1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
function [n, fo, ao, w] = firpmord(f, a, dev, varargin)
// Parks-McClennan optimal FIR filter order estimation
//
//
// Calling sequence
// [n,fo,ao,w] = firpmord(f,a,dev)
// [n,fo,ao,w] = firpmord(f,a,dev,fs)
//
//
// Parameters
// f: double - positive - vector
// Frequency band edges (between 0 and Fs/2).
// Length of f is two less than the length of a.
// a: double - positive - vector
// Desired amplitudes at the frequency bands specified by f.
// dev: double - positive - vector
// Maximum allowable deviations.
// Maximum acceptable deviations or ripples between the frequency response
// and the desired amplitudes in the frequency bands specified by f. Must have
// the same length as a.
// n: int - scalar
// Filter order
// fo: double - positive - vector
// Frequency vector
// ao: double - positive - vector
// Amplitude vector
// w: double - vector
// Weights
//
//
// Examples
// [1] A low-pass filter
// f = [1500 2000]; // frequency edges for bands
// a = [1 0]; // desired amplitude for each band
// dev = [0.01 0.1]; // Acceptable deviation for each band
// fs = 8000; // Sampling frequency
// [n,fo,ao,w] = firpmord(f,a,dev,fs);
//
// [2] A bandstop filter
// f = [1000 1800 2400 3000];
// a = [1 0 0.5];
// dev = [0.01 0.1 0.03];
// fs = 8000;
// [n,fo,ao,w] = firpmord(f,a,dev,fs);
//
//
// References
// [1] Rabiner, Lawrence R., and Bernard Gold. "Theory and application of
// digital signal processing." Englewood Cliffs, NJ, Prentice-Hall, Inc.,
// 1975. 777 p. 156-7 (1975).
// [2] Rabiner, Lawrence R., and Otto Herrmann. "The predictability of certain
// optimum finite-impulse-response digital filters." Circuit Theory,
// IEEE Transactions on 20.4 (1973): 401-408.
//
// Authors
// Ayush Baid
//
//
// See Also
// buttord | cheb1ord | cheb2ord | ellipord | firpm | kaiserord
[numOutArgs,numInArgs] = argn(0);
// ********************
// Checking number of arguments
// ********************
if numInArgs~=3 & numInArgs~=4 then
msg = "firpmord: Wrong number of input argument; 3-4 expected";
error(77,msg);
end
if numOutArgs~=4 then
msg = "firpmord: Wrong number of output argument; 4 expected";
error(78,msg);
end
// ********************
// Parsing input args
// ********************
// Parsing fs
fs = 2; // default
if length(varargin)==1 then
fs = varargin(1);
if length(fs)~=1 then
msg = "firpmord: Wrong type for argument #4 (fs): Positive real scalar expected";
error(53,msg);
end
if fs<=0 then
msg = "firpmord: Wrong type for argument #4 (fs): Positive real scalar expected";
error(53,msg);
end
if type(fs)~=1 & type(fs)~=8 then
msg = "firpmord: Wrong type for argument #4 (fs): Positive real scalar expected";
error(53,msg);
end
end
// Checks on f
if ~isvector(f) | (type(f)~=1 & type(f)~=8) then
msg = "firpmord: Wrong type for argument #1 (f): Vector of positive reals expected";
error(53,msg);
end
if ~(and(f>=0) & and(f<=fs/2)) then
msg = "firpmord: Wrong value for argument #1 (f): Values must be between 0 and fs/2";
error(116,msg);
end
// Check on a
if ~isvector(a) | (type(a)~=1 & type(a)~=8) then
msg = "firpmord: Wrong type for argument #2 (a): Vector of positive reals expected";
error(53,msg);
end
if ~and(a>=0) then
msg = "firpmord: Wrong value for argument #2 (a): Values must be positive";
error(116,msg);
end
if length(f)~=2*length(a)-2 then
msg = "firpmord: Wrong type for arguments #1(f) and #2 (a): Length of f must be two less than twice the length of a ";
error(53,msg);
end
// Check on dev
if ~isvector(dev) | (type(dev)~=1 & type(dev)~=8) then
msg = "firpmord: Wrong type for argument #3 (dev): Vector of positive reals expected";
error(53,msg);
end
if ~and(dev>0) then
msg = "firpmord: Wrong value for argument #3 (dev): Values must be positive";
error(116,msg);
end
if length(dev)~=length(a) then
msg = "firpmord: Wrong type for arguments #2(a) and #3 (dev): Length of a and dev must be equal";
error(53,msg);
end
// ********************
// Some preprocessing
// ********************
// Turn every vector into a column vector
f = f(:);
a = a(:);
dev = dev(:);
// Normalizing frequencies
f = f./fs;
// Get deviation relative to the amplutudes
is_zero = a==0;
dev = dev./(is_zero+a); // no scaling req. when desired amplitude is 0
num_bands = size(a,1);
// Dividing frequency band edges into 2 vectors, f1 and f2, denoting
// passband and stopband edges respectively.
