1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
function y = fftfilt(b, x, varargin)
// Performs FFT-based FIR filtering using overlap-add method
//
// Calling sequence
// y = fftfilt(b,x)
// y = fftfilt(b,x,n)
//
// Parameters
// x: real|complex numbers - vector|matrix
// Input data to be filtered
// If x is a matrix, each column is treated as an independent observation.
// b: real|complex numbers - vector|matrix
// Filter coefficients
// If b is a matrix and x is a vector, each column is treated as an
// independent filter. If both x and b are matrices, each column of x
// if filtered using corresponding column of b.
// n: positive integer
// Parameter used to determine the length of the fft
//
// Description
// y = fftfilt(b,x) filters the data in vector x with the filter described
// by coefficient vector b.
// y = fftfilt(b,x,n) uses n to determine the length of the FFT.
//
// Examples
// 1) Filtering a sine wave
// x = sin(1:2000);
// b = [1 1/2];
// y = fftfilt(b,x);
// 2) Multiple filters (1,1/3) and (1/4,1/5);
// x = sin(1:2000);
// b = [1 1/4;1/3 1/5];
// y = fftfilt(b,x);
//
// Authors
// Ayush Baid
[numOutArgs,numInArgs] = argn(0);
// ** Checking number of arguments
if numInArgs<1 | numInArgs>3 then
msg = "fftfilt: Wrong number of input argument; 1-3 expected";
error(77,msg);
end
if numOutArgs~=1 then
msg = "fftfilt: Wrong number of output argument; 1 expected";
error(78,msg);
end
// variables to keep track if the input vectors are column vectors
transform_x = %f;
// ** checking the type of input arguments **
if isempty(b) then
y = zeros(size(x,1),size(x,2));
return;
end
// b should contain numeric entries
if ~(type(b)==1 | type(b)==8 | type(b)==17) then
msg = "fftfilt: Wrong type for argument #1 (b); Real or complex entries expected ";
error(53,msg);
end
// x should contain numeric entries
if ~(type(x)==1 | type(x)==8 | type(x)==17) then
msg = "fftfilt: Wrong type for argument #2 (x); Real or complex entries expected ";
error(53,msg);
end
temp = size(x,1);
// b and x must have compatible dimensions
inpType = 0;
if size(b,1)==1 | size(b,2)==1 then
// b is a vector; hence x can be a matrix
inpType = 1;
// if x is a vector; it should be a column vector
if size(x,1)==1 then
x = x(:);
transform_x = %t;
end
// covert b to column vector
b = b(:);
else
// b is a matrix, hence x should either be a vector or a matrix with
// same number of columns
if size(x,1)==1 | size(x,2)==1 then
inpType = 2;
if size(x,1)==1 then
x = x(:);
transform_x = %t;
end
else
// check compatibility
if size(b,2)~=size(x,2) then
msg = "fftfilt: Wrong size for arguments #1 (b) and #2 (x); Must have same number of columns";
error(60,msg);
end
inpType = 3;
end
end
// getting the length of data vector x
nx = size(x,1);
nb = size(b,1);
if numInArgs==2 then // the param n was not passed
// figure out the nfft (length of the fft) and L (length of fft inp block)to be used
if (nb>=nx | nb>2^20) then
// take a single fft
nfft = 2^nextpow2(nb+nx-1);
L = nx;
else
// estimated flops for the fft operation (2.5nlog n for n in powers of 2 till 20)
fftflops = [5, 20, 60, 160, 400, 960, 2240, 5120, 11520, 25600, 56320, 122880, 266240, 573440, 1228800, 2621440, 5570560, 11796480, 24903680, 52428800];
n = 2.^(1:20);
candidateSet = find(n>(nb-1)); // all candidates for nfft must be > (nb-1)
n = n(candidateSet);
fftflops = fftflops(candidateSet);
// minimize (number of blocks)*(number of flops per fft)
L = n - (nb - 1);
numOfBlocks = ceil(nx./L);
[dum,ind] = min( numOfBlocks .* fftflops ); //
nfft = n(ind);
L = L(ind);
end
else // nfft is given
if nfft < nb then
nfft = nb;
end
nfft = 2.^(ceil(log(nfft)/log(2))); // forcing nfft to a power of 2 for speed
L = nfft - nb + 1;
end
// performing fft on b
if nb<nfft then
// perform padding
temp = zeros(nfft-nb,size(b,2));
b = [b; temp];
end
B = fft(b,-1,1);
// replication x or b to match the number of columns
if inpType==1 & size(x,2)~=1 then
B = B(:,ones(1,size(x,2)));
elseif inpType==2 then
x = x(:,ones(1,size(b,2)));
end
y=zeros(size(x,1),size(x,2));
blockStartIndex = 1;
while blockStartIndex <= nx,
blockEndIndex = min(blockStartIndex+L-1, nx);
if blockEndIndex==blockStartIndex then
// just a scalar in the block
X = x(blockStartIndex(ones(nfft,1)),:);
else
block = x(blockStartIndex:blockEndIndex,:);
// performing padding
temp = nfft-(blockEndIndex-blockStartIndex)-1;
if temp>0 then
pad = zeros(temp,size(block,2));
block = [block; pad];
end
X = fft(block,-1,1);
end
Y = fft(X.*B,1,1);
yEndIndex = min(nx, blockStartIndex+nfft-1);
y(blockStartIndex:yEndIndex,:) = y(blockStartIndex:yEndIndex,:) + Y(1:(yEndIndex-blockStartIndex+1),:);
blockStartIndex = blockStartIndex+L;
end
// if both data and filter coeffs were real, the output should be real
if ~(or(imag(b(:))) | or(imag(x(:)))) then
y = real(y);
end
if inpType==1 & transform_x then
y = y';
end
endfunction
|