1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
// Copyright (C) 2018 - IIT Bombay - FOSSEE
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Original Source : https://octave.sourceforge.io/
// Modifieded by: Abinash Singh Under FOSSEE Internship
// Last Modified on : 3 Feb 2024
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
/*
: [B,A] = invfreq(H,F,nB,nA,W)
: [B,A] = invfreq(H,F,nB,nA,W,[],[],plane)
: [B,A] = invfreq(H,F,nB,nA,W,iter,tol,plane)
Fit filter B(z)/A(z) or B(s)/A(s) to complex frequency response at frequency points F.
A and B are real polynomial coefficients of order nA and nB respectively. Optionally, the fit-errors can be weighted vs frequency according to the weights W. Also, the transform plane can be specified as either ’s’ for continuous time or ’z’ for discrete time. ’z’ is chosen by default. Eventually, Steiglitz-McBride iterations will be specified by iter and tol.
H: desired complex frequency response It is assumed that A and B are real polynomials, hence H is one-sided.
F: vector of frequency samples in radians
nA: order of denominator polynomial A
nB: order of numerator polynomial B
plane=’z’: F on unit circle (discrete-time spectra, z-plane design)
plane=’s’: F on jw axis (continuous-time spectra, s-plane design)
H(k) = spectral samples of filter frequency response at points zk, where zk=exp(sqrt(-1)*F(k)) when plane=’z’ (F(k) in [0,.5]) and zk=(sqrt(-1)*F(k)) when plane=’s’ (F(k) nonnegative)
*/
// FIXME: implement Steiglitz-McBride iterations
// FIXME: improve numerical stability for high order filters (matlab is a bit better)
// FIXME: modify to accept more argument configurations
function [B, A, SigN] = invfreq(H, F, nB, nA, W, iter, tol, tr, plane,varargin)
if nargin < 4 then
error("invfreq : Incorrect number of input arguments ")
end
if ~isvector(H) && ~isscalar(H) then
error("invfreq : H is the desired frequency response , a vector expected")
end
if ~isvector(F) && ~isscalar(F) then
error("invfreq : F is a vector of frequency samples in radians")
end
if max(size(nB)) > 1 then zB = nB(2); nB = nB(1); else zB = 0; end
n = max(nA, nB);
m = n+1; mA = nA+1; mB = nB+1;
nF = max(size(F));
if nargin < 5 || isempty(W) then W = ones(1, nF); end
if nargin < 6 then iter = []; end
if nargin < 7 then tol = []; end
if nargin < 8 || isempty(tr) then tr = ''; end
if nargin < 9 then plane = 'z'; end
if nargin < 10 then varargin = {}; end
if ( strcmp (plane, "s") && strcmp (plane, "z"))
error (sprintf("invfreq: invealid PLANE argument %s, expected s or z ", plane))
end
fname = ["invfreq", plane];
if (nF ~= max(size(H))) then
error ("%s: Length of H and F must be the same\n", fname)
end
if (~ isempty (iter) || ~ isempty (tol)) then
warning (sprintf("%s: iterative algorithm not yet implemented, ", ...
"ITER and TOL arguments are ignored\n", fname));
end
//////////////////////////////////////////////////////////////
norm = %f ; // should we normalize freqs to avoid matrices with rank deficiency ?
