    //      each signal input is returned as a row vector.
    // g: double
    //      Column vector of averaged square prediction error
    //
    //
    // Examples
    // 1) 
    //      noise = randn(20000,1);
    //      x = filter(1,[1 1/5 1/3 1/4],noise);
    //      x = x(15904:20000);
    //      [a,g] = lpc(x,3);
    //
    //
    // References
    // [1] Hayes, Monson H. Statistical digital signal processing and modeling. 
    // John Wiley & Sons, 2009, pg. 220
    //
    // See also
    // aryule | levinson | prony | pyulear | stmcb
    //
    // Authors
    // Ayush Baid
    //

    // ** Check on number of arguments **
    [numOutArgs,numInArgs] = argn(0);
    
    if numInArgs<1 | numInArgs>2 then
        msg = "lpc: Wrong number of input argument; 1-2 expected";
        error(77,msg);
    end
    if numOutArgs~=2 then
        msg = "lpc: Wrong number of output argument; 2 expected";
        error(78,msg);
    end
    
    // ** Parsing input arguments **
    // 1) check on x
    
    // check on dimensions
    if size(x,1)==1 | size(x,2)==1 then
        // x is a single signal
        x = x(:); // converting to column vector
    end
    if ndims(x)>2 then
        msg = "lpc: Wrong size for argument #1 (x): a vector or 2D matrix expected"
        error(60,msg);
    end
    
    // check on data type
    if type(x)==8 then
        // convert int to double
        x = double(x);
    elseif type(x)~=1 then
        msg = "lpc: Wrong type for argument #1 (x): Real or complex matrix expected";
        error(53,msg);
    end
    
    if length(varargin)==0 then
        p = size(x,1)-1;
    else
        p = varargin(1);
        // 2) check on p
        if length(p)~=1 then
            msg = "lpc: Wrong size for argument #2 (p): Scalar expected";
            error(60,msg);
        end
        
        if type(p)~=1 & type(p)~=8 then
            msg = "lpc: Wrong type for argument #2 (p): Natural number expected";
            error(53,msg);
        end
        
        if p~=round(p) | p<=0 then
            msg = "lpc: Wrong type for argument #2 (p): Natural number expected";   
            error(53,msg);
        end
        
        if p>size(x,1) then
            msg = "lpc: Wrong value for argument #2 (p): Must be less than or equal to the length of the signal vector";   
            error(53,msg);
        end
        
        if ~isreal(p) then
            msg = "lpc: Wrong type for argument #2 (p): Real scalar expected";
            error(53,msg);
        end
    end
    
    num_signals = size(x,2);

    // ** Processing **
    N = size(x,1);
    
    // zero pad x
    x = [x; zeros(2^nextpow2(2*N-1)-N,size(x,2))];
    X = fft(x,-1,1);
    R = fft(abs(X).^2,1,1);
    R = R./N; // Biased autocorrelation estimate
    
    // change ieee mode to handle division by zero
    ieee_prev = ieee();
    ieee(2);
    [a,g] = ld_recursion(R,p);
    ieee(int(ieee_prev));
    
    
    // filter coeffs should be real if input is real
    for signal_idx=1:num_signals
        if isreal(x(:,signal_idx)) then
            a(signal_idx,:) = real(a(signal_idx,:)); 
        end
    end
    
endfunction

function [a,e] = ld_recursion(R,p)
    // Solve for LP coefficients using Levinson-Derbin recursion
    //
    // Paramaters
    // R: double
    //      Autocorrelation matrix where column corresponds to autocorrelation 
    //      to be treated independently
    // a: double
    //      Matrix where rows denote filter cofficients of the corresponding 
    //      autocorrelation values
    // e: double
    //      Column vector denoting error variance for each filter computation
    
    
    num_filters = size(R,2);
    
    
    // Initial filter (order 0)
    a = zeros(num_filters,p+1);
    a(:,1) = 1;
    e = R(1,:).';
    
    
    // Solving in a bottom-up fashion (low to high filter coeffs)
    for m=1:p
        k_m = -sum(a(:,m:-1:1).*R(2:m+1,:).',2)./e;
        a(:,2:m+1) = a(:,2:m+1) + k_m(:,ones(1,m)).*conj(a(:,m:-1:1));
        
        e = (1-abs(k_m).^2).*e;
    end
    
endfunction