summaryrefslogtreecommitdiff
path: root/macros/invfreqz.sci
blob: 433100bf4ac76ce3a2a20889eb25af4119cf1a6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// Copyright (C) 2018 - IIT Bombay - FOSSEE
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Original Source : https://octave.sourceforge.io/
// Modifieded by: Abinash Singh Under FOSSEE Internship
// Last Modified on : 3 Feb 2024
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
// FIXME: check invfreq.sci for todo's
/*
  : [B,A] = invfreqz(H,F,nB,nA) ¶
  : [B,A] = invfreqz(H,F,nB,nA,W) ¶
  : [B,A] = invfreqz(H,F,nB,nA,W,iter,tol,'trace') ¶

  Fit filter B(z)/A(z)to the complex frequency response H at frequency points F.

  A and B are real polynomial coefficients of order nA and nB. Optionally, the fit-errors can be weighted vs frequency according to the weights W.

  Note: all the guts are in invfreq.m

  H: desired complex frequency response

  F: normalized frequency (0 to pi) (must be same length as H)

  nA: order of the denominator polynomial A

  nB: order of the numerator polynomial B

  W: vector of weights (must be same length as F)

*/
// Dependencies
// invfreq
function [B, A, SigN] = invfreqz(H, F, nB, nA, W, iter, tol, tr, varargin)

  if nargin < 9
    varargin = {};
    if nargin < 8
      tr = '';
      if nargin < 7
        tol = [];
        if nargin < 6
          iter = [];
          if nargin < 5
            W = ones(1,length(F));
          end
        end
      end
    end
  end
  // now for the real work
  [B, A, SigN] = invfreq(H, F, nB, nA, W, iter, tol, tr, 'z', varargin);

endfunction
/*
demo       
order = 9;  //order of test filter
//going to 10 or above leads to numerical instabilities and large errors
fc = 1/2;   // sampling rate / 4
n = 128;    // frequency grid size
// butterworth filter of order 9 and fc=0.5
B0 = [5.1819e-03   4.6637e-02   1.8655e-01   4.3528e-01   6.5292e-01   6.5292e-01   4.3528e-01   1.8655e-01  4.6637e-02   5.1819e-03];
A0 = [  1.0000e+00  -8.6736e-16   1.2010e+00  -7.7041e-16   4.0850e-01  -1.7013e-16   4.2661e-02  -9.0155e-18 9.6666e-04  -5.3661e-20];
[H0, w] = freqz(B0, A0, n);
Nn = (rand(size(w,1),size(w,2),'normal')+%i*rand(size(w,1),size(w,2),'normal'))/sqrt(2);
[Bh, Ah, Sig0] = invfreqz(H0, w, order, order);
[Hh, wh] = freqz(Bh, Ah, n);
[BLS, ALS, SigLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "LS");
[HLS _ ] = freqz(BLS, ALS, n);
[BTLS, ATLS, SigTLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "TLS");
[HTLS _ ]= freqz(BTLS, ATLS, n);
[BMLS, AMLS, SigMLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "QR");
[HMLS _ ] = freqz(BMLS, AMLS, n);
plot(w,[abs(H0) abs(Hh)])
xlabel("Frequency (rad/sample)");
ylabel("Magnitude");
legend('Original','Measured');
err = norm(H0-Hh);
disp(sprintf('L2 norm of frequency response error = %f',err));
        
*/
/*
order = 9; 
fc = 1/2; 
n = 128;
B0 = [5.1819e-03   4.6637e-02   1.8655e-01   4.3528e-01   6.5292e-01   6.5292e-01   4.3528e-01   1.8655e-01  4.6637e-02   5.1819e-03];
A0 = [  1.0000e+00  -8.6736e-16   1.2010e+00  -7.7041e-16   4.0850e-01  -1.7013e-16   4.2661e-02  -9.0155e-18 9.6666e-04  -5.3661e-20];
[H0, w] = freqz(B0, A0, n);
Nn = (randn(size(w,1),size(w,2))+i*randn(size(w,1),size(w,2)))/sqrt(2);
[Bh, Ah, Sig0] = invfreqz(H0, w, order, order);
[Hh, wh] = freqz(Bh, Ah, n);
[BLS, ALS, SigLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "LS");
[HLS _ ] = freqz(BLS, ALS, n);
[BTLS, ATLS, SigTLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "TLS");
[HTLS _ ]= freqz(BTLS, ATLS, n);
[BMLS, AMLS, SigMLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "QR");
[HMLS _ ] = freqz(BMLS, AMLS, n);
plot(w,[abs(H0) abs(Hh)])
xlabel("Frequency (rad/sample)");
ylabel("Magnitude");
legend('Original','Measured');
err = norm(H0-Hh);
disp(sprintf('L2 norm of frequency response error = %f',err));
*/