method = 'LS'; // by default, use Ordinary Least Square to solve normal equations
prop = varargin;
if length(prop) > 0 then
indi = 1;
while indi < length(prop)
switch prop(indi)
case 'norm'
if indi < length(prop) && ~(type(prop(indi+1)) == 10)
norm = prop(indi+1);
indi = indi + 2; // Skip the processed element
else
norm = %t; // Default true
indi = indi + 1;
end
case 'method'
if indi < length(prop) && type(prop(indi+1)) == 10 && strcmp(prop(indi+1), "norm")
method = prop(indi+1);
indi = indi + 2; // Skip the processed element
else
error("invfreq : incorrect/missing method argument");
indi = indi + 1;
end
otherwise
disp("Ignoring unknown or incomplete argument");
indi = indi + 1;
end
end
end
////////////////////////////////////////////////////////////////
Ruu = zeros(mB, mB); Ryy = zeros(nA, nA); Ryu = zeros(nA, mB);
Pu = zeros(mB, 1); Py = zeros(nA,1);
if ~strcmp(tr,'trace')
disp(' ')
disp('Computing nonuniformly sampled, equation-error, rational filter.');
disp(['plane = ',plane]);
disp(' ')
end
s = sqrt(-1)*F;
switch plane
case 'z'
if max(F) > %pi || min(F) < 0 then
disp('hey, you frequency is outside the range 0 to %pi, making my own')
F = linspace(0, %pi, max(size(H)));
s = sqrt(-1)*F;
end
s = exp(-s);
case 's'
if max(F) > 1e6 && n > 5 then
if ~norm then
disp('Be careful, there are risks of generating singular matrices');
disp('Call invfreqs as (..., norm, 1) to avoid it');
else
Fmax = max(F); s = sqrt(-1)*F/Fmax;
end
end
end
//////////////////////////////
/////////////////////////////
for k=1:nF,
Zk = (s(k).^[0:n]).';
Hk = H(k);
aHks = Hk*conj(Hk);
Rk = (W(k)*Zk)*Zk';
rRk = real(Rk);
Ruu = clean(Ruu + rRk(1:mB, 1:mB));
Ryy = Ryy + aHks*rRk(2:mA, 2:mA);
Ryu = Ryu + real(Hk*Rk(2:mA, 1:mB));
Pu = Pu + W(k)*real(conj(Hk)*Zk(1:mB));
Py = Py + (W(k)*aHks)*real(Zk(2:mA));
end
Rr = ones(max(size(s)), mB+nA); Zk = s;
for k = 1:min(nA, nB),
Rr(:, 1+k) = Zk;
Rr(:, mB+k) = -Zk.*H;
Zk = Zk.*s;
end
for k = 1+min(nA, nB):max(nA, nB)-1,
if k <= nB, Rr(:, 1+k) = Zk; end
if k <= nA, Rr(:, mB+k) = -Zk.*H; end
Zk = Zk.*s;
end
k = k+1;
if k <= nB then Rr(:, 1+k) = Zk; end
if k <= nA then Rr(:, mB+k) = -Zk.*H; end
// complex to real equation system -- this ensures real solution
Rr = Rr(:, 1+zB:$);
Rr = [real(Rr); imag(Rr)]; Pr = [real(H(:)); imag(H(:))];
// normal equations -- keep for ref
// Rn= [Ruu(1+zB:mB, 1+zB:mB), -Ryu(:, 1+zB:mB)'; -Ryu(:, 1+zB:mB), Ryy];
// Pn= [Pu(1+zB:mB); -Py];
////////////////////////////////////////////////
switch method
case {'ls' 'LS'}
// avoid scaling errors with Theta = R\P;
// [Q, R] = qr([Rn Pn]); Theta = R(1:$, 1:$-1)\R(1:$, $);
[Q, R] = qr([Rr Pr]); Theta = pinv(R(1:$-1, 1:$-1)) * R(1:$-1, $);
//////////////////////////////////////////////////
// SigN = R($, $-1);
SigN = R($, $);
case {'tls' 'TLS'}
// [U, S, V] = svd([Rn Pn]);
// SigN = S($, $-1);
// Theta = -V(1:$-1, $)/V($, $);
[U, S, V] = svd([Rr Pr], 0);
SigN = S($, $);
Theta = -V(1:$-1, $)/V($, $);
case {'mls' 'MLS' 'qr' 'QR'}
// [Q, R] = qr([Rn Pn], 0);
// solve the noised part -- DO NOT USE ECONOMY SIZE ~
// [U, S, V] = svd(R(nA+1:$, nA+1:$));
// SigN = S($, $-1);
// Theta = -V(1:$-1, $)/V($, $);
// unnoised part -- remove B contribution and back-substitute
// Theta = [R(1:nA, 1:nA)\(R(1:nA, $) - R(1:nA, nA+1:$-1)*Theta)