f1 = f(1:2:$-1);
f2 = f(2:2:$);
// ********************'
// Calculations for filter order
// ********************
// Note: Amplitudes don't matter for order as they can be adjusted by
// scaling and linear shifting
if num_bands==2 then
// Simple low-pass or high-pass filter, use single_transition_order_estimation
L = single_trans_order_est(f1(1), f2(1), dev(1), dev(2));
else
// We have a bandpass filter, which will be considered to be composed
// of a cascade of simple high-pass/low-pass filters
// The first filter is considered high-pass (if it is low pass in reality,
// the filter just has to be negated; filter order does not change)
// Loop over different simple filters and select the highest required length
L = 0
for i=2:num_bands-1
L1 = single_trans_order_est(f1(i-1), f2(i-1), dev(i), dev(i-1));
L2 = single_trans_order_est(f1(i), f2(i), dev(i), dev(i+1));
L = max([L; L1; L2]);
end
end
// filt. order = L-1
n = ceil(L) - 1;
// frequency and respective amplitudes
fo = [0;2*f;1];
ao = zeros(size(fo,1),1);
ao(1:2:$) = a;
ao(2:2:$) = a;
// weights
w = ones(size(dev,1),1)*max(dev)./dev;
endfunction
function L = single_trans_order_est(freq1, freq2, delta1, delta2)
// Calculates the filter order for a single transition band filter ( simple
// low-pass or simple high-pass filter)
//
//
// Parameters (assuming a low-pass filter; notations change for high pass filter)
// freq1: passband cutoff frequency (normalized)
// freq2: stopband cutoff frequency (normalized)
// delta1: passband ripple (max. allowed)
// delta2: stopband attenuation (not in dB)
// L: filter length; filter order = L-1
//
// Note: will not work well when transition near f = 0 or 0.5
//
// References
// [1] Rabiner, Lawrence R., and Bernard Gold. "Theory and application of
// digital signal processing." Englewood Cliffs, NJ, Prentice-Hall, Inc.,
// 1975. 777 p. 156-7 (1975).
// Creating a matrix for consice representation of coeffs a_i used in Eq. 3.142
// and b_i in Eq. 3.143 in [1]
A = [-4.278e-1, -4.761e-1; -5.941e-1, 7.114e-2; -2.66e-3, 5.309e-3];
B = [11.01217, 0.51244];
log_delta1 = log10(delta1);
log_delta2 = log10(delta2);
// Evaluating Eq. 3.142 (Ref. [1])
D = [1, log_delta1, log_delta1.^2] * A * [1; log_delta2];
// Evaluating Eq. 3.143 (Ref. [1])
f = B * [1; log_delta1 - log_delta2];
// Evaluating Eq. 3.145 (Ref. [1])
del_freq = abs(freq1 - freq2);
L = D./del_freq - f.*del_freq + 1;
endfunction
|