// Theta];
// solve the noised part -- economy size OK as #rows > #columns
[Q, R] = qr([Rr Pr], 0);
eB = mB-zB; sA = eB+1;
[U, S, V] = svd(R(sA:$, sA:$));
// noised (A) coefficients
Theta = -V(1:$-1, $)/V($, $);
// unnoised (B) part -- remove A contribution and back-substitute
Theta = [R(1:eB, 1:eB)\(R(1:eB, $) - R(1:eB, sA:$-1)*Theta)
Theta];
SigN = S($, $);
otherwise
error(sprintf("invfreq : unknown method %s", method));
end
B = [zeros(zB, 1); Theta(1:mB-zB)].';
A = [1; Theta(mB-zB+(1:nA))].';
if ~strcmp(plane,'s')
B = B(mB:-1:1);
A = A(mA:-1:1);
if norm, // Frequencies were normalized -- unscale coefficients
Zk = Fmax.^[n:-1:0].';
for k = nB:-1:1+zB, B(k) = B(k)/Zk(k); end
for k = nA:-1:1, A(k) = A(k)/Zk(k); end
end
end
endfunction
/*
// method - LS
test case 1 // passed
[B,A,Sign] = invfreq(1,1,1,1,1,[],[],'','z','norm',1,'method','LS')
assert_checkequal(B,[0.6314 0.3411])
assert_checkequal(A,[1 -0.3411])
assert_checkequal(Sign,0)
[B,A,Sign] = invfreq(1,1,1,1,1,[],[],'','s')
assert_checkequal(B,[0 1])
assert_checkequal(A,[0 1])
assert_checkequal(Sign,0)
test case 2 // passed
order = 6
fc = 1/2
n = 128
B = [ 0.029588 0.177529 0.443823 0.591764 0.443823 0.177529 0.029588] ;
A = [ 1.0000e+00 -6.6613e-16 7.7770e-01 -2.8192e-16 1.1420e-01 -1.4472e-17 1.7509e-03];
[H,w] = freqz(B,A,n) ;
[Bh , Ah] = invfreq(H,w,order,order);
[Hh,wh] = freqz(Bh,Ah,n);
plot(w,[abs(H), abs(Hh)])
xlabel("Frequency (rad/sample)");
ylabel("Magnitude");
legend('Original','Measured');
err = norm(H-Hh);
disp(sprintf('L2 norm of frequency response error = %f',err));
test case 3 // passed
// buttter worth filter of order 12 and fc=1/4
B = [ 1.1318e-06 1.3582e-05 7.4702e-05 2.4901e-04 5.6026e-04 8.9642e-04 1.0458e-03 8.9642e-04 5.6026e-04 2.4901e-04 7.4702e-05 1.3582e-05 1.1318e-06];
A = [ 1.0000e+00 -5.9891e+00 1.7337e+01 -3.1687e+01 4.0439e+01 -3.7776e+01 2.6390e+01 -1.3851e+01 5.4089e+00 -1.5296e+00 2.9688e-01 -3.5459e-02 1.9688e-03];
[H,w] = freqz(B,A,128);
[Bh,Ah] = invfreq(H,w,4,4);
[Hh,wh] = freqz(Bh,Ah,128);
disp(sprintf('||frequency response error||= %f',norm(H-Hh)));
method TLS
test case 1 // passed
B = [ 1.1318e-06 1.3582e-05 7.4702e-05 2.4901e-04 5.6026e-04 8.9642e-04 1.0458e-03 8.9642e-04 5.6026e-04 2.4901e-04 7.4702e-05 1.3582e-05 1.1318e-06];
A = [ 1.0000e+00 -5.9891e+00 1.7337e+01 -3.1687e+01 4.0439e+01 -3.7776e+01 2.6390e+01 -1.3851e+01 5.4089e+00 -1.5296e+00 2.9688e-01 -3.5459e-02 1.9688e-03];
[H,w] = freqz(B,A,128);
[Bh,Ah] = invfreq(H,w,4,4,[],[],[],'','z','norm',1,'method','TLS');
[Hh,wh] = freqz(Bh,Ah,128);
disp(sprintf('||frequency response error||= %f',norm(H-Hh)));
method MLS - passed
// elliptic filter with ellip (5, 1, 90, [.1 .2])
n = 128
B = [ 1.3214e-04 -6.6404e-04 1.4928e-03 -1.9628e-03 1.4428e-03 0 -1.4428e-03 1.9628e-03 -1.4928e-03 6.6404e-04 -1.3214e-04] ;
A = [ 1.0000 -8.6483 34.6032 -84.2155 137.9276 -158.7598 130.0425 -74.8636 29.0044 -6.8359 0.7456];
[H,w] = freqz(B,A,n) ;
[Bh,Ah] = invfreq(H,w,4,4,[],[],[],'','z','norm',1,'method','MLS');
[Hh,wh] = freqz(Bh,Ah,n);
plot(w,[abs(H), abs(Hh)])
xlabel("Frequency (rad/sample)");
ylabel("Magnitude");
legend('Original','Measured');
err = norm(H-Hh);
disp(sprintf('L2 norm of frequency response error = %f',err));
*/